![]() |
![]() |
Your cart is empty |
||
Books > Business & Economics > Economics > Econometrics > Economic statistics
A unique and comprehensive source of information, the International Yearbook of Industrial Statistics is the only international publication providing economists, planners, policymakers and business people with worldwide statistics on current performance and trends in the manufacturing sector.Covering more than 120 countries/areas, the 1996 edition of the Yearbook contains data which are internationally comparable and much more detailed in industrial classification than those supplied in previous publications. This is the second issue of the annual publication which succeeds the UNIDO's Handbook of Industrial Statistics and, at the same time, replaces the United Nation's Industrial Statistics Yearbook, volume I (General Industrial Statistics). Information has been collected directly from national statistical sources and supplemented with estimates by UNIDO. The Yearbook is designed to facilitate international comparisons relating to manufacturing activity and industrial performance. It provides data which can be used to analyse patterns of growth, structural change and industrial performance in individual industries. Data on employment trends, wages and other key indicators are also presented. Finally, the detailed information presented here enables the user to study different aspects of industry which was not possible using the aggregate data previously available.
The Who, What, and Where of America is designed to provide a sampling of key demographic information. It covers the United States, every state, each metropolitan statistical area, and all the counties and cities with a population of 20,000 or more. Who: Age, Race and Ethnicity, and Household Structure What: Education, Employment, and Income Where: Migration, Housing, and Transportation Each part is preceded by highlights and ranking tables that show how areas diverge from the national norm. These research aids are invaluable for understanding data from the ACS and for highlighting what it tells us about who we are, what we do, and where we live. Each topic is divided into four tables revealing the results of the data collected from different types of geographic areas in the United States, generally with populations greater than 20,000. Table A. States Table B. Counties Table C. Metropolitan Areas Table D. Cities In this edition, you will find social and economic estimates on the ways American communities are changing with regard to the following: Age and race Health care coverage Marital history Education attainment Income and occupation Commute time to work Employment status Home values and monthly costs Veteran status Size of home or rental unit This title is the latest in the County and City Extra Series of publications from Bernan Press. Other titles include County and City Extra, County and City Extra: Special Decennial Census Edition, and Places, Towns, and Townships.
Today econometrics has been widely applied in the empirical study of economics. As an empirical science, econometrics uses rigorous mathematical and statistical methods for economic problems. Understanding the methodologies of both econometrics and statistics is a crucial departure for econometrics. The primary focus of this book is to provide an understanding of statistical properties behind econometric methods. Following the introduction in Chapter 1, Chapter 2 provides the methodological review of both econometrics and statistics in different periods since the 1930s. Chapters 3 and 4 explain the underlying theoretical methodologies for estimated equations in the simple regression and multiple regression models and discuss the debates about p-values in particular. This part of the book offers the reader a richer understanding of the methods of statistics behind the methodology of econometrics. Chapters 5-9 of the book are focused on the discussion of regression models using time series data, traditional causal econometric models, and the latest statistical techniques. By concentrating on dynamic structural linear models like state-space models and the Bayesian approach, the book alludes to the fact that this methodological study is not only a science but also an art. This work serves as a handy reference book for anyone interested in econometrics, particularly in relevance to students and academic and business researchers in all quantitative analysis fields.
It is well-known that modern stochastic calculus has been exhaustively developed under usual conditions. Despite such a well-developed theory, there is evidence to suggest that these very convenient technical conditions cannot necessarily be fulfilled in real-world applications. Optional Processes: Theory and Applications seeks to delve into the existing theory, new developments and applications of optional processes on "unusual" probability spaces. The development of stochastic calculus of optional processes marks the beginning of a new and more general form of stochastic analysis. This book aims to provide an accessible, comprehensive and up-to-date exposition of optional processes and their numerous properties. Furthermore, the book presents not only current theory of optional processes, but it also contains a spectrum of applications to stochastic differential equations, filtering theory and mathematical finance. Features Suitable for graduate students and researchers in mathematical finance, actuarial science, applied mathematics and related areas Compiles almost all essential results on the calculus of optional processes in unusual probability spaces Contains many advanced analytical results for stochastic differential equations and statistics pertaining to the calculus of optional processes Develops new methods in finance based on optional processes such as a new portfolio theory, defaultable claim pricing mechanism, etc.
This book addresses one of the most important research activities in empirical macroeconomics. It provides a course of advanced but intuitive methods and tools enabling the spatial and temporal disaggregation of basic macroeconomic variables and the assessment of the statistical uncertainty of the outcomes of disaggregation. The empirical analysis focuses mainly on GDP and its growth in the context of Poland. However, all of the methods discussed can be easily applied to other countries. The approach used in the book views spatial and temporal disaggregation as a special case of the estimation of missing observations (a topic on missing data analysis). The book presents an econometric course of models of Seemingly Unrelated Regression Equations (SURE). The main advantage of using the SURE specification is to tackle the presented research problem so that it allows for the heterogeneity of the parameters describing relations between macroeconomic indicators. The book contains model specification, as well as descriptions of stochastic assumptions and resulting procedures of estimation and testing. The method also addresses uncertainty in the estimates produced. All of the necessary tests and assumptions are presented in detail. The results are designed to serve as a source of invaluable information making regional analyses more convenient and - more importantly - comparable. It will create a solid basis for making conclusions and recommendations concerning regional economic policy in Poland, particularly regarding the assessment of the economic situation. This is essential reading for academics, researchers, and economists with regional analysis as their field of expertise, as well as central bankers and policymakers.
With the rapidly advancing fields of Data Analytics and Computational Statistics, it's important to keep up with current trends, methodologies, and applications. This book investigates the role of data mining in computational statistics for machine learning. It offers applications that can be used in various domains and examines the role of transformation functions in optimizing problem statements. Data Analytics, Computational Statistics, and Operations Research for Engineers: Methodologies and Applications presents applications of computationally intensive methods, inference techniques, and survival analysis models. It discusses how data mining extracts information and how machine learning improves the computational model based on the new information. Those interested in this reference work will include students, professionals, and researchers working in the areas of data mining, computational statistics, operations research, and machine learning.
Bernan Press proudly presents the 13th edition of Employment, Hours, and Earnings: States and Areas, 2018. A special addition to Bernan Press's Handbook of U.S. Labor Statistics: Employment, Earnings, Prices, Productivity, and Other Labor Data, this reference is a consolidated wealth of employment information, providing monthly and annual data on hours worked and earnings made by industry, including figures and summary information spanning several years. These data are presented for states and metropolitan statistical areas. This edition features: *Nearly 300 tables with data on employment for each state, the District of Columbia, and the nation's seventy-five largest metropolitan statistical areas (MSAs) *Detailed, non-seasonally adjusted, industry data organized by month and year *Hours and earnings data for each state, by industry *An introduction for each state and the District of Columbia that denotes salient data and noteworthy trends, including changes in population and the civilian labor force, industry increases and declines, employment and unemployment statistics, and a chart detailing employment percentages, by industry *Ranking of the seventy-five largest MSAs, including census population estimates, unemployment rates, and the percent change in total nonfarm employment, *Concise technical notes that explain pertinent facts about the data, including sources, definitions, and significant changes; and provides references for further guidance *A comprehensive appendix that details the geographical components of the seventy-five largest MSAs The employment, hours, and earnings data in this publication provide a detailed and timely picture of the fifty states, the District of Columbia, and the nation's seventy-five largest MSAs. These data can be used to analyze key factors affecting state and local economies and to compare national cyclical trends to local-level economic activity. This reference is an excellent source of information for analysts in both the public and private sectors. Readers who are involved in public policy can use these data to determine the health of the economy, to clearly identify which sectors are growing and which are declining, and to determine the need for federal assistance. State and local jurisdictions can use the data to determine the need for services, including training and unemployment assistance, and for planning and budgetary purposes. In addition, the data can be used to forecast tax revenue. In private industry, the data can be used by business owners to compare their business to the economy as a whole; and to identify suitable areas when making decisions about plant locations, wholesale and retail trade outlets, and for locating a particular sector base.
Volume 40 in the Advances in Econometrics series features twenty-three chapters that are split thematically into two parts. Part A presents novel contributions to the analysis of time series and panel data with applications in macroeconomics, finance, cognitive science and psychology, neuroscience, and labor economics. Part B examines innovations in stochastic frontier analysis, nonparametric and semiparametric modeling and estimation, A/B experiments, big-data analysis, and quantile regression. Individual chapters, written by both distinguished researchers and promising young scholars, cover many important topics in statistical and econometric theory and practice. Papers primarily, though not exclusively, adopt Bayesian methods for estimation and inference, although researchers of all persuasions should find considerable interest in the chapters contained in this work. The volume was prepared to honor the career and research contributions of Professor Dale J. Poirier. For researchers in econometrics, this volume includes the most up-to-date research across a wide range of topics.
Extensive code examples in R, Stata, and Python Chapters on overlooked topics in econometrics classes: heterogeneous treatment effects, simulation and power analysis, new cutting-edge methods, and uncomfortable ignored assumptions An easy-to-read conversational tone Up-to-date coverage of methods with fast-moving literatures like difference-in-differences
"A book perfect for this moment" -Katherine M. O'Regan, Former Assistant Secretary, US Department of Housing and Urban Development More than fifty years after the passage of the Fair Housing Act, American cities remain divided along the very same lines that this landmark legislation explicitly outlawed. Keeping Races in Their Places tells the story of these lines-who drew them, why they drew them, where they drew them, and how they continue to circumscribe residents' opportunities to this very day. Weaving together sophisticated statistical analyses of more than a century's worth of data with an engaging, accessible narrative that brings the numbers to life, Keeping Races in Their Places exposes the entrenched effects of redlining on American communities. This one-of-a-kind contribution to the real estate and urban economics literature applies the author's original geographic information systems analyses to historical maps to reveal redlining's causal role in shaping today's cities. Spanning the era from the Great Migration to the Great Recession, Keeping Races in Their Places uncovers the roots of the Black-white wealth gap, the subprime lending crisis, and today's lack of affordable housing in maps created by banks nearly a century ago. Most of all, it offers hope that with the latest scholarly tools we can pinpoint how things went wrong-and what we must do to make them right.
"A book perfect for this moment" -Katherine M. O'Regan, Former Assistant Secretary, US Department of Housing and Urban Development More than fifty years after the passage of the Fair Housing Act, American cities remain divided along the very same lines that this landmark legislation explicitly outlawed. Keeping Races in Their Places tells the story of these lines-who drew them, why they drew them, where they drew them, and how they continue to circumscribe residents' opportunities to this very day. Weaving together sophisticated statistical analyses of more than a century's worth of data with an engaging, accessible narrative that brings the numbers to life, Keeping Races in Their Places exposes the entrenched effects of redlining on American communities. This one-of-a-kind contribution to the real estate and urban economics literature applies the author's original geographic information systems analyses to historical maps to reveal redlining's causal role in shaping today's cities. Spanning the era from the Great Migration to the Great Recession, Keeping Races in Their Places uncovers the roots of the Black-white wealth gap, the subprime lending crisis, and today's lack of affordable housing in maps created by banks nearly a century ago. Most of all, it offers hope that with the latest scholarly tools we can pinpoint how things went wrong-and what we must do to make them right.
Contains information for using R software with the examples in the textbook Sampling: Design and Analysis, 3rd edition by Sharon L. Lohr.
Explains modern SDC techniques for data stewards and develop tools to implement them. Explains the logic behind modern privacy protections for researchers and how they may use publicly released data to generate valid statistical inferences-as well as the limitations imposed by SDC techniques.
Applied data-centric social sciences aim to develop both methodology and practical applications of various fields of sciences and businesses with rich data. Specifically, in the social sciences, a vast amount of data on human activities may be useful for understanding collective human nature. In this book, the author introduces several mathematical techniques for handling a huge volume of data and analyzing collective human behavior. The book is constructed from data-oriented investigation, with mathematical methods and expressions used for dealing with data for several specific problems. The fundamental philosophy underlying the book is that both mathematical and physical concepts are determined by the purposes of data analysis. This philosophy is shown throughout exemplar studies of several fields in socio-economic systems. From a data-centric point of view, the author proposes a concept that may change people s minds and cause them to start thinking from the basis of data. Several goals underlie the chapters of the book. The first is to describe mathematical and statistical methods for data analysis, and toward that end the author delineates methods with actual data in each chapter. The second is to find a cyber-physical link between data and data-generating mechanisms, as data are always provided by some kind of data-generating process in the real world. The third goal is to provide an impetus for the concepts and methodology set forth in this book to be applied to socio-economic systems."
1. Material on single asset problems, market timing, unconditional and conditional portfolio problems, hedged portfolios. 2. Inference via both Frequentist and Bayesian paradigms. 3. A comprehensive treatment of overoptimism and overfitting of trading strategies. 4. Advice on backtesting strategies. 5. Dozens of examples and hundreds of exercises for self study.
There isn't a book currently on the market which focuses on multiple hypotheses testing. - Can be used on a range of course, including social & behavioral sciences, biological sciences, as well as professional researchers. Includes various examples of the multiple hypotheses method in practice in a variety of fields, including: sport and crime.
Thoroughly updated throughout, A First Course in Linear Model Theory, Second Edition is an intermediate-level statistics text that fills an important gap by presenting the theory of linear statistical models at a level appropriate for senior undergraduate or first-year graduate students. With an innovative approach, the authors introduce to students the mathematical and statistical concepts and tools that form a foundation for studying the theory and applications of both univariate and multivariate linear models. In addition to adding R functionality, this second edition features three new chapters and several sections on new topics that are extremely relevant to the current research in statistical methodology. Revised or expanded topics include linear fixed, random and mixed effects models, generalized linear models, Bayesian and hierarchical linear models, model selection, multiple comparisons, and regularized and robust regression. New to the Second Edition: Coverage of inference for linear models has been expanded into two chapters. Expanded coverage of multiple comparisons, random and mixed effects models, model selection, and missing data. A new chapter on generalized linear models (Chapter 12). A new section on multivariate linear models in Chapter 13, and expanded coverage of the Bayesian linear models and longitudinal models. A new section on regularized regression in Chapter 14. Detailed data illustrations using R. The authors' fresh approach, methodical presentation, wealth of examples, use of R, and introduction to topics beyond the classical theory set this book apart from other texts on linear models. It forms a refreshing and invaluable first step in students' study of advanced linear models, generalized linear models, nonlinear models, and dynamic models.
There isn't a book currently on the market which focuses on multiple hypotheses testing. - Can be used on a range of course, including social & behavioral sciences, biological sciences, as well as professional researchers. Includes various examples of the multiple hypotheses method in practice in a variety of fields, including: sport and crime.
Modelling Spatial and Spatial-Temporal Data: A Bayesian Approach is aimed at statisticians and quantitative social, economic and public health students and researchers who work with small-area spatial and spatial-temporal data. It assumes a grounding in statistical theory up to the standard linear regression model. The book compares both hierarchical and spatial econometric modelling, providing both a reference and a teaching text with exercises in each chapter. The book provides a fully Bayesian, self-contained, treatment of the underlying statistical theory, with chapters dedicated to substantive applications. The book includes WinBUGS code and R code and all datasets are available online. Part I covers fundamental issues arising when modelling spatial and spatial-temporal data. Part II focuses on modelling cross-sectional spatial data and begins by describing exploratory methods that help guide the modelling process. There are then two theoretical chapters on Bayesian models and a chapter of applications. Two chapters follow on spatial econometric modelling, one describing different models, the other substantive applications. Part III discusses modelling spatial-temporal data, first introducing models for time series data. Exploratory methods for detecting different types of space-time interaction are presented, followed by two chapters on the theory of space-time separable (without space-time interaction) and inseparable (with space-time interaction) models. An applications chapter includes: the evaluation of a policy intervention; analysing the temporal dynamics of crime hotspots; chronic disease surveillance; and testing for evidence of spatial spillovers in the spread of an infectious disease. A final chapter suggests some future directions and challenges. Robert Haining is Emeritus Professor in Human Geography, University of Cambridge, England. He is the author of Spatial Data Analysis in the Social and Environmental Sciences (1990) and Spatial Data Analysis: Theory and Practice (2003). He is a Fellow of the RGS-IBG and of the Academy of Social Sciences. Guangquan Li is Senior Lecturer in Statistics in the Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle, England. His research includes the development and application of Bayesian methods in the social and health sciences. He is a Fellow of the Royal Statistical Society.
This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. These data-driven models seek to replace the "classical " parametric models of the past, which were rigid and often linear. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures. They provide a balanced view of new developments in the analysis and modeling of applied sciences with cross-section, time series, panel, and spatial data sets. The major topics of the volume include: the methodology of semiparametric models and special regressor methods; inverse, ill-posed, and well-posed problems; different methodologies related to additive models; sieve regression estimators, nonparametric and semiparametric regression models, and the true error of competing approximate models; support vector machines and their modeling of default probability; series estimation of stochastic processes and some of their applications in Econometrics; identification, estimation, and specification problems in a class of semilinear time series models; nonparametric and semiparametric techniques applied to nonstationary or near nonstationary variables; the estimation of a set of regression equations; and a new approach to the analysis of nonparametric models with exogenous treatment assignment.
Much of our thinking is flawed because it is based on faulty intuition. By using the framework and tools of probability and statistics, we can overcome this to provide solutions to many real-world problems and paradoxes. We show how to do this, and find answers that are frequently very contrary to what we might expect. Along the way, we venture into diverse realms and thought experiments which challenge the way that we see the world. Features: An insightful and engaging discussion of some of the key ideas of probabilistic and statistical thinking Many classic and novel problems, paradoxes, and puzzles An exploration of some of the big questions involving the use of choice and reason in an uncertain world The application of probability, statistics, and Bayesian methods to a wide range of subjects, including economics, finance, law, and medicine Exercises, references, and links for those wishing to cross-reference or to probe further Solutions to exercises at the end of the book This book should serve as an invaluable and fascinating resource for university, college, and high school students who wish to extend their reading, as well as for teachers and lecturers who want to liven up their courses while retaining academic rigour. It will also appeal to anyone who wishes to develop skills with numbers or has an interest in the many statistical and other paradoxes that permeate our lives. Indeed, anyone studying the sciences, social sciences, or humanities on a formal or informal basis will enjoy and benefit from this book.
Much of our thinking is flawed because it is based on faulty intuition. By using the framework and tools of probability and statistics, we can overcome this to provide solutions to many real-world problems and paradoxes. We show how to do this, and find answers that are frequently very contrary to what we might expect. Along the way, we venture into diverse realms and thought experiments which challenge the way that we see the world. Features: An insightful and engaging discussion of some of the key ideas of probabilistic and statistical thinking Many classic and novel problems, paradoxes, and puzzles An exploration of some of the big questions involving the use of choice and reason in an uncertain world The application of probability, statistics, and Bayesian methods to a wide range of subjects, including economics, finance, law, and medicine Exercises, references, and links for those wishing to cross-reference or to probe further Solutions to exercises at the end of the book This book should serve as an invaluable and fascinating resource for university, college, and high school students who wish to extend their reading, as well as for teachers and lecturers who want to liven up their courses while retaining academic rigour. It will also appeal to anyone who wishes to develop skills with numbers or has an interest in the many statistical and other paradoxes that permeate our lives. Indeed, anyone studying the sciences, social sciences, or humanities on a formal or informal basis will enjoy and benefit from this book.
*Furnishes a thorough introduction and detailed information about the linear regression model, including how to understand and interpret its results, test assumptions, and adapt the model when assumptions are not satisfied. *Uses numerous graphs in R to illustrate the model's results, assumptions, and other features. *Does not assume a background in calculus or linear algebra; rather, an introductory statistics course and familiarity with elementary algebra are sufficient. *Provides many examples using real world datasets relevant to various academic disciplines. *Fully integrates the R software environment in its numerous examples.
*Furnishes a thorough introduction and detailed information about the linear regression model, including how to understand and interpret its results, test assumptions, and adapt the model when assumptions are not satisfied. *Uses numerous graphs in R to illustrate the model's results, assumptions, and other features. *Does not assume a background in calculus or linear algebra; rather, an introductory statistics course and familiarity with elementary algebra are sufficient. *Provides many examples using real world datasets relevant to various academic disciplines. *Fully integrates the R software environment in its numerous examples. |
![]() ![]() You may like...
Ultrasonic Nondestructive Evaluation…
Lester W. Schmerr Jr., Jung-Sin Song
Hardcover
R6,430
Discovery Miles 64 300
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,577
Discovery Miles 25 770
Teaching for Wisdom - Cross-cultural…
Michel Ferrari, Georges Potworowski
Hardcover
R3,012
Discovery Miles 30 120
Modern Trends in Controlled Stochastic…
Alexey Piunovskiy, Yi Zhang
Hardcover
R5,629
Discovery Miles 56 290
|