![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Economic geology
Irregular engineering structures are subjected to complicated additional loads which are often beyond conventional design models developed for traditional, simplified plane models. This book covers detailed research and recent progress in seismic engineering dealing with seismic behaviour of irregular and set-back engineering structures. Experimental results as well as special topics of modern design are discussed in detail. In addition, recent progress in seismology, wave propagation and seismic engineering, which provides novel, modern modelling of complex seismic loads, is reported. Particular emphasis is placed on the newly developed rotational, seismic ground-motion effects. This book is a continuation of an earlier monograph which appeared in the same Springer series in 2013 (http://www.springer.com/gp/book/9789400753761).
This monograph examines the mineralogy of illite, the most common clay mineral, as a unifying theme for understanding problems of the surface environment and environmental change. The volume begins with a careful analysis of the structure and transformation of illite. Using illite as the frame, the authors describe problems in soil chemistry, clay stability and clay kinetics in sedimentary rocks.
This book covers the entire spectrum of mineralogy and consolidates its applications in various fields. Its starts (Part I) with the very basic concept of mineralogy describing in detail the implications of the various aspects of mineral chemistry, crystallographic structures and their effects producing different mineral properties. Part II of the book describes different aspects of mineralogy used to extend the studies of geothermobarometry, mineral thermodynamics and phase diagrams, mineral exploration and analysis, including some aspects of marine minerals etc. The book finally handles the applications in industrial, medicinal and environmental mineralogy along with precious semiprecious stone studies. The various analytical techniques, their significance in handling specific types of mineralogical problems are also well covered.
Coalbed gas has been considered a hazard since the early 19th century when the first mine gas explosions occurred in the United States in 1810 and France in 1845. In eastern Australia methane-related mine disasters occurred late in the 19th century with hundreds of lives lost in New South Wales, and as recently as 1995 in Queensland's Bowen Basin. Ventilation and gas drainage technologies are now in practice. However, coalbed methane recently is becoming more recognized as a potential source of energy; rather than emitting this gas to the atmosphere during drainage of gassy mines it can be captured and utilized. Both economic and environmental concerns have sparked this impetus to capture coalbed methane. The number of methane utilization projects has increased in the United States in recent years as a result, to a large extent, of development in technology in methane recovery from coal seams. Between 1994 and 1997, the number of mines in Alabama, Colorado, Ohio, Pennsylvania, Virginia, and West Virginia recovering and utilizing methane increased from 1 0 to 17. The Environmental Protection Agency estimates that close to 49 billion cubic feet (Bet) of methane was recovered in 1996, meaning that this amount was not released into the atmosphere. It is estimated that in the same year total emissions of methane equaled 45. 7 Bcf. Other coal mines are being investigated at present, many ofwhich appear to be promising for the development of cost-effective gas recovery.
This volume presentsa selection of survey and research articles based on invited lectures and contributed talks presented at the Workshop on Fluid Dynamics in Porous Media that was held in Coimbra, Portugal, inSeptember 12-14, 2011. The contributions are devoted to mathematical modeling, numerical simulation and their applications, providing the readers a state-of-the-art overview on the latest findings and new challenges on the topic. The book includes research work of worldwide recognized leaders in their respective fields and presents advances in both theory and applications, making it appealing to a vast range of audience, in particular mathematicians, engineers and physicists."
Nominated by Tsinghua University as an outstanding Ph.D. thesis, this book investigates the mechanical properties of unsaturated compacted clayey soil, the multi-field coupling consolidation theory of unsaturated soil and its application to a 261.5 m high earth-rockfill dam. It proposes a multi-field coupling analysis method of consolidation, and develops an efficient and practical finite element (FE) program for large-scale complex earth-rockfill dams. The book is primarily intended for researchers studying the multi-field coupling analysis of seepage consolidation.
This book investigates the Upper Silesian Coal Basin (USCB), one of the oldest and largest mining areas not only in Poland but also in Europe. Using uniform research methods for the whole study area, it also provides a summary of the landscape transformations. Intensive extraction of hard coal, zinc and lead ores, stowing sands and rock resources have caused such extensive transformations of landscape that it can be considered a model anthropogenic relief. The book has three main focuses: 1) Identifying anthropogenic forms of relief related to mining activity and presenting them from a spatial, genetic and age perspective; 2) Determining the changes in the morphometric characteristics of relief and the conditions for matter circulation in open systems (drainage basins) and closed systems (land-locked basins) caused by the extraction of mineral resources; and 3) Estimating the extent of anthropogenic denudation using two different methods based on raw-material output and morphometric analysis. In Poland, no other mining area has undergone such intensive mining activity as the Upper Silesian Coal Basin during the last half century. Its share in the total extraction of mineral resources was as high as 32%. The total extraction of hard coal in the Upper Silesian Coal Basin from the mid-18th century until 2009 was the sixth largest in the world, and the permanent, regional effects of mining anthropopressure on the relief are among the most severe in the world. The anthropogenic denudation rate in the Upper Silesian Coal Basin, as well as the Ruhr Coal Basin (Ruhr District) and the Ostrava-Karvina Coal Basin, ranges from several dozen up to several hundred times higher than the rate of natural denudation, irrespective of the calculation method used. It would take the natural denudation processes tens of thousands of years to remove the same amount of material from the substratum as that removed through human mining activity.
Gas hydrates are both a huge energy resource and an environmental challenge. They have a significant impact on society because of their applications to the future of energy, protection of the environment and fuel transportation. Gas Hydrates opens up this fascinating, multidisciplinary field to non-specialists. It provides a scientific study of gas hydrates that considers their potential as an energy source while assessing the possible risk to the environment. The authors also examine the feasibility of using these natural compounds for storing and transporting gases such as methane and carbon dioxide. Diagrams and photos are used throughout Gas Hydrates to help readers understand the scientific and technical content. Each section has been designed so it can be read independently by academics and professionals in the oil and gas industry, as well as by all those with an interest in how hydrates combine to be an energy resource, an industrial challenge and a geological hazard.
This book examines and summarizes data on more than 40,000 diamonds from deposits in Russia's diamondiferous Arkhangelsk province. The geological data of diamond deposits includes the geological setting, ore body morphology and mineral composition. Investigation techniques employed include: Color Cathode Luminescence, Fourier Transform Infrared Spectroscopy, Electron Paramagnetic Resonance, Raman Spectroscopy, and Carbon Isotopy. The book provides a full description of the diamond morphology. The problems of a potential (mantle) diamond grade for deposits are considered, depending on the physical and chemical conditions involved in the genesis and growth of diamond crystals. Further, there can be a significant impact on the productivity of bodies and the properties of diamonds during post-crystallization metasomatic processes. In this book, the authors propose a diamond crystallization model for changes in diamond crystals within mantle metasomatic transformations, and identify the factors affecting the growth and dissolution of diamonds in the mantle. In addition, they describe the complex evolution of kimberlite from the mantle up to the Earth's surface. All of these factors affect the quality and quantity of diamonds in a particular diamond deposit, providing the basis for identifying optimal technological mining processes.
This book examines existing mineral fiscal policies covering income taxation, royalties, free carried and participative (community and government) interests and also highlights the impacts of these policies on the feasibility of mineral projects as well as on revenue and other benefits to the State. While publications already exist on the subject matter, they have invariably approached the topic primarily from a Government standpoint rather than the mining industry. This book aims to provide a balance in this debate by comparing the financial outcomes gained or foregone by both Government and industry under different policy regimes. The discussions are supported by quantitative examples to more clearly articulate the potential outcomes and better inform future fiscal policy decisions.
This book provides state of the art coverage of important current issues in the analysis, measurement, and monitoring of the dynamic response of infrastructure to environmental loads, including those induced by earthquake motion and differential soil settlement. The coverage is in five parts that address numerical methods in structural dynamics, soil-structure interaction analysis, instrumentation and structural health monitoring, hybrid experimental mechanics, and structural health monitoring for bridges. Examples that give an impression of the scope of the topics discussed include the seismic analysis of bridges, soft computing in earthquake engineering, use of hybrid methods for soil-structure interaction analysis, effects of local site conditions on the inelastic dynamic analysis of bridges, embedded models in wireless sensor networks for structural health monitoring, recent developments in seismic simulation methods, and seismic performance assessment and retrofit of structures. Throughout, the emphasis is on the most significant recent advances and new material. The book comprises extended versions of contributions delivered at the DE-GRIE Lab Workshop 2014, held in Thessaloniki, Greece, in November 2014.
Since the dissolution of the Soviet Union almost a decade ago, there has been rapid evolution of interactions between the Western nations and individual countries of the former Soviet Union. As part of that interaction, the autonomous independent Republic of Azerbaijan through its scientific arm, the Geological Institute of the Azerbaijan Academy of Sciences under the Directorship of Academician Akif Ali-Zadeh and Deputy Director Ibrahim Guliev, arranged for personnel to be seconded to the University of South Carolina. The idea here was to see to what extent a quantitative understanding could be achieved of the evolution of the Azerbaijan part of the South Caspian Basin from dynamical, thermal and hydrocarbon perspectives. The Azeris brought with them copious amounts of data collected over decades which, together with the quantitative numerical codes available at USC, enabled a concerted effort to be put forward, culminating in two large books (Evolution of the South Caspian Basin: Geological Risks and Probable Hazards, 675 pps; and The South Caspian Basin: Stratigraphy, Geochemistry, and Risk Analysis, of which were published by the Azerbaijan Academy of 472 pps. ) both Sciences, and also many scientific papers. Thus, over the last four to five years an integrated comprehensive start has been made to understand the hydrocarbon proneness of the South Caspian Basin. In the course of the endeavor to understand the basinal evolution, it became clear that a variety of natural hazards occur in the Basin.
As is now generally accepted mankinda (TM)s burning of fossil fuels has resulted in the mass transfer of greenhouse gases, like CO2, to the atmosphere and a measurable change in the global climate. While the reduced use of fossil fuels must be our ultimate goal in order to reverse this trend, short to medium term solutions are needed which can make an impact today. Various CO2 abatement strategies have been proposed, with deep geological storage being one of the most promising. The present volume organises presentations given by leading international researchers at a NATO Advanced Research Workshop (held in Tomsk, Russia in November of 2004) on the state-of-the-art of geological storage of CO2. The book is divided into 5 parts. Part 1 provides background by describing how human activities are modifying the atmosphere in industrially-active areas in Siberia. Part 2 outlines the innovative idea of using deep permafrost layers as either impermeable boundaries below which CO2 can be injected or as a cooling source for the formation CO2 clathrates. Part 3 describes recent studies conducted on naturally occurring CO2 reservoirs, sites which have the potential to help us understand the possible long-term evolution of CO2 storage sites. Part 4 outlines various industrial-scale applications of CO2 geological storage and shows it to be technically practical, economically feasible and, to date, very safe. Finally Part 5 gives us a view of the future, showing how energy uses are predicted to change over the next 50 years and how the public must be involved in any future decisions regarding climate change abatement.
Seismic Imaging Methods and Application for Oil and Gas Exploration connects the legacy of field data processing and imaging with new research methods using diffractions and anisotropy in the field of geophysics. Topics covered include seismic data acquisition, seismic data processing, seismic wave modeling, high-resolution imaging, and anisotropic modeling and imaging. This book is a necessary resource for geophysicist working in the oil and gas and mineral exploration industries, as well as for students and academics in exploration geophysics.
This book presents the essential principles and applications of seismic oil-exploration techniques. It concisely covers all stages in exploration activities (data field acquisition, data processing and interpretation), supplementing the main text with a wealth of (>350) illustrations and figures. The book concentrates on the physics of the applied principles, avoiding intricate mathematical treatment and lengthy theoretical reasoning. A further prominent feature is the inclusion of a separate chapter on 3D surveying techniques and another, equally important chapter on seismic digital signals and the aliasing problem, which is presented in an accessible form. The book is designed to meet the needs of both the academic and industrial worlds. University students and employees of oil-exploration companies alike will find the book to be a valuable resource.
This book explores the impact of augmenting novel architectural designs with hardware-based application accelerators. The text covers comprehensive aspects of the applications in Geographic Information Science, remote sensing and deploying Modern Accelerator Technologies (MAT) for geospatial simulations and spatiotemporal analytics. MAT in GIS applications, MAT in remotely sensed data processing and analysis, heterogeneous processors, many-core and highly multi-threaded processors and general purpose processors are also presented. This book includes case studies and closes with a chapter on future trends. Modern Accelerator Technologies for GIS is a reference book for practitioners and researchers working in geographical information systems and related fields. Advanced-level students in geography, computational science, computer science and engineering will also find this book useful.
This is the first book that analyses the future raw materials supply from the demand side of a society that chiefly relies on renewable energies, which is of great significance for us all. It addresses primary and secondary resources and substitution, not only from technical but also socioeconomic and ethical points of view. The "Energiewende" (Energy Transition) will change our consumption of natural resources significantly. When in future our energy requirements will be covered mostly by wind, solar power and biomass, we will need less coal, oil and natural gas. However, the consumption of minerals, especially metallic resources, will increase to build wind generators, solar panels or energy storage facilities. Besides e.g. copper, nickel or cobalt, rare earth elements and other high-tech elements will be increasingly used. With regard to primary metals, Germany is 100 % import dependent; only secondary material is produced within Germany. Though sufficient geological primary resources exist worldwide, their availability on the market is crucial. The future supply of the market is dependent on the development of prices, the transparency of the market and the question of social and ethical standards in the raw materials industry, as well as the social license to operate, which especially applies to mining. The book offers a valuable resource for everyone interested in the future raw material supply of our way of life, which will involve more and more renewable energies.
Here is a comprehensive and up to-do-date presentation of the origins, and properties of clay minerals at the Earth?'s surface. The text reviews the relatively simple laws that govern the chemical or isotopic composition and the crystalline structure of clays, and then discusses their genesis and alteration. Concluding chapters show that clay minerals can form in variety of different environments: meteorites, lavas, subduction zones, among others.
Time series analysis and modelling represent a large study field, implying the approach from the perspective of the time and frequency, with applications in different domains. Modelling hydro-meteorological time series is difficult due to the characteristics of these series, as long range dependence, spatial dependence, the correlation with other series. Continuous spatial data plays an important role in planning, risk assessment and decision making in environmental management. In this context, in this book we present various statistical tests and modelling techniques used for time series analysis, as well as applications to hydro-meteorological series from Dobrogea, a region situated in the south-eastern part of Romania, less studied till now. Part of the results are accompanied by their R code.
This book introduces the concepts and methods of spatial statistics to geologists and engineers working with oil and gas data, and covers all of the most commonly encountered geostatistical methods for estimation and simulation. Topics include calculation and modeling of semivariograms, linear methods of kriging, cokriging, nonlinear methods such as indicator kriging and disjunctive kriging, and conditional simulation, including sequential indicator simulation, sequential Gaussian simulation, and simulated annealing. Semivariogram models range from very simple to complex. All of the fundamental semivariogram models are illustrated, along with anisotropic models, hole effects, geometric and zonal models, and the mechanics of fitting models. For each geostatistical method treated in detail, the author introduces necessary theory and background, describes how the method works, the steps a user must go through, and problems a user might encounter. The emphasis throughout is on what the practitioner needs to know, and the results that can be expected. The book is replete with examples in two and three dimensions, using real-world data such as porosity and permeability, gas production, structural elevation of a reservoir, and seismic information. Geostatistics and Petroleum Geology will be an invaluable advanced-level text for students on petroleum engineering and geosciences courses, as well as an important reference for petroleum geologists and petroleum engineers in oil companies worldwide.
In this book, the fundamental knowledge involved in petroleum & gas development engineering, such as physical and chemical phenomena, physical processes and the relationship between physical factors is covered. It is arranged into 3 Sections. Section 1 including chapter 1-4 is to introduce the properties of fluids (gases, hydrocarbon liquids, and aqueous solutions). Section II including Chapter 5-7 is to introduce the porous rock properties of reservoir rocks. Section III including Chapter 8-10 is to introduce the mechanism of multiphase fluid flow in porous medium. The book is written primarily to serve professionals working in the petroleum engineering field. It can also be used as reference book for postgraduate and undergraduate students as well for the related oil fields in petroleum geology, oil production engineering, reservoir engineering and enhancing oil recovery.
This book presents the fundamental principles of thermodynamics for geosciences, based on the author 's own courses over a number of years. Many examples help to understand how mineralogical problems can be solved by applying thermodynamic principles.
In this volume, top seismic experts and researchers from Europe and around the world, including the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) in the USA, present the most recent outcome of their work in experimental testing, as well as the results of the transnational access activities of external researchers who have used Europe's seven largest and most advanced seismic testing facilities in the framework of the Seismic Engineering Research Infrastructures for European Synergies (SERIES) Project financed by the European Commission in its 7th Framework Programme (2007-2013). This includes EU's largest reaction wall facility, EU's four largest shaking table laboratories and its two major centrifuges. The work presented includes state-of-the-art research towards the seismic design, assessment and retrofitting of structures, as well as the development of innovative research toward new fundamental technologies and techniques promoting efficient and joint use of the research infrastructures. The contents of this volume demonstrate the fruits of the effort of the European Commission in supporting research in earthquake engineering.
Extensive descriptions of a wide range of key or world-class mineral deposits of China are presented in the context of the country's general geology, tectonic units and mineral systems and their geodynamic evolution within the tectonic framework of the Asian continent. This comprehensive overview, incorporating the latest geological concepts, is the first such coverage written in English by a western expert, and will be of benefit to mineral explorers and miners, as well as to research scientists and students in institutions of higher education. In his compilation of this compendium of Chinese geology and mineral systems, Franco Pirajno draws on first-hand knowledge of China's geology and mineral deposits gained in numerous field visits and research projects with Chinese colleagues from various academic institutions over the past 18 years. First time that a western-based book on China's geology and mineral deposits is published Appropriate for use by the mineral exploration industry Modern English-language geological and mineral deposits information on China Most useful to Western (and Chinese) geoscientists
The importance of oil in the world economy cannot be overstated, and methods for recovering oil will be the subject of much scientific and engineering research for many years to come. Even after the application of primary depletion and secondary recovery processes (usually waterflooding), much oil usually remains in a reservoir, and indeed in some heterogeneous reservoir systems as much as 70% of the original oil may remain. Thus, there is an enormous incentive for the development of improved or enhanced methods of oil recovery, aimed at recovering some portion of this remainil)g oil. The techniques used range from 'improved' secondary flooding methods (including polymer and certain gas injection processes) through to 'enhanced' or 'tertiary' methods such as chemical (surfactant, caustic, foam), gas miscible (carbon dioxide, gas reinjection) and thermal (steam soak and drive, in-situ combustion). The distinction between the classification ofthe methods usually refers to the target oil that the process seeks to recover. That is, in 'improved' recovery we are usually aiming to increase the oil sweep efficiency, whereas in 'tertiary' recovery we aim to mobilise and recover residual or capillary trapped oil. There are a few books and collections of articles which give general overviews of improved and enhanced oil recovery methods. However, for each recovery method, there is such a wide range of interconnected issues concerning the chemistry, physics and fluid mechanics of flow in porous media, that rarely are these adequately reviewed." |
![]() ![]() You may like...
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
Thyroid and Parathyroid Imaging, An…
Salmaan Ahmed, J Matthew Debnam
Hardcover
R2,163
Discovery Miles 21 630
PET-Based Novel Imaging Techniques with…
Mona-Elisabeth R Revheim, Abass Alavi
Hardcover
R1,669
Discovery Miles 16 690
Advanced MR Techniques for Imaging the…
Sudhakar K. Venkatesh
Hardcover
R2,553
Discovery Miles 25 530
|