![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Economic geology
Extensive descriptions of a wide range of key or world-class mineral deposits of China are presented in the context of the country's general geology, tectonic units and mineral systems and their geodynamic evolution within the tectonic framework of the Asian continent. This comprehensive overview, incorporating the latest geological concepts, is the first such coverage written in English by a western expert, and will be of benefit to mineral explorers and miners, as well as to research scientists and students in institutions of higher education. In his compilation of this compendium of Chinese geology and mineral systems, Franco Pirajno draws on first-hand knowledge of China's geology and mineral deposits gained in numerous field visits and research projects with Chinese colleagues from various academic institutions over the past 18 years. First time that a western-based book on China's geology and mineral deposits is published Appropriate for use by the mineral exploration industry Modern English-language geological and mineral deposits information on China Most useful to Western (and Chinese) geoscientists
Global Change studies are increasingly being considered a vital source of information to understand the Earth Environment, in particular in the framework of human-induced climate change and land use transformation. Satellite Earth Observing systems provide a unique tool to monitor those changes. While the range of applications and innovative techniques is constantly increasing, this book provides a summary of key case studies where satellite data offer critical information to understand the causes and effects of those environmental changes, minimizing their negative impacts. This book will be of interest to researchers and practitioners in the field of remote sensing, geographical information, meteorology and environmental sciences. Also scientists and graduate up to post-graduate level students in environmental science will find valuable information in this book.
New Edition Now Covers Recycling, Environmental Issues, and Analytical Determination Employing four decades of experience in the rare metal and rare earths industry, the authors of Extractive Metallurgy of Rare Earths, Second Edition present the entire subject of rare earth elements with depth and accuracy. This second edition updates the most important developments from the past 10 years. It emphasizes advances made in rare-earth materials processing (converting a rare-earth metal, alloy, or compound to a device-ready material), breakthroughs in the area of rare-earth separation, and now includes a chapter on the recycling of rare earth elements from magnets, batteries, and phosphors among others, covering both manufacturing scrap or materials in end of life devices. Essential to Your Collection This second edition presents comprehensive, detailed, and up-to-date coverage that includes: All aspects of rare earth extractive metallurgy A status of rare earth extraction from various world resources Flow sheets that can be used for rare earths separation, metal reduction, alloy making, refining and end product materials preparation Techniques of various rare earths recycling options An outline of environmental issues in rare earths mining and processing Methods of rare earths determination and analyses of components and impurities in rare earth materials Information extensively linked to primary literature with a complete listing of references A narration of the changing scenario of world rare earth resources and possibility of their exploitation An indispensable resource, Extractive Metallurgy of Rare Earths, Second Edition explains the many aspects of rare earth extractive metallurgy clearly and systematically. The text reveals process implementation possibilities and research opportunities, and considers potential solutions to the challenges impacting this rapidly changing industry.
The push-pull test is a powerful site characterization technique that has been applied to a wide range of problems in contaminant hydrogeology. The theoretical and practical apsects of push-pull testing were initially developed to characterize groundwater acquifers but the method has now been extended to saturated and unsaturated soils and sediments as well as to surface water bodies. Dr. Istok and his collaborators have been instrumental in the development of these techniques and he is widely recognized as the world's leading expert push-pull testing. This is the only reference book available on this powerful method.
This book provides a very basic introduction to electron microscopy and energy dispersive spectrometry (EDS). It has the largest compiled collection of EDS spectra ever published and covers most common rock forming minerals. In addition, it provides a key to help the novice wade through the large number of spectra.
The Baltic Sea area is an old cultural landscape with a well developed international framework for monitoring, assessing and managing its marine ecosystems. It provides a good case study for other regions where such management is being set up. The chapters in this book are based on lectures given at a summer school on the Baltic Sea island of Bornholm in the summer of 2009. They cover a range of topics, spanning from detailed descriptions of political agreements that protect the marine environment, to basic modelling instructions, to an assessment of the possible impacts of climate change on the marine ecosystem, to a reflection on the role of climate scientists and their responsibility in society. This interdisciplinary book is primarily directed at students and lecturers of the environmental disciplines to provide an overview of the possible impacts of climate change on the Baltic Sea. It is also intended to serve as a background reference for scientists and policy makers, both for the Baltic Sea area and more generally. The book is a contribution to the BALTEX programme and to the BONUS+ projects ECOSUPPORT and Baltic-C.
The importance of oil in the world economy cannot be overstated, and methods for recovering oil will be the subject of much scientific and engineering research for many years to come. Even after the application of primary depletion and secondary recovery processes (usually waterflooding), much oil usually remains in a reservoir, and indeed in some heterogeneous reservoir systems as much as 70% of the original oil may remain. Thus, there is an enormous incentive for the development of improved or enhanced methods of oil recovery, aimed at recovering some portion of this remainil)g oil. The techniques used range from 'improved' secondary flooding methods (including polymer and certain gas injection processes) through to 'enhanced' or 'tertiary' methods such as chemical (surfactant, caustic, foam), gas miscible (carbon dioxide, gas reinjection) and thermal (steam soak and drive, in-situ combustion). The distinction between the classification ofthe methods usually refers to the target oil that the process seeks to recover. That is, in 'improved' recovery we are usually aiming to increase the oil sweep efficiency, whereas in 'tertiary' recovery we aim to mobilise and recover residual or capillary trapped oil. There are a few books and collections of articles which give general overviews of improved and enhanced oil recovery methods. However, for each recovery method, there is such a wide range of interconnected issues concerning the chemistry, physics and fluid mechanics of flow in porous media, that rarely are these adequately reviewed."
This book is a companion to "Natural Gas Hydrate in Oceanic and Permafrost Environments" (Max, 2000, 2003), which is the first book on gas hydrate in this series. Although other gases can naturally form clathrate hydrates (referred to after as 'hydrate'), we are concerned here only with hydrocarbon gases that form hydrates. The most important of these natural gases is methane. Whereas the first book is a general introduction to the subject of natural gas hydrate, this book focuses on the geology and geochemical controls of gas hydrate development and on gas extraction from naturally occurring hydrocarbon hydrates. This is the first broad treatment of gas hydrate as a natural resource within an economic geological framework. This book is written mainly to stand alone for brevity and to minimize duplication. Information in Max (2000; 2003) should also be consulted for completeness. Hydrate is a type of clathrate (Sloan, 1998) that is formed from a cage structure of water molecules in which gas molecules occupying void sites within the cages stabilize the structure through van der Waals or hydrogen bonding.
Recent landslide events demonstrate the need to improve landslide
forecasting and early warning capabilities in order to reduce
related risks and protect human lives. In this thesis, local and
regional investigations were carried out to analyse landslide
characteristics in the Swabian Alb region, and to develop
prototypic landslide early warning systems.
In the second edition Steve Kesler (University of Michigan) has been added as an author to rewrite some chapters. The motivation for this revised edition is to more intensively address economic issues that surround the exploitation of mineral resources. This emphasis gives the book a unique character. With these sections "Metals and Society" deals with issues that pervade much of current science reporting the rate of exploitation of natural resources, the question of when or if these resources will be exhausted, the pollution and social disturbance that accompanies mining, the compromises and challenges that arise from the explosion of demand from China, India and other rapidly developing countries, and the moral issues that surround mining of metals in lesser developed countries for consumption in the first-world countries. With its dual character, the book will be useful as an introductory text for students in the earth sciences and a reference volume for students, teachers and researchers of geography, economics and the social sciences. "
Petroleum Geology is a complex discipline, drawing upon data from many technologies. It is the function of Well site Geologists to integrate processed data produced prior to and dur ing the drilling operation With their own geological observations. For this reason, it is necessary that geologists appreciate some of the technology, theory of measurement, and processing of this data in order to better assess and use them. In the Field Geologists's Training Guide (Exlog, 1985) and Mud Logging: Principles and Interpretations (Exlog, 1985), an introduction is given to the scope of petroleum geology, and the techniques of hydrocarbon (oil and gas) logging as a reservoir evaluation tool. This handbook is intended to provide the Logging Geologist, and those training for a Consultant Wellsite Geologist position, with a review of geological techniques and classification systems. This will ensure the maximum development of communicable geological informa tion. Whether a geologist's work lies in this direction or in the more applied field of pressure evaluation, it is the application of geological insight to engineering problems that distinguishes the professional logging geologist in the field. This book will be of interest to and become a regular reference for all geologists. 1 INTRODUCTION CUTTINGS RECOVERY 1. 1 In an ideal borehole and mud system, cuttings would be transported to surface with the same order and composition as they were cut, as in Figure 1-1."
The objectives of this book are: (1) to educate the prospective Pressure Evaluation Geologist to a basic level of expertise; (2) to provide a reference tool for the experienced geologist; and (3) to foster constructuve thought and continued development of the field geologist. Despite the incorporation of many new ideas and concepts, elaboration of the more re cent concepts is limited due to space considerations. It is hoped that the geologist will follow up via the literature referenced at the end of each chapter. Easy reference is provided by the detailed table of contents and index. A glossary of terms, definitions, and formulae adds to the usefulness of this reference text. ACKNOWLEDGMENTS FOR FIGURES Figure 2-7 is reprinted by permission of the AAPG from Barker, 1972. Figure 4-21 is courtesy of Totco Figure 5-2 is reprinted by permission of the Oil and GasJournal from Matthews and Kelly, 1967. Figure 5-4 is reprinted by permission of the SPE-AIME from the Journal of Petroleum Technology from Eaton, (c) 1969. Figure 5-5 is reprinted by permission of the SPE-AIME from Hubbert and Willis, (c) 1957.
The discipline encompassing the use of high-resolution geophysics for obtaining geoengineering survey data has evolved rapidly over the past decades to become an interdisciplinary subject encompassing the fields of Geophysics, engineering, geology, marine geology, oceanography, and civil engineering. While high-resolution geophysical surveys are routinely performed offshore today, this has been so only since the late 1960s. High-resolution geophysical methods are employed in the offshore environment to obtain a comprehensive picture of the sea-floor mor phology and underlying shallow stratigraphy. The purpose of the survey methods is to assist in the design and installation of bottom-supported structures such as drilling and production platforms and pipelines. Drilling structures and pipelines of steel and/or concrete have become behemoths with respect to their size and the complexity of their design in order to withstand, for periods of up to twenty-five years, an extremely harsh environment, including storm waves, strong currents, unstable sea floor conditions, and great water depths. It is therefore of paramount importance that the geometry and physical properties of the sea floor be well understood in order to provide an adequate foundation for the design lives of such structures. On land, engineering foundation data usually may be obtained by visual field inspection and shallow borehole information, but offshore the presence of the water column places certain constraints on geoengineering investigations. High-resolution geophysical methods employed in the acquisition of geoengineering data offshore are defined as the use of seismic sources and receivers that operate at acoustic frequencies greater than 100 Hz.
Computational Geosciences with Mathematica is the only book written by a geologist specifically to show geologists and geoscientists how to use Mathematica to formulate and solve problems. It spans a broad range of geologic and mathematical topics, which are drawn from the author's extensive experience in research, consulting, and teaching. The reference and text leads readers step-by-step through geologic applications such as custom graphics programming, data input and output, linear and differential equations, linear and nonlinear regression, Monte Carlo simulation, time series and image analysis, and the visualization and analysis of geologic surfaces. It is packed with actual Mathematica output and includes boxed Computer Notes with tips and exploration suggestions.
An Introduction to Mine Hydrogeology briefly describes the subject of hydrogeology so that this knowledge can be integrated into mine development planning. It emphasizes not only the hydrochemical but also the physical impacts of the hydrogeological environment on the mine and its surroundings. Further, it discusses the methodologies used in mine hydrogeological studies, showcased by selected studies on Indian mines.
This book consists of 44 technical papers presented at the Ninth International Geostatistics Congress held in Oslo, Norway in June 2012. The papers have been reviewed by a panel of specialists in Geostatistics. The book is divided into four main sections: Theory; Petroleum; Mining; and Environment, Climate and Hydrology. The first section focuses on new ideas of general interest to many fields of applications. The next sections are more focused on the particular needs of the particular industry or activity. Geostatistics is vital to any industry dependent on natural resources. Methods from geostatistics are used for estimating reserves, quantifying economical risk and planning of future industrial operations. Geostatistics is also an important tool for mapping environmental hazard and integrating climate data.
After many years of geographical and bibliographical journeys, William Panczner has completed a project that many of us would have loved to initiate, but did not undertake because of its magnitude and intrinsic complexity. Not since L. Salazar Salinas, who is credited with authoring Bole tin numeros 40 and 41 (lnstituto Geologico de Mexico, 1922, 1923), has an author been able to provide readers with a comprehensive volume containing information that is both authentic and reliable on Mexican mineralogy, mineral species, and localities. This volume is the most complete synthesis about Mexican minerals and their occurrences to date. It is richly illustrated with photographs and drawings, is well documented, and is organized into four sections, making it easy to use and enjoyable to read. The introduction contains an interesting summary of the mining history and the development of mineralogy. It also describes, in a condensed but accurate and stimulating manner, the geography and the mineralogy of the country, dividing it into eleven mineral provinces. The author discusses eight of the more important mining districts in Mexico, which produce fine mineral speci mens. There is also a chronology of historical, geological, and mineralogical events in Mexico. This is followed by a bibliography with over 500 references on the subject.
Several excellent books on weil log interpretation have already been published. However, I feel that these books do not place enough emphasis on the inherent uncertainties in tool responses or on the related and very practical problern of selecting suitable data points for statistical or quantita tive calculations. Thus, I have written this book not only to introduce the newcomer to this very complex art and science, but also to provide him or her with the necessary tools to produce better interpretations. The problems at the end of each chapter are essential to a more complete understanding of the subject matter and include many practical notes based on problems I have encountered in actual applications. This book emphasizes that you develop your own concepts and understanding of the underlying principles, rather than acquiring a compendium of knowledge based on certain rules of thumb. If you are to successfully interpret welllogs, you need to be able to apply your knowledge to new problems that may not follow the preconceived ideas and approaches you would follow if you approached weil log analysis from a cookbook standpoint.
The series editor's foreword provides the opportunity to give the rationale for a series on the evolution of ore fields. In brief, it meets a need that I, an explorationist, perceived as I became involved in a multidisciplinary explo ration program in the late 1960s. We were looking for mines while prospecting at the ore-field scale. The practicalities demand that we know more about the ore field and that we do not just study individual deposits, the analogy being the three blind men who attempted to describe the elephant as they felt the trunk, ear, or leg. Two considerations in identifying ore fields are the different perception as one changes scale from orebody to ore field and the problem of stratigraphic classification and nomenclature in terms appropriate to metallogenesis. Two workers, Brock (1972) and Carey (1976), have been particularly con cerned with the different appreciation brought about by a change in scale."
As we transition into the 21st century, it is apparent that this is an exciting time for environmental engineers and scientists studying remediation technologies. There has been a rapid development of new ways to clean-up polluted groundwater. Research activities of the past and next 10 years will have a dramatic impact on the quality of the subsurface environment for the next century. In 20, or even 10 years from now, our approach to subsurface remediation will probably be vastly different than it is today. Many of the emerging technologies presented in this book will form the basis of standard remediation practices of the future. Physicochemical Groundwater Remediation presents detailed information on multiple emerging technologies for the remediation of the contaminated subsurface environment. All of these technologies apply our knowledge of physical and chemical processes to clean up ground water and the unsaturated zone, and many (if not all) of these emerging technologies will help define standard practices in the future. These technologies include in situ sorptive and reactive treatment walls, surfactant-enhanced aquifer remediation, optimization analyses for remediation system design, chemical, electrochemical, and biochemical remediation processes, and monitored natural attenuation. You will learn how palladium catalyzes the dehalogenation of chlorinated solvents. You will find out how barometric pumping can naturally remove significant quantities of volatile organic pollutants from shallow ground water and the unsaturated zone. You can learn about mobilizing non-aqueous phase liquids (NAPLs) without risking significant downward migration of the NAPL. You can find out how processes such as electroosmosis and electromigration can be exploited for groundwater remediation purposes and how zero-valent iron and zeolite treatment walls can be used in situ to treat and control contaminant plume migration. Contributors to this book are experts in groundwater remediation processes, and they represent industry, consulting, academia, and government. If your work involves the clean up of contaminated soil and groundwater, this book is an essential reference to keep you up to date on the most promising new developments in remediation research.
Published in 2002, the first edition of Geostatistical Reservoir Modeling brought the practice of petroleum geostatistics into a coherent framework, focusing on tools, techniques, examples, and guidance. It emphasized the interaction between geophysicists, geologists, and engineers, and was received well by professionals, academics, and both graduate and undergraduate students. In this revised second edition, Deutsch collaborates with co-author Michael Pyrcz to provide a full update on the latest tools, methods, practice, and research in the field of petroleum Geostatistics. Key geostatistical concepts such as integration of production data, scale-up, and cosimulation receive greater attention, and new topics like model checking, multiple point simulation, and production data integration are included in detail. Geostatistical methods are extensively illustrated through enhanced schematics, work flows and examples. A greater number of examples also are included, such as the integration of a single geostatistical study developed from data analysis and cleaning to post-processing, ranking and flow simulation. New methods, which have developed in the field since the publication of the first edition, are discussed, such as models for integration of diverse data sources, surface-based, advanced object-based, event-based and multiple point-based simulation, and spatial boot-strap.
This is the sixth contribution to the Computer Methods in the Geosciences series and it continues the tradition of being practical, germaine, and easy to read. Michael Hohn in his presentation, Geostatistics and Petroleum Geology, nicely compliments the other books in the series and brings to the readers some new techniques by which to analyze their data. New approaches always result in new ideas or enhancement of old ones. The French School of Geostatistiques (Fontainebleau, France) was founded and developed by Georges Matheron in response to problems in mining explo ration and exploitation. This approach has been used successfully in that industry since the mid-1960s, but only recently applied to similar problems in petroleum. Likewise, these applications have been successful in this applied field as well and here Hohn gives examples. Standard subjects of the field of geostatistics are explored and discussed-the semivariogram, kriging, cokriging, nonlinear and parametric estimation, and conditional simulation. These may be unrecognizable terms to the readers now, but upon completion of reading the book, they will be fimiliar ones. Each subject is discussed in detail with appropriate and pertinent case studies, taken from the author's own research or from the literature. The author notes the book is for working geologists in the petroleum industry." |
![]() ![]() You may like...
|