0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (1,202)
  • R250 - R500 (173)
  • R500+ (1,421)
  • -
Status
Format
Author / Contributor
Publisher

Books > Business & Economics > Economics > Econometrics > Economic statistics

Ranking of Multivariate Populations - A Permutation Approach with Applications (Hardcover): Eleonora Carrozzo Ranking of Multivariate Populations - A Permutation Approach with Applications (Hardcover)
Eleonora Carrozzo; Stefano Bonnini, Livio Corain; Contributions by Luigi Salmaso; Rosa Arboretti
R4,945 Discovery Miles 49 450 Ships in 12 - 19 working days

Ranking of Multivariate Populations: A Permutation Approach with Applications presents a novel permutation-based nonparametric approach for ranking several multivariate populations. Using data collected from both experimental and observation studies, it covers some of the most useful designs widely applied in research and industry investigations, such as multivariate analysis of variance (MANOVA) and multivariate randomized complete block (MRCB) designs. The first section of the book introduces the topic of ranking multivariate populations by presenting the main theoretical ideas and an in-depth literature review. The second section discusses a large number of real case studies from four specific research areas: new product development in industry, perceived quality of the indoor environment, customer satisfaction, and cytological and histological analysis by image processing. A web-based nonparametric combination global ranking software is also described. Designed for practitioners and postgraduate students in statistics and the applied sciences, this application-oriented book offers a practical guide to the reliable global ranking of multivariate items, such as products, processes, and services, in terms of the performance of all investigated products/prototypes.

AI for Finance (Paperback): Edward P K Tsang AI for Finance (Paperback)
Edward P K Tsang
R767 Discovery Miles 7 670 Ships in 9 - 17 working days

How could Finance benefit from AI? How can AI techniques provide an edge? Moving well beyond simply speeding up computation, this book tackles AI for Finance from a range of perspectives including business, technology, research, and students. Covering aspects like algorithms, big data, and machine learning, this book answers these and many other questions.

Bayesian Multilevel Models for Repeated Measures Data - A Conceptual and Practical Introduction in R (Paperback): Santiago... Bayesian Multilevel Models for Repeated Measures Data - A Conceptual and Practical Introduction in R (Paperback)
Santiago Barreda, Noah Silbert
R1,699 Discovery Miles 16 990 Ships in 9 - 17 working days

This comprehensive book is an introduction to multilevel Bayesian models in R using brms and the Stan programming language. Featuring a series of fully worked analyses of repeated-measures data, focus is placed on active learning through the analyses of the progressively more complicated models presented throughout the book. In this book, the authors offer an introduction to statistics entirely focused on repeated measures data beginning with very simple two-group comparisons and ending with multinomial regression models with many 'random effects'. Across 13 well-structured chapters, readers are provided with all the code necessary to run all the analyses and make all the plots in the book, as well as useful examples of how to interpret and write-up their own analyses. This book provides an accessible introduction for readers in any field, with any level of statistical background. Senior undergraduate students, graduate students, and experienced researchers looking to 'translate' their skills with more traditional models to a Bayesian framework, will benefit greatly from the lessons in this text.

Modern Data Science with R (Hardcover, 2nd edition): Benjamin S. Baumer, Daniel T. Kaplan, Nicholas J. Horton Modern Data Science with R (Hardcover, 2nd edition)
Benjamin S. Baumer, Daniel T. Kaplan, Nicholas J. Horton
R2,846 Discovery Miles 28 460 Ships in 9 - 17 working days

Accessible to a general audience with some background in statistics and computing Many examples and extended case studies Illustrations using R and Rstudio A true blend of statistics and computer science -- not just a grab bag of topics from each

Advanced and Multivariate Statistical Methods - Practical Application and Interpretation (Hardcover, 7th edition): Craig A.... Advanced and Multivariate Statistical Methods - Practical Application and Interpretation (Hardcover, 7th edition)
Craig A. Mertler, Rachel A. Vannatta, Kristina N. Lavenia
R11,347 Discovery Miles 113 470 Ships in 12 - 19 working days

Advanced and Multivariate Statistical Methods, Seventh Edition provides conceptual and practical information regarding multivariate statistical techniques to students who do not necessarily need technical and/or mathematical expertise in these methods. This text has three main purposes. The first purpose is to facilitate conceptual understanding of multivariate statistical methods by limiting the technical nature of the discussion of those concepts and focusing on their practical applications. The second purpose is to provide students with the skills necessary to interpret research articles that have employed multivariate statistical techniques. Finally, the third purpose of AMSM is to prepare graduate students to apply multivariate statistical methods to the analysis of their own quantitative data or that of their institutions. New to the Seventh Edition All references to SPSS have been updated to Version 27.0 of the software. A brief discussion of practical significance has been added to Chapter 1. New data sets have now been incorporated into the book and are used extensively in the SPSS examples. All the SPSS data sets utilized in this edition are available for download via the companion website. Additional resources on this site include several video tutorials/walk-throughs of the SPSS procedures. These "how-to" videos run approximately 5-10 minutes in length. Advanced and Multivariate Statistical Methods was written for use by students taking a multivariate statistics course as part of a graduate degree program, for example in psychology, education, sociology, criminal justice, social work, mass communication, and nursing.

Protecting Your Privacy in a Data-Driven World (Paperback): Claire McKay Bowen Protecting Your Privacy in a Data-Driven World (Paperback)
Claire McKay Bowen
R912 Discovery Miles 9 120 Ships in 12 - 19 working days

Explains modern SDC techniques for data stewards and develop tools to implement them. Explains the logic behind modern privacy protections for researchers and how they may use publicly released data to generate valid statistical inferences-as well as the limitations imposed by SDC techniques.

Regression Analysis - A Practical Introduction (Paperback, 2nd edition): Jeremy Arkes Regression Analysis - A Practical Introduction (Paperback, 2nd edition)
Jeremy Arkes
R1,402 Discovery Miles 14 020 Ships in 9 - 17 working days

* Starts from the basics, focusing less on proofs and the high-level math underlying regressions, and adopts an engaging tone to provide a text which is entirely accessible to students who don't have a stats background * New chapter on integrity and ethics in regression analysis * Each chapter offers boxed examples, stories, exercises and clear summaries, all of which are designed to support student learning * Optional appendix of statistical tools, providing a primer to readers who need it * Code in R and Stata, and data sets and exercises in Stata and CSV, to allow students to practice running their own regressions * Author-created videos on YouTube * PPT lecture slides and test bank for instructors

Analytics for Managers - With Excel (Hardcover, New): Peter C. Bell, Gregory S. Zaric Analytics for Managers - With Excel (Hardcover, New)
Peter C. Bell, Gregory S. Zaric
R5,845 Discovery Miles 58 450 Ships in 12 - 19 working days

Analytics is one of a number of terms which are used to describe a data-driven more scientific approach to management. Ability in analytics is an essential management skill: knowledge of data and analytics helps the manager to analyze decision situations, prevent problem situations from arising, identify new opportunities, and often enables many millions of dollars to be added to the bottom line for the organization. The objective of this book is to introduce analytics from the perspective of the general manager of a corporation. Rather than examine the details or attempt an encyclopaedic review of the field, this text emphasizes the strategic role that analytics is playing in globally competitive corporations today. The chapters of this book are organized in two main parts. The first part introduces a problem area and presents some basic analytical concepts that have been successfully used to address the problem area. The objective of this material is to provide the student, the manager of the future, with a general understanding of the tools and techniques used by the analyst.

Introduction to Econophysics - Contemporary Approaches with Python Simulations (Hardcover): Carlo Requiao Da Cunha Introduction to Econophysics - Contemporary Approaches with Python Simulations (Hardcover)
Carlo Requiao Da Cunha
R2,837 Discovery Miles 28 370 Ships in 12 - 19 working days

* Explores the exciting and new topic of econophysics * Multidisciplinary approach, that will be of interest to students and researchers from physics, engineering, mathematics, statistics, and other physical sciences * Useful to both students and researchers

Monte Carlo Simulation with Applications to Finance (Hardcover, New): Hui Wang Monte Carlo Simulation with Applications to Finance (Hardcover, New)
Hui Wang
R5,539 Discovery Miles 55 390 Ships in 12 - 19 working days

Developed from the author's course on Monte Carlo simulation at Brown University, Monte Carlo Simulation with Applications to Finance provides a self-contained introduction to Monte Carlo methods in financial engineering. It is suitable for advanced undergraduate and graduate students taking a one-semester course or for practitioners in the financial industry.

The author first presents the necessary mathematical tools for simulation, arbitrary free option pricing, and the basic implementation of Monte Carlo schemes. He then describes variance reduction techniques, including control variates, stratification, conditioning, importance sampling, and cross-entropy. The text concludes with stochastic calculus and the simulation of diffusion processes.

Only requiring some familiarity with probability and statistics, the book keeps much of the mathematics at an informal level and avoids technical measure-theoretic jargon to provide a practical understanding of the basics. It includes a large number of examples as well as MATLAB(r) coding exercises that are designed in a progressive manner so that no prior experience with MATLAB is needed.

Introduction to Functional Data Analysis (Paperback): Piotr Kokoszka, Matthew Reimherr Introduction to Functional Data Analysis (Paperback)
Piotr Kokoszka, Matthew Reimherr
R1,596 Discovery Miles 15 960 Ships in 12 - 19 working days

Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework. The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems. The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.

Big Data Analytics in Cybersecurity (Paperback): Onur Savas, Julia Deng Big Data Analytics in Cybersecurity (Paperback)
Onur Savas, Julia Deng
R1,542 Discovery Miles 15 420 Ships in 12 - 19 working days

Big data is presenting challenges to cybersecurity. For an example, the Internet of Things (IoT) will reportedly soon generate a staggering 400 zettabytes (ZB) of data a year. Self-driving cars are predicted to churn out 4000 GB of data per hour of driving. Big data analytics, as an emerging analytical technology, offers the capability to collect, store, process, and visualize these vast amounts of data. Big Data Analytics in Cybersecurity examines security challenges surrounding big data and provides actionable insights that can be used to improve the current practices of network operators and administrators. Applying big data analytics in cybersecurity is critical. By exploiting data from the networks and computers, analysts can discover useful network information from data. Decision makers can make more informative decisions by using this analysis, including what actions need to be performed, and improvement recommendations to policies, guidelines, procedures, tools, and other aspects of the network processes. Bringing together experts from academia, government laboratories, and industry, the book provides insight to both new and more experienced security professionals, as well as data analytics professionals who have varying levels of cybersecurity expertise. It covers a wide range of topics in cybersecurity, which include: Network forensics Threat analysis Vulnerability assessment Visualization Cyber training. In addition, emerging security domains such as the IoT, cloud computing, fog computing, mobile computing, and cyber-social networks are examined. The book first focuses on how big data analytics can be used in different aspects of cybersecurity including network forensics, root-cause analysis, and security training. Next it discusses big data challenges and solutions in such emerging cybersecurity domains as fog computing, IoT, and mobile app security. The book concludes by presenting the tools and datasets for future cybersecurity research.

Econometrics (Hardcover): Bruce Hansen Econometrics (Hardcover)
Bruce Hansen
R2,849 R2,384 Discovery Miles 23 840 Save R465 (16%) Ships in 12 - 19 working days

The most authoritative and up-to-date core econometrics textbook available Econometrics is the quantitative language of economic theory, analysis, and empirical work, and it has become a cornerstone of graduate economics programs. Econometrics provides graduate and PhD students with an essential introduction to this foundational subject in economics and serves as an invaluable reference for researchers and practitioners. This comprehensive textbook teaches fundamental concepts, emphasizes modern, real-world applications, and gives students an intuitive understanding of econometrics. Covers the full breadth of econometric theory and methods with mathematical rigor while emphasizing intuitive explanations that are accessible to students of all backgrounds Draws on integrated, research-level datasets, provided on an accompanying website Discusses linear econometrics, time series, panel data, nonparametric methods, nonlinear econometric models, and modern machine learning Features hundreds of exercises that enable students to learn by doing Includes in-depth appendices on matrix algebra and useful inequalities and a wealth of real-world examples Can serve as a core textbook for a first-year PhD course in econometrics and as a follow-up to Bruce E. Hansen's Probability and Statistics for Economists

Handbook of Empirical Economics and Finance (Hardcover): Aman Ullah, David E.A. Giles Handbook of Empirical Economics and Finance (Hardcover)
Aman Ullah, David E.A. Giles
R6,324 Discovery Miles 63 240 Ships in 12 - 19 working days

Handbook of Empirical Economics and Finance explores the latest developments in the analysis and modeling of economic and financial data. Well-recognized econometric experts discuss the rapidly growing research in economics and finance and offer insight on the future direction of these fields. Focusing on micro models, the first group of chapters describes the statistical issues involved in the analysis of econometric models with cross-sectional data often arising in microeconomics. The book then illustrates time series models that are extensively used in empirical macroeconomics and finance. The last set of chapters explores the types of panel data and spatial models that are becoming increasingly significant in analyzing complex economic behavior and policy evaluations. This handbook brings together both background material and new methodological and applied results that are extremely important to the current and future frontiers in empirical economics and finance. It emphasizes inferential issues that transpire in the analysis of cross-sectional, time series, and panel data-based empirical models in economics, finance, and related disciplines.

Doing Statistical Analysis - A Student's Guide to Quantitative Research (Paperback): Christer Thrane Doing Statistical Analysis - A Student's Guide to Quantitative Research (Paperback)
Christer Thrane
R1,679 Discovery Miles 16 790 Ships in 9 - 17 working days

Doing Statistical Analysis looks at three kinds of statistical research questions - descriptive, associational, and inferential - and shows students how to conduct statistical analyses and interpret the results. Keeping equations to a minimum, it uses a conversational style and relatable examples such as football, COVID-19, and tourism, to aid understanding. Each chapter contains practice exercises, and a section showing students how to reproduce the statistical results in the book using Stata and SPSS. Digital supplements consist of data sets in Stata, SPSS, and Excel, and a test bank for instructors. Its accessible approach means this is the ideal textbook for undergraduate students across the social and behavioral sciences needing to build their confidence with statistical analysis.

China's National Income, 1952-1995 (Paperback): Tien-tung Hsueh China's National Income, 1952-1995 (Paperback)
Tien-tung Hsueh
R1,433 Discovery Miles 14 330 Ships in 12 - 19 working days

This book contains the most complete set of the Chinese national income and its components based on system of national accounts. It points out some fundamental issues concerning the estimation of China's national income and it is intended to the students of the field of China study around the world.

Bayesian Analysis with Excel and R (Paperback): Conrad Carlberg Bayesian Analysis with Excel and R (Paperback)
Conrad Carlberg
R1,050 Discovery Miles 10 500 Ships in 12 - 19 working days

Leverage the full power of Bayesian analysis for competitive advantage Bayesian methods can solve problems you can't reliably handle any other way. Building on your existing Excel analytics skills and experience, Microsoft Excel MVP Conrad Carlberg helps you make the most of Excel's Bayesian capabilities and move toward R to do even more. Step by step, with real-world examples, Carlberg shows you how to use Bayesian analytics to solve a wide array of real problems. Carlberg clarifies terminology that often bewilders analysts, and offers sample R code to take advantage of the rethinking package in R and its gateway to Stan. As you incorporate these Bayesian approaches into your analytical toolbox, you'll build a powerful competitive advantage for your organization-and yourself. Explore key ideas and strategies that underlie Bayesian analysis Distinguish prior, likelihood, and posterior distributions, and compare algorithms for driving sampling inputs Use grid approximation to solve simple univariate problems, and understand its limits as parameters increase Perform complex simulations and regressions with quadratic approximation and Richard McElreath's quap function Manage text values as if they were numeric Learn today's gold-standard Bayesian sampling technique: Markov Chain Monte Carlo (MCMC) Use MCMC to optimize execution speed in high-complexity problems Discover when frequentist methods fail and Bayesian methods are essential-and when to use both in tandem

Security Risk Models for Cyber Insurance (Hardcover): Caroline Baylon, Jose Vila, David Rios Insua Security Risk Models for Cyber Insurance (Hardcover)
Caroline Baylon, Jose Vila, David Rios Insua
R4,019 Discovery Miles 40 190 Ships in 12 - 19 working days

Tackling the cybersecurity challenge is a matter of survival for society at large. Cyber attacks are rapidly increasing in sophistication and magnitude-and in their destructive potential. New threats emerge regularly, the last few years having seen a ransomware boom and distributed denial-of-service attacks leveraging the Internet of Things. For organisations, the use of cybersecurity risk management is essential in order to manage these threats. Yet current frameworks have drawbacks which can lead to the suboptimal allocation of cybersecurity resources. Cyber insurance has been touted as part of the solution - based on the idea that insurers can incentivize companies to improve their cybersecurity by offering premium discounts - but cyber insurance levels remain limited. This is because companies have difficulty determining which cyber insurance products to purchase, and insurance companies struggle to accurately assess cyber risk and thus develop cyber insurance products. To deal with these challenges, this volume presents new models for cybersecurity risk management, partly based on the use of cyber insurance. It contains: A set of mathematical models for cybersecurity risk management, including (i) a model to assist companies in determining their optimal budget allocation between security products and cyber insurance and (ii) a model to assist insurers in designing cyber insurance products. The models use adversarial risk analysis to account for the behavior of threat actors (as well as the behavior of companies and insurers). To inform these models, we draw on psychological and behavioural economics studies of decision-making by individuals regarding cybersecurity and cyber insurance. We also draw on organizational decision-making studies involving cybersecurity and cyber insurance. Its theoretical and methodological findings will appeal to researchers across a wide range of cybersecurity-related disciplines including risk and decision analysis, analytics, technology management, actuarial sciences, behavioural sciences, and economics. The practical findings will help cybersecurity professionals and insurers enhance cybersecurity and cyber insurance, thus benefiting society as a whole. This book grew out of a two-year European Union-funded project under Horizons 2020, called CYBECO (Supporting Cyber Insurance from a Behavioral Choice Perspective).

Portfolio Rebalancing (Paperback): Edward E. Qian Portfolio Rebalancing (Paperback)
Edward E. Qian
R1,560 Discovery Miles 15 600 Ships in 12 - 19 working days

The goal of Portfolio Rebalancing is to provide mathematical and empirical analysis of the effects of portfolio rebalancing on portfolio returns and risks. The mathematical analysis answers the question of when and why fixed-weight portfolios might outperform buy-and-hold portfolios based on volatilities and returns. The empirical analysis, aided by mathematical insights, will examine the effects of portfolio rebalancing in capital markets for asset allocation portfolios and portfolios of stocks, bonds, and commodities.

Pragmatics of Uncertainty (Paperback): Joseph B. Kadane Pragmatics of Uncertainty (Paperback)
Joseph B. Kadane
R1,602 Discovery Miles 16 020 Ships in 12 - 19 working days

A fair question to ask of an advocate of subjective Bayesianism (which the author is) is "how would you model uncertainty?" In this book, the author writes about how he has done it using real problems from the past, and offers additional comments about the context in which he was working.

An Introduction to Computational Risk Management of Equity-Linked Insurance (Paperback): Runhuan Feng An Introduction to Computational Risk Management of Equity-Linked Insurance (Paperback)
Runhuan Feng
R1,610 Discovery Miles 16 100 Ships in 12 - 19 working days

The quantitative modeling of complex systems of interacting risks is a fairly recent development in the financial and insurance industries. Over the past decades, there has been tremendous innovation and development in the actuarial field. In addition to undertaking mortality and longevity risks in traditional life and annuity products, insurers face unprecedented financial risks since the introduction of equity-linking insurance in 1960s. As the industry moves into the new territory of managing many intertwined financial and insurance risks, non-traditional problems and challenges arise, presenting great opportunities for technology development. Today's computational power and technology make it possible for the life insurance industry to develop highly sophisticated models, which were impossible just a decade ago. Nonetheless, as more industrial practices and regulations move towards dependence on stochastic models, the demand for computational power continues to grow. While the industry continues to rely heavily on hardware innovations, trying to make brute force methods faster and more palatable, we are approaching a crossroads about how to proceed. An Introduction to Computational Risk Management of Equity-Linked Insurance provides a resource for students and entry-level professionals to understand the fundamentals of industrial modeling practice, but also to give a glimpse of software methodologies for modeling and computational efficiency. Features Provides a comprehensive and self-contained introduction to quantitative risk management of equity-linked insurance with exercises and programming samples Includes a collection of mathematical formulations of risk management problems presenting opportunities and challenges to applied mathematicians Summarizes state-of-arts computational techniques for risk management professionals Bridges the gap between the latest developments in finance and actuarial literature and the practice of risk management for investment-combined life insurance Gives a comprehensive review of both Monte Carlo simulation methods and non-simulation numerical methods Runhuan Feng is an Associate Professor of Mathematics and the Director of Actuarial Science at the University of Illinois at Urbana-Champaign. He is a Fellow of the Society of Actuaries and a Chartered Enterprise Risk Analyst. He is a Helen Corley Petit Professorial Scholar and the State Farm Companies Foundation Scholar in Actuarial Science. Runhuan received a Ph.D. degree in Actuarial Science from the University of Waterloo, Canada. Prior to joining Illinois, he held a tenure-track position at the University of Wisconsin-Milwaukee, where he was named a Research Fellow. Runhuan received numerous grants and research contracts from the Actuarial Foundation and the Society of Actuaries in the past. He has published a series of papers on top-tier actuarial and applied probability journals on stochastic analytic approaches in risk theory and quantitative risk management of equity-linked insurance. Over the recent years, he has dedicated his efforts to developing computational methods for managing market innovations in areas of investment combined insurance and retirement planning.

The Who, What, and Where of America - Understanding the American Community Survey (Hardcover, Ninth Edition): Shana Hertz-Hattis The Who, What, and Where of America - Understanding the American Community Survey (Hardcover, Ninth Edition)
Shana Hertz-Hattis
R3,496 Discovery Miles 34 960 Ships in 12 - 19 working days

The Who, What, and Where of America is designed to provide a sampling of key demographic information. It covers the United States, every state, each metropolitan statistical area, and all the counties and cities with a population of 20,000 or more. Who: Age, Race and Ethnicity, and Household Structure What: Education, Employment, and Income Where: Migration, Housing, and Transportation Each part is preceded by highlights and ranking tables that show how areas diverge from the national norm. These research aids are invaluable for understanding data from the ACS and for highlighting what it tells us about who we are, what we do, and where we live. Each topic is divided into four tables revealing the results of the data collected from different types of geographic areas in the United States, generally with populations greater than 20,000. Table A. States Table B. Counties Table C. Metropolitan Areas Table D. Cities In this edition, you will find social and economic estimates on the ways American communities are changing with regard to the following: Age and race Health care coverage Marital history Education attainment Income and occupation Commute time to work Employment status Home values and monthly costs Veteran status Size of home or rental unit This title is the latest in the County and City Extra Series of publications from Bernan Press. Other titles include County and City Extra, County and City Extra: Special Decennial Census Edition, and Places, Towns, and Townships.

Design & Analysis of Clinical Trials for Economic Evaluation & Reimbursement - An Applied Approach Using SAS & STATA... Design & Analysis of Clinical Trials for Economic Evaluation & Reimbursement - An Applied Approach Using SAS & STATA (Paperback)
Iftekhar Khan
R1,571 Discovery Miles 15 710 Ships in 12 - 19 working days

Economic evaluation has become an essential component of clinical trial design to show that new treatments and technologies offer value to payers in various healthcare systems. Although many books exist that address the theoretical or practical aspects of cost-effectiveness analysis, this book differentiates itself from the competition by detailing how to apply health economic evaluation techniques in a clinical trial context, from both academic and pharmaceutical/commercial perspectives. It also includes a special chapter for clinical trials in Cancer. Design & Analysis of Clinical Trials for Economic Evaluation & Reimbursement is not just about performing cost-effectiveness analyses. It also emphasizes the strategic importance of economic evaluation and offers guidance and advice on the complex factors at play before, during, and after an economic evaluation. Filled with detailed examples, the book bridges the gap between applications of economic evaluation in industry (mainly pharmaceutical) and what students may learn in university courses. It provides readers with access to SAS and STATA code. In addition, Windows-based software for sample size and value of information analysis is available free of charge-making it a valuable resource for students considering a career in this field or for those who simply wish to know more about applying economic evaluation techniques. The book includes coverage of trial design, case report form design, quality of life measures, sample sizes, submissions to regulatory authorities for reimbursement, Markov models, cohort models, and decision trees. Examples and case studies are provided at the end of each chapter. Presenting first-hand insights into how economic evaluations are performed from a drug development perspective, the book supplies readers with the foundation required to succeed in an environment where clinical trials and cost-effectiveness of new treatments are central. It also includes thought-provoking exercises for use in classroom and seminar discussions.

Extreme Value Modeling and Risk Analysis - Methods and Applications (Paperback): Dipak K. Dey, Jun Yan Extreme Value Modeling and Risk Analysis - Methods and Applications (Paperback)
Dipak K. Dey, Jun Yan
R1,599 Discovery Miles 15 990 Ships in 12 - 19 working days

Extreme Value Modeling and Risk Analysis: Methods and Applications presents a broad overview of statistical modeling of extreme events along with the most recent methodologies and various applications. The book brings together background material and advanced topics, eliminating the need to sort through the massive amount of literature on the subject. After reviewing univariate extreme value analysis and multivariate extremes, the book explains univariate extreme value mixture modeling, threshold selection in extreme value analysis, and threshold modeling of non-stationary extremes. It presents new results for block-maxima of vine copulas, develops time series of extremes with applications from climatology, describes max-autoregressive and moving maxima models for extremes, and discusses spatial extremes and max-stable processes. The book then covers simulation and conditional simulation of max-stable processes; inference methodologies, such as composite likelihood, Bayesian inference, and approximate Bayesian computation; and inferences about extreme quantiles and extreme dependence. It also explores novel applications of extreme value modeling, including financial investments, insurance and financial risk management, weather and climate disasters, clinical trials, and sports statistics. Risk analyses related to extreme events require the combined expertise of statisticians and domain experts in climatology, hydrology, finance, insurance, sports, and other fields. This book connects statistical/mathematical research with critical decision and risk assessment/management applications to stimulate more collaboration between these statisticians and specialists.

Pathwise Estimation and Inference for Diffusion Market Models (Paperback): Nikolai Dokuchaev, Lin Yee Hin Pathwise Estimation and Inference for Diffusion Market Models (Paperback)
Nikolai Dokuchaev, Lin Yee Hin
R1,556 Discovery Miles 15 560 Ships in 12 - 19 working days

Pathwise estimation and inference for diffusion market models discusses contemporary techniques for inferring, from options and bond prices, the market participants' aggregate view on important financial parameters such as implied volatility, discount rate, future interest rate, and their uncertainty thereof. The focus is on the pathwise inference methods that are applicable to a sole path of the observed prices and do not require the observation of an ensemble of such paths. This book is pitched at the level of senior undergraduate students undertaking research at honors year, and postgraduate candidates undertaking Master's or PhD degree by research. From a research perspective, this book reaches out to academic researchers from backgrounds as diverse as mathematics and probability, econometrics and statistics, and computational mathematics and optimization whose interest lie in analysis and modelling of financial market data from a multi-disciplinary approach. Additionally, this book is also aimed at financial market practitioners participating in capital market facing businesses who seek to keep abreast with and draw inspiration from novel approaches in market data analysis. The first two chapters of the book contains introductory material on stochastic analysis and the classical diffusion stock market models. The remaining chapters discuss more special stock and bond market models and special methods of pathwise inference for market parameter for different models. The final chapter describes applications of numerical methods of inference of bond market parameters to forecasting of short rate. Nikolai Dokuchaev is an associate professor in Mathematics and Statistics at Curtin University. His research interests include mathematical and statistical finance, stochastic analysis, PDEs, control, and signal processing. Lin Yee Hin is a practitioner in the capital market facing industry. His research interests include econometrics, non-parametric regression, and scientific computing.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Welding Engineer's Guide to Fracture…
Philippa Moore, Geoff Booth Hardcover R3,995 Discovery Miles 39 950
Galvanised Stand Pipe (40X600mm)
R266 R222 Discovery Miles 2 220
Type-1 Diabetes - Methods and Protocols
Kathleen M. Gillespie Hardcover R4,468 R3,611 Discovery Miles 36 110
Backyard Birds 2023 Wall Calendar
Willow Creek Press Calendar R486 Discovery Miles 4 860
Population Aging, Fertility and Social…
Akira Yakita Hardcover R4,249 Discovery Miles 42 490
Falling Monuments, Reluctant Ruins - The…
Hilton Judin Paperback R395 R365 Discovery Miles 3 650
Psychology and Geriatrics - Integrated…
Benjamin Bensadon Hardcover R1,469 Discovery Miles 14 690
Waterboy - Making Sense Of My Son's…
Glynis Horning Paperback R320 R295 Discovery Miles 2 950
Systems Science: Theory, Analysis…
George E. Mobus Hardcover R3,964 Discovery Miles 39 640
Valve Brass Mini Lever Mxf Bulk Pack of…
R481 R401 Discovery Miles 4 010

 

Partners