![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Business & Economics > Economics > Econometrics > Economic statistics
Economic history is the most quantitative branch of history, reflecting the interests and profiting from the techniques and concepts of economics. This essay, first published in 1977, provides an extensive contribution to quantitative historiography by delivering a critical guide to the sources of the numerical data of the period 1700 to 1850. This title will be of interest to students of history, finance and economics.
Explores the Origin of the Recent Banking Crisis and how to Preclude Future Crises Shedding new light on the recent worldwide banking debacle, The Banking Crisis Handbook presents possible remedies as to what should have been done prior, during, and after the crisis. With contributions from well-known academics and professionals, the book contains exclusive, new research that will undoubtedly assist bank executives, risk management departments, and other financial professionals to attain a clear picture of the banking crisis and prevent future banking collapses. The first part of the book explains how the crisis originated. It discusses the role of subprime mortgages, shadow banks, ineffective risk management, poor financial regulations, and hedge funds in causing the collapse of financial systems. The second section examines how the crisis affected the global market as well as individual countries and regions, such as Asia and Greece. In the final part, the book explores short- and long-term solutions, including government intervention, financial regulations, efficient bank default risk approaches, and methods to evaluate credit risk. It also looks at when government intervention in financial markets can be ethically justified.
How could Finance benefit from AI? How can AI techniques provide an edge? Moving well beyond simply speeding up computation, this book tackles AI for Finance from a range of perspectives including business, technology, research, and students. Covering aspects like algorithms, big data, and machine learning, this book answers these and many other questions.
This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods. Because most data are observational, practitioners work with indirect noisy observations and ill-posed econometric models in the form of stochastic inverse problems. Consequently, traditional econometric methods in many cases are not applicable for answering many of the quantitative questions that analysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochastic inverse problems. In succeeding chapters, a family of power divergence measure likelihood functions are introduced for a range of traditional and nontraditional econometric-model problems. Finally, within either an empirical maximum likelihood or loss context, Ron C. Mittelhammer and George G. Judge suggest a basis for choosing a member of the divergence family.
Introduction to Statistics with SPSS offers an introduction to statistics that can be used before, during or after a course on statistics. Covering a wide range of terms and techniques, including simple and multiple regressions, this book guides the student to enter data from a simple research project into a computer, provide an adequate analysis of the data and present a report on the findings.
The purpose of this book is to introduce novice researchers to the tools of meta-analysis and meta-regression analysis and to summarize the state of the art for existing practitioners. Meta-regression analysis addresses the rising "Tower of Babel" that current economics and business research has become. Meta-analysis is the statistical analysis of previously published, or reported, research findings on a given hypothesis, empirical effect, phenomenon, or policy intervention. It is a systematic review of all the relevant scientific knowledge on a specific subject and is an essential part of the evidence-based practice movement in medicine, education and the social sciences. However, research in economics and business is often fundamentally different from what is found in the sciences and thereby requires different methods for its synthesis-meta-regression analysis. This book develops, summarizes, and applies these meta-analytic methods.
This short book introduces the main ideas of statistical inference in a way that is both user friendly and mathematically sound. Particular emphasis is placed on the common foundation of many models used in practice. In addition, the book focuses on the formulation of appropriate statistical models to study problems in business, economics, and the social sciences, as well as on how to interpret the results from statistical analyses. The book will be useful to students who are interested in rigorous applications of statistics to problems in business, economics and the social sciences, as well as students who have studied statistics in the past, but need a more solid grounding in statistical techniques to further their careers. Jacco Thijssen is professor of finance at the University of York, UK. He holds a PhD in mathematical economics from Tilburg University, Netherlands. His main research interests are in applications of optimal stopping theory, stochastic calculus, and game theory to problems in economics and finance. Professor Thijssen has earned several awards for his statistics teaching.
Econophysics applies the methodology of physics to the study of economics. However, whilst physicists have good understanding of statistical physics, they may be unfamiliar with recent advances in statistical conjectures, including Bayesian and predictive methods. Equally, economists with knowledge of probabilities do not have a background in statistical physics and agent-based models. Proposing a unified view for a dynamic probabilistic approach, this book is useful for advanced undergraduate and graduate students as well as researchers in physics, economics and finance. The book takes a finitary approach to the subject, discussing the essentials of applied probability, and covering finite Markov chain theory and its applications to real systems. Each chapter ends with a summary, suggestions for further reading, and exercises with solutions at the end of the book.
This book is designed to introduce graduate students and researchers to the primary methods useful for approximating integrals. The emphasis is on those methods that have been found to be of practical use, and although the focus is on approximating higher-dimensional integrals the lower-dimensional case is also covered. This book covers all the most useful approximation techniques so far discovered; the first time that all such techniques have been included in a single book and at a level accessible for students. In particular, it includes a complete development of the material needed to construct the highly popular Markov Chain Monte Carlo (MCMC) methods.
Valuable software, realistic examples, clear writing, and fascinating topics help you master key spreadsheet and business analytics skills with SPREADSHEET MODELING AND DECISION ANALYSIS, 8E. You'll find everything you need to become proficient in today's most widely used business analytics techniques using Microsoft (R) Office Excel (R) 2016. Author Cliff Ragsdale -- respected innovator in business analytics -- guides you through the skills you need, using the latest Excel (R) for Windows. You gain the confidence to apply what you learn to real business situations with step-by-step instructions and annotated screen images that make examples easy to follow. The World of Management Science sections further demonstrates how each topic applies to a real company. Each new edition includes extended trial licenses for Analytic Solver Platform and XLMiner with powerful simulation and optimization tools for descriptive and prescriptive analytics and a full suite of tools for data mining in Excel.
The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors' E4 MATLAB (R) toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.
Ranking of Multivariate Populations: A Permutation Approach with Applications presents a novel permutation-based nonparametric approach for ranking several multivariate populations. Using data collected from both experimental and observation studies, it covers some of the most useful designs widely applied in research and industry investigations, such as multivariate analysis of variance (MANOVA) and multivariate randomized complete block (MRCB) designs. The first section of the book introduces the topic of ranking multivariate populations by presenting the main theoretical ideas and an in-depth literature review. The second section discusses a large number of real case studies from four specific research areas: new product development in industry, perceived quality of the indoor environment, customer satisfaction, and cytological and histological analysis by image processing. A web-based nonparametric combination global ranking software is also described. Designed for practitioners and postgraduate students in statistics and the applied sciences, this application-oriented book offers a practical guide to the reliable global ranking of multivariate items, such as products, processes, and services, in terms of the performance of all investigated products/prototypes.
Prepares readers to analyze data and interpret statistical results using the increasingly popular R more quickly than other texts through LessR extensions which remove the need to program. By introducing R through less R, readers learn how to organize data for analysis, read the data into R, and produce output without performing numerous functions and programming first. Readers can select the necessary procedure and change the relevant variables without programming. Quick Starts introduce readers to the concepts and commands reviewed in the chapters. Margin notes define, illustrate, and cross-reference the key concepts. When readers encounter a term previously discussed, the margin notes identify the page number to the initial introduction. Scenarios highlight the use of a specific analysis followed by the corresponding R/lessR input and an interpretation of the resulting output. Numerous examples of output from psychology, business, education, and other social sciences demonstrate how to interpret results and worked problems help readers test their understanding. www.lessRstats.com website features the lessR program, the book's 2 data sets referenced in standard text and SPSS formats so readers can practice using R/lessR by working through the text examples and worked problems, PDF slides for each chapter, solutions to the book's worked problems, links to R/lessR videos to help readers better understand the program, and more. New to this edition: o upgraded functionality and data visualizations of the lessR package, which is now aesthetically equal to the ggplot 2 R standard o new features to replace and extend previous content, such as aggregating data with pivot tables with a simple lessR function call.
Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed can be applied to other types of discrete-valued time series, such as binary-valued or categorical time series. Explore a Balanced Treatment of Frequentist and Bayesian Perspectives Accessible to graduate-level students who have taken an elementary class in statistical time series analysis, the book begins with the history and current methods for modeling and analyzing univariate count series. It next discusses diagnostics and applications before proceeding to binary and categorical time series. The book then provides a guide to modern methods for discrete-valued spatio-temporal data, illustrating how far modern applications have evolved from their roots. The book ends with a focus on multivariate and long-memory count series. Get Guidance from Masters in the Field Written by a cohesive group of distinguished contributors, this handbook provides a unified account of the diverse techniques available for observation- and parameter-driven models. It covers likelihood and approximate likelihood methods, estimating equations, simulation methods, and a Bayesian approach for model fitting.
Introduction to Financial Mathematics: Option Valuation, Second Edition is a well-rounded primer to the mathematics and models used in the valuation of financial derivatives. The book consists of fifteen chapters, the first ten of which develop option valuation techniques in discrete time, the last five describing the theory in continuous time. The first half of the textbook develops basic finance and probability. The author then treats the binomial model as the primary example of discrete-time option valuation. The final part of the textbook examines the Black-Scholes model. The book is written to provide a straightforward account of the principles of option pricing and examines these principles in detail using standard discrete and stochastic calculus models. Additionally, the second edition has new exercises and examples, and includes many tables and graphs generated by over 30 MS Excel VBA modules available on the author's webpage https://home.gwu.edu/~hdj/.
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath-Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of stochastic processes with continuous and discontinuous paths. It also covers a wide selection of popular models in finance and insurance, from Black-Scholes to stochastic volatility to interest rate to dynamic mortality. Through its many numerical and graphical illustrations and simple, insightful examples, this book provides a deep understanding of the scope of Monte Carlo methods and their use in various financial situations. The intuitive presentation encourages readers to implement and further develop the simulation methods.
In order to make informed decisions, there are three important elements: intuition, trust, and analytics. Intuition is based on experiential learning and recent research has shown that those who rely on their "gut feelings" may do better than those who don't. Analytics, however, are important in a data-driven environment to also inform decision making. The third element, trust, is critical for knowledge sharing to take place. These three elements-intuition, analytics, and trust-make a perfect combination for decision making. This book gathers leading researchers who explore the role of these three elements in the process of decision-making.
There is no shortage of incentives to study and reduce poverty in our societies. Poverty is studied in economics and political sciences, and population surveys are an important source of information about it. The design and analysis of such surveys is principally a statistical subject matter and the computer is essential for their data compilation and processing. Focusing on The European Union Statistics on Income and Living Conditions (EU-SILC), a program of annual national surveys which collect data related to poverty and social exclusion, Statistical Studies of Income, Poverty and Inequality in Europe: Computing and Graphics in R presents a set of statistical analyses pertinent to the general goals of EU-SILC. The contents of the volume are biased toward computing and statistics, with reduced attention to economics, political and other social sciences. The emphasis is on methods and procedures as opposed to results, because the data from annual surveys made available since publication and in the near future will degrade the novelty of the data used and the results derived in this volume. The aim of this volume is not to propose specific methods of analysis, but to open up the analytical agenda and address the aspects of the key definitions in the subject of poverty assessment that entail nontrivial elements of arbitrariness. The presented methods do not exhaust the range of analyses suitable for EU-SILC, but will stimulate the search for new methods and adaptation of established methods that cater to the identified purposes.
"Advances in Econometrics and Quantitative Economics" is a comprehensive guide to the statistical methods used in econometrics and quantitative economics. Bringing together contributions from those acknowledged to be amongst the world's leading econometricians and statisticians this volume covers topics such as: * Semiparametric and non-parametric interference. The book is dedicated to Professor C. R. Rao, whose unique contribution to the subject has influenced econometricians for many years.
-Up-to-date with cutting edge topics -Suitable for professional quants and as library reference for students of finance and financial mathematics
Factor Analysis and Dimension Reduction in R provides coverage, with worked examples, of a large number of dimension reduction procedures along with model performance metrics to compare them. Factor analysis in the form of principal components analysis (PCA) or principal factor analysis (PFA) is familiar to most social scientists. However, what is less familiar is understanding that factor analysis is a subset of the more general statistical family of dimension reduction methods. The social scientist's toolkit for factor analysis problems can be expanded to include the range of solutions this book presents. In addition to covering FA and PCA with orthogonal and oblique rotation, this book's coverage includes higher-order factor models, bifactor models, models based on binary and ordinal data, models based on mixed data, generalized low-rank models, cluster analysis with GLRM, models involving supplemental variables or observations, Bayesian factor analysis, regularized factor analysis, testing for unidimensionality, and prediction with factor scores. The second half of the book deals with other procedures for dimension reduction. These include coverage of kernel PCA, factor analysis with multidimensional scaling, locally linear embedding models, Laplacian eigenmaps, diffusion maps, force directed methods, t-distributed stochastic neighbor embedding, independent component analysis (ICA), dimensionality reduction via regression (DRR), non-negative matrix factorization (NNMF), Isomap, Autoencoder, uniform manifold approximation and projection (UMAP) models, neural network models, and longitudinal factor analysis models. In addition, a special chapter covers metrics for comparing model performance. Features of this book include: Numerous worked examples with replicable R code Explicit comprehensive coverage of data assumptions Adaptation of factor methods to binary, ordinal, and categorical data Residual and outlier analysis Visualization of factor results Final chapters that treat integration of factor analysis with neural network and time series methods Presented in color with R code and introduction to R and RStudio, this book will be suitable for graduate-level and optional module courses for social scientists, and on quantitative methods and multivariate statistics courses.
Mathematical models in the social sciences have become increasingly sophisticated and widespread in the last decade. This period has also seen many critiques, most lamenting the sacrifices incurred in pursuit of mathematical rigor. If, as critics argue, our ability to understand the world has not improved during the mathematization of the social sciences, we might want to adopt a different paradigm. This book examines the three main fields of mathematical modeling - game theory, statistics, and computational methods - and proposes a new framework for modeling. Unlike previous treatments which view each field separately, the treatment provides a framework that spans and incorporates the different methodological approaches. The goal is to arrive at a new vision of modeling that allows researchers to solve more complex problems in the social sciences. Additionally, a special emphasis is placed upon the role of computational modeling in the social sciences.
Learn by doing with this user-friendly introduction to time series data analysis in R. This book explores the intricacies of managing and cleaning time series data of different sizes, scales and granularity, data preparation for analysis and visualization, and different approaches to classical and machine learning time series modeling and forecasting. A range of pedagogical features support students, including end-of-chapter exercises, problems, quizzes and case studies. The case studies are designed to stretch the learner, introducing larger data sets, enhanced data management skills, and R packages and functions appropriate for real-world data analysis. On top of providing commented R programs and data sets, the book's companion website offers extra case studies, lecture slides, videos and exercise solutions. Accessible to those with a basic background in statistics and probability, this is an ideal hands-on text for undergraduate and graduate students, as well as researchers in data-rich disciplines
Analytics is one of a number of terms which are used to describe a data-driven more scientific approach to management. Ability in analytics is an essential management skill: knowledge of data and analytics helps the manager to analyze decision situations, prevent problem situations from arising, identify new opportunities, and often enables many millions of dollars to be added to the bottom line for the organization. The objective of this book is to introduce analytics from the perspective of the general manager of a corporation. Rather than examine the details or attempt an encyclopaedic review of the field, this text emphasizes the strategic role that analytics is playing in globally competitive corporations today. The chapters of this book are organized in two main parts. The first part introduces a problem area and presents some basic analytical concepts that have been successfully used to address the problem area. The objective of this material is to provide the student, the manager of the future, with a general understanding of the tools and techniques used by the analyst. |
You may like...
Operations and Supply Chain Management
James Evans, David Collier
Hardcover
Introductory Business Statistics
Alexander Holmes, Barbara Illowsky, …
Hardcover
R1,788
Discovery Miles 17 880
Organizational Productivity and…
Madjid Tavana, Kathryn Szabat, …
Hardcover
R5,209
Discovery Miles 52 090
Operations And Supply Chain Management
David Collier, James Evans
Hardcover
|