![]() |
![]() |
Your cart is empty |
||
Books > Business & Economics > Economics > Econometrics > Economic statistics
Discover the Benefits of Risk Parity Investing Despite recent progress in the theoretical analysis and practical applications of risk parity, many important fundamental questions still need to be answered. Risk Parity Fundamentals uses fundamental, quantitative, and historical analysis to address these issues, such as: What are the macroeconomic dimensions of risk in risk parity portfolios? What are the appropriate risk premiums in a risk parity portfolio? What are market environments in which risk parity might thrive or struggle? What is the role of leverage in a risk parity portfolio? An experienced researcher and portfolio manager who coined the term "risk parity," the author provides investors with a practical understanding of the risk parity investment approach. Investors will gain insight into the merit of risk parity as well as the practical and underlying aspects of risk parity investing.
This book is designed to introduce graduate students and researchers to the primary methods useful for approximating integrals. The emphasis is on those methods that have been found to be of practical use, and although the focus is on approximating higher-dimensional integrals the lower-dimensional case is also covered. This book covers all the most useful approximation techniques so far discovered; the first time that all such techniques have been included in a single book and at a level accessible for students. In particular, it includes a complete development of the material needed to construct the highly popular Markov Chain Monte Carlo (MCMC) methods.
This Study Guide accompanies Statistics for Business and Financial Economics, 3rd Ed. (Springer, 2013), which is the most definitive Business Statistics book to use Finance, Economics, and Accounting data throughout the entire book. The Study Guide contains unique chapter reviews for each chapter in the textbook, formulas, examples and additional exercises to enhance topics and their application. Solutions are included so students can evaluate their own understanding of the material. With more real-life data sets than the other books on the market, this study guide and the textbook that it accompanies, give readers all the tools they need to learn material in class and on their own. It is immediately applicable to facing uncertainty and the science of good decision making in financial analysis, econometrics, auditing, production and operations, and marketing research. Data that is analyzed may be collected by companies in the course of their business or by governmental agencies. Students in business degree programs will find this material particularly useful to their other courses and future work.
A new chapter on univariate volatility models A revised chapter on linear time series models A new section on multivariate volatility models A new section on regime switching models Many new worked examples, with R code integrated into the text
Mit diesem Buch liegen kompakte Beschreibungen von Prognoseverfahren vor, die vor allem in Systemen der betrieblichen Informationsverarbeitung eingesetzt werden. Praktiker mit langjahriger Prognoseerfahrung zeigen ausserdem, wie die einzelnen Methoden in der Unternehmung Verwendung finden und wo die Probleme beim Einsatz liegen. Das Buch wendet sich gleichermassen an Wissenschaft und Praxis. Das Spektrum reicht von einfachen Verfahren der Vorhersage uber neuere Ansatze der kunstlichen Intelligenz und Zeitreihenanalyse bis hin zur Prognose von Softwarezuverlassigkeit und zur kooperativen Vorhersage in Liefernetzen. In der siebenten, wesentlich uberarbeiteten und erweiterten Auflage werden neue Vergleiche von Prognosemethoden, GARCH-Modelle zur Finanzmarktprognose, Predictive Analytics" als Variante der Business Intelligence" und die Kombination von Vorhersagen mit Elementen der Chaostheorie berucksichtigt."
This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods. Because most data are observational, practitioners work with indirect noisy observations and ill-posed econometric models in the form of stochastic inverse problems. Consequently, traditional econometric methods in many cases are not applicable for answering many of the quantitative questions that analysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochastic inverse problems. In succeeding chapters, a family of power divergence measure likelihood functions are introduced for a range of traditional and nontraditional econometric-model problems. Finally, within either an empirical maximum likelihood or loss context, Ron C. Mittelhammer and George G. Judge suggest a basis for choosing a member of the divergence family.
Meta-Regression Analysis in Economics and Business is the first text devoted to the meta-regression analysis (MRA) of economics and business research. The book provides a comprehensive guide to conducting systematic reviews of empirical economics and business research, identifying and explaining the best practices of MRA, and highlighting its problems and pitfalls. These statistical techniques are illustrated using actual data from four published meta-analyses of business and economic research: the effects of unions on productivity, the employment effects of the minimum wage, the value of a statistical life and residential water demand elasticities. While it shares some features in common with these other disciplines, meta-analysis in economics and business faces its own particular challenges and types of research data. This volume guides new researchers from the beginning to the end, from the collection of research to publication of their research. This book will be of great interest to students and researchers in business, economics, marketing, management, and political science, as well as to policy makers.
In the future, as our society becomes older and older, an increasing number of people will be confronted with Alzheimer's disease. Some will suffer from the illness themselves, others will see parents, relatives, their spouse or a close friend afflicted by it. Even now, the psychological and financial burden caused by Alzheimer's disease is substantial, most of it borne by the patient and her family. Improving the situation for the patients and their caregivers presents a challenge for societies and decision makers. Our work contributes to improving the in decision making situation con cerning Alzheimer's disease. At a fundamental level, it addresses methodo logical aspects of the contingent valuation method and gives a holistic view of applying the contingent valuation method for use in policy. We show all stages of a contingent valuation study beginning with the design, the choice of elicitation techniques and estimation methods for willingness-to-pay, the use of the results in a cost-benefit analysis, and finally, the policy implica tions resulting from our findings. We do this by evaluating three possible programs dealing with Alzheimer's disease. The intended audience of this book are health economists interested in methodological problems of contin gent valuation studies, people involved in health care decision making, plan ning, and priority setting, as well as people interested in Alzheimer's disease. We would like to thank the many people and institutions who have pro vided their help with this project."
The Handbook of U.S. Labor Statistics is recognized as an authoritative resource on the U.S. labor force. It continues and enhances the Bureau of Labor Statistics's (BLS) discontinued publication, Labor Statistics. It allows the user to understand recent developments as well as to compare today's economy with past history. This edition includes a new chapter on the working poor as well as additional tables on consumer expenditures and occupational safety and health. The Handbook is a comprehensive reference providing an abundance of data on a variety of topics including: *Employment and unemployment; *Earnings; *Prices; *Productivity; *Consumer expenditures; *Occupational safety and health; *Union membership; *International labor comparisons; *And much more! Features of the publication In addition to over 215 tables that present practical data, the Handbook provides: *Introductory material for each chapter that contains highlights of salient data and figures that call attention to noteworthy trends in the data *Notes and definitions, which contain concise descriptions of the data sources, concepts, definitions, and methodology from which the data are derived *References to more comprehensive reports which provide additional data and more extensive descriptions of estimation methods, sampling, and reliability measures The 21st edition includes a new chapter titled "The Working Poor". This chapter includes information on people who spent at least 27 weeks in the labor force but whose income still fell below the official poverty level. In addition, this edition includes several new tables on occupational safety and health, workplace fatalities, and consumer expenditures.
A comprehensive and up-to-date introduction to the mathematics that all economics students need to know Probability theory is the quantitative language used to handle uncertainty and is the foundation of modern statistics. Probability and Statistics for Economists provides graduate and PhD students with an essential introduction to mathematical probability and statistical theory, which are the basis of the methods used in econometrics. This incisive textbook teaches fundamental concepts, emphasizes modern, real-world applications, and gives students an intuitive understanding of the mathematics that every economist needs to know. Covers probability and statistics with mathematical rigor while emphasizing intuitive explanations that are accessible to economics students of all backgrounds Discusses random variables, parametric and multivariate distributions, sampling, the law of large numbers, central limit theory, maximum likelihood estimation, numerical optimization, hypothesis testing, and more Features hundreds of exercises that enable students to learn by doing Includes an in-depth appendix summarizing important mathematical results as well as a wealth of real-world examples Can serve as a core textbook for a first-semester PhD course in econometrics and as a companion book to Bruce E. Hansen's Econometrics Also an invaluable reference for researchers and practitioners
In der IT-Organisation geht es um die zuverlassige, zeit-, kosten-
und qualitatsoptimale Bereitstellung
geschaftsprozessunterstutzender IT-Dienstleistungen. Renommierte
Wissenschaftler, erfahrene Unternehmensberater und Fuhrungskrafte
diskutieren die Strategien, Instrumente, Konzepte und
Organisationsansatze fur das IT-Management von morgen.
This book contains an accessible discussion examining computationally-intensive techniques and bootstrap methods, providing ways to improve the finite-sample performance of well-known asymptotic tests for regression models. This book uses the linear regression model as a framework for introducing simulation-based tests to help perform econometric analyses.
"Family Spending" provides analysis of household expenditure broken down by age and income, household composition, socio-economic characteristics and geography. This report will be of interest to academics, policy makers, government and the general public.
This well-balanced introduction to enterprise risk management integrates quantitative and qualitative approaches and motivates key mathematical and statistical methods with abundant real-world cases - both successes and failures. Worked examples and end-of-chapter exercises support readers in consolidating what they learn. The mathematical level, which is suitable for graduate and senior undergraduate students in quantitative programs, is pitched to give readers a solid understanding of the concepts and principles involved, without diving too deeply into more complex theory. To reveal the connections between different topics, and their relevance to the real world, the presentation has a coherent narrative flow, from risk governance, through risk identification, risk modelling, and risk mitigation, capped off with holistic topics - regulation, behavioural biases, and crisis management - that influence the whole structure of ERM. The result is a text and reference that is ideal for graduate and senior undergraduate students, risk managers in industry, and anyone preparing for ERM actuarial exams.
Apply statistics in business to achieve performance improvement Statistical Thinking: Improving Business Performance, 3rd Edition helps managers understand the role of statistics in implementing business improvements. It guides professionals who are learning statistics in order to improve performance in business and industry. It also helps graduate and undergraduate students understand the strategic value of data and statistics in arriving at real business solutions. Instruction in the book is based on principles of effective learning, established by educational and behavioral research. The authors cover both practical examples and underlying theory, both the big picture and necessary details. Readers gain a conceptual understanding and the ability to perform actionable analyses. They are introduced to data skills to improve business processes, including collecting the appropriate data, identifying existing data limitations, and analyzing data graphically. The authors also provide an in-depth look at JMP software, including its purpose, capabilities, and techniques for use. Updates to this edition include: A new chapter on data, assessing data pedigree (quality), and acquisition tools Discussion of the relationship between statistical thinking and data science Explanation of the proper role and interpretation of p-values (understanding of the dangers of "p-hacking") Differentiation between practical and statistical significance Introduction of the emerging discipline of statistical engineering Explanation of the proper role of subject matter theory in order to identify causal relationships A holistic framework for variation that includes outliers, in addition to systematic and random variation Revised chapters based on significant teaching experience Content enhancements based on student input This book helps readers understand the role of statistics in business before they embark on learning statistical techniques.
This essential reference for students and scholars in the input-output research and applications community has been fully revised and updated to reflect important developments in the field. Expanded coverage includes construction and application of multiregional and interregional models, including international models and their application to global economic issues such as climate change and international trade; structural decomposition and path analysis; linkages and key sector identification and hypothetical extraction analysis; the connection of national income and product accounts to input-output accounts; supply and use tables for commodity-by-industry accounting and models; social accounting matrices; non-survey estimation techniques; and energy and environmental applications. Input-Output Analysis is an ideal introduction to the subject for advanced undergraduate and graduate students in many scholarly fields, including economics, regional science, regional economics, city, regional and urban planning, environmental planning, public policy analysis and public management.
The advent of "Big Data" has brought with it a rapid diversification of data sources, requiring analysis that accounts for the fact that these data have often been generated and recorded for different reasons. Data integration involves combining data residing in different sources to enable statistical inference, or to generate new statistical data for purposes that cannot be served by each source on its own. This can yield significant gains for scientific as well as commercial investigations. However, valid analysis of such data should allow for the additional uncertainty due to entity ambiguity, whenever it is not possible to state with certainty that the integrated source is the target population of interest. Analysis of Integrated Data aims to provide a solid theoretical basis for this statistical analysis in three generic settings of entity ambiguity: statistical analysis of linked datasets that may contain linkage errors; datasets created by a data fusion process, where joint statistical information is simulated using the information in marginal data from non-overlapping sources; and estimation of target population size when target units are either partially or erroneously covered in each source. Covers a range of topics under an overarching perspective of data integration. Focuses on statistical uncertainty and inference issues arising from entity ambiguity. Features state of the art methods for analysis of integrated data. Identifies the important themes that will define future research and teaching in the statistical analysis of integrated data. Analysis of Integrated Data is aimed primarily at researchers and methodologists interested in statistical methods for data from multiple sources, with a focus on data analysts in the social sciences, and in the public and private sectors.
For one-semester business statistics courses. A focus on using statistical methods to analyze and interpret results to make data-informed business decisions Statistics is essential for all business majors, and Business Statistics: A First Course helps students see the role statistics will play in their own careers by providing examples drawn from all functional areas of business. Guided by the principles set forth by major statistical and business science associations (ASA and DSI), plus the authors' diverse experiences, the 8th Edition continues to innovate and improve the way this course is taught to all students. With new examples, case scenarios, and problems, the text continues its tradition of focusing on the interpretation of results, evaluation of assumptions, and discussion of next steps that lead to data-informed decision making. The authors feel that this approach, rather than a focus on manual calculations, better serves students in their future careers. This brief offering, created to fit the needs of a one-semester course, is part of the established Berenson/Levine series. Also available with MyLab Business Statistics By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. For example, with Excel Projects students can organize, analyze, and interpret data, helping them hone their business decision-making skills. Note: You are purchasing a standalone product; MyLab Business Statistics does not come packaged with this content. Students, if interested in purchasing this title with MyLab Business Statistics, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Business Statistics, search for: 0135860202 / 9780135860205 Business Statistics: A First Course Plus MyLab Statistics with Pearson eText -- Access Card Package Package consists of: 0135177782 / 9780135177785 Business Statistics: A First Course 0135443024 / 9780135443026 MyLab Statistics with Pearson eText -- Standalone Access Card -- for Business Statistics: A First Course
Models for repeated measurements will be of interest to research statisticians in agriculture, medicine, economics, and psychology, and to the many consulting statisticians who want an up-to-date expository account of this important topic. The second edition of this successful book has been completely revised and updated to take account of developments in the area over the last few years. This book is organized into four parts. In the first part, the general context of repeated measurements is presented. In the following three parts, a large number of concrete examples, including data tables, is presented to illustrate the models available. The book also provides a very extensive and updated bibliography of the repeated measurements literature.
Introduction to Financial Mathematics: Option Valuation, Second Edition is a well-rounded primer to the mathematics and models used in the valuation of financial derivatives. The book consists of fifteen chapters, the first ten of which develop option valuation techniques in discrete time, the last five describing the theory in continuous time. The first half of the textbook develops basic finance and probability. The author then treats the binomial model as the primary example of discrete-time option valuation. The final part of the textbook examines the Black-Scholes model. The book is written to provide a straightforward account of the principles of option pricing and examines these principles in detail using standard discrete and stochastic calculus models. Additionally, the second edition has new exercises and examples, and includes many tables and graphs generated by over 30 MS Excel VBA modules available on the author's webpage https://home.gwu.edu/~hdj/.
If you are a manager who receives the results of any data analyst's work to help with your decision-making, this book is for you. Anyone playing a role in the field of analytics can benefit from this book as well. In the two decades the editors of this book spent teaching and consulting in the field of analytics, they noticed a critical shortcoming in the communication abilities of many analytics professionals. Specifically, analysts have difficulty in articulating in business terms what their analyses showed and what actionable recommendations were made. When analysts made presentations, they tended to lapse into the technicalities of mathematical procedures, rather than focusing on the strategic and tactical impact and meaning of their work. As analytics has become more mainstream and widespread in organizations, this problem has grown more acute. Data Analytics: Effective Methods for Presenting Results tackles this issue. The editors have used their experience as presenters and audience members who have become lost during presentation. Over the years, they experimented with different ways of presenting analytics work to make a more compelling case to top managers. They have discovered tried and true methods for improving presentations, which they share. The book also presents insights from other analysts and managers who share their own experiences. It is truly a collection of experiences and insight from academics and professionals involved with analytics. The book is not a primer on how to draw the most beautiful charts and graphs or about how to perform any specific kind of analysis. Rather, it shares the experiences of professionals in various industries about how they present their analytics results effectively. They tell their stories on how to win over audiences. The book spans multiple functional areas within a business, and in some cases, it discusses how to adapt presentations to the needs of audiences at different levels of management.
Experimental methods in economics respond to circumstances that are
not completely dictated by accepted theory or outstanding problems.
While the field of economics makes sharp distinctions and produces
precise theory, the work of experimental economics sometimes appear
blurred and may produce results that vary from strong support to
little or partial support of the relevant theory.
The design of trading algorithms requires sophisticated mathematical models backed up by reliable data. In this textbook, the authors develop models for algorithmic trading in contexts such as executing large orders, market making, targeting VWAP and other schedules, trading pairs or collection of assets, and executing in dark pools. These models are grounded on how the exchanges work, whether the algorithm is trading with better informed traders (adverse selection), and the type of information available to market participants at both ultra-high and low frequency. Algorithmic and High-Frequency Trading is the first book that combines sophisticated mathematical modelling, empirical facts and financial economics, taking the reader from basic ideas to cutting-edge research and practice. If you need to understand how modern electronic markets operate, what information provides a trading edge, and how other market participants may affect the profitability of the algorithms, then this is the book for you.
The complete guide to statistical modelling with GENSTAT Focusing on solving practical problems and using real datasets collected during research of various sorts, Statistical Modelling Using GENSTAT emphasizes developing and understanding statistical tools. Throughout the text, these statistical tools are applied to answer the very questions the original researchers sought to answer. GENSTAT, the powerful statistical software, is introduced early in the book and practice problems are carried out using the software, in the process helping students to understand the application of statistical methods to real-world data. |
![]() ![]() You may like...
The How Not To Die Cookbook - Over 100…
Michael Greger
Paperback
![]()
Therapeutic, Probiotic, and…
Alexandru Mihai Grumezescu, Alina Maria Holban
Paperback
Incorporating the Internet of Things in…
P.B. Pankajavalli, G.S. Karthick
Hardcover
R8,438
Discovery Miles 84 380
Functional Food Products and Sustainable…
Saghir Ahmad, Nasser Abdulatif Al-Shabib
Hardcover
R4,373
Discovery Miles 43 730
Tensile Fracturing in Rocks…
Dov Bahat, Avinoam Rabinovitch, …
Hardcover
R5,691
Discovery Miles 56 910
|