![]() |
![]() |
Your cart is empty |
||
Books > Business & Economics > Economics > Econometrics > Economic statistics
The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors' E4 MATLAB (R) toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.
Learn by doing with this user-friendly introduction to time series data analysis in R. This book explores the intricacies of managing and cleaning time series data of different sizes, scales and granularity, data preparation for analysis and visualization, and different approaches to classical and machine learning time series modeling and forecasting. A range of pedagogical features support students, including end-of-chapter exercises, problems, quizzes and case studies. The case studies are designed to stretch the learner, introducing larger data sets, enhanced data management skills, and R packages and functions appropriate for real-world data analysis. On top of providing commented R programs and data sets, the book's companion website offers extra case studies, lecture slides, videos and exercise solutions. Accessible to those with a basic background in statistics and probability, this is an ideal hands-on text for undergraduate and graduate students, as well as researchers in data-rich disciplines
Financial, Macro and Micro Econometrics Using R, Volume 42, provides state-of-the-art information on important topics in econometrics, including multivariate GARCH, stochastic frontiers, fractional responses, specification testing and model selection, exogeneity testing, causal analysis and forecasting, GMM models, asset bubbles and crises, corporate investments, classification, forecasting, nonstandard problems, cointegration, financial market jumps and co-jumps, among other topics.
The first part of this book discusses institutions and mechanisms of algorithmic trading, market microstructure, high-frequency data and stylized facts, time and event aggregation, order book dynamics, trading strategies and algorithms, transaction costs, market impact and execution strategies, risk analysis, and management. The second part covers market impact models, network models, multi-asset trading, machine learning techniques, and nonlinear filtering. The third part discusses electronic market making, liquidity, systemic risk, recent developments and debates on the subject.
The Handbook of U.S. Labor Statistics is recognized as an authoritative resource on the U.S. labor force. It continues and enhances the Bureau of Labor Statistics's (BLS) discontinued publication, Labor Statistics. It allows the user to understand recent developments as well as to compare today's economy with past history. This edition includes new tables on occupational safety and health and income in the United States. The Handbook is a comprehensive reference providing an abundance of data on a variety of topics including: *Employment and unemployment; *Earnings; *Prices; *Productivity; *Consumer expenditures; *Occupational safety and health; *Union membership; *Working poor *And much more! Features of the publication In addition to over 215 tables that present practical data, the Handbook provides: *Introductory material for each chapter that contains highlights of salient data and figures that call attention to noteworthy trends in the data *Notes and definitions, which contain concise descriptions of the data sources, concepts, definitions, and methodology from which the data are derived *References to more comprehensive reports which provide additional data and more extensive descriptions of estimation methods, sampling, and reliability measures
Suitable for statisticians, mathematicians, actuaries, and students interested in the problems of insurance and analysis of lifetimes, Statistical Methods with Applications to Demography and Life Insurance presents contemporary statistical techniques for analyzing life distributions and life insurance problems. It not only contains traditional material but also incorporates new problems and techniques not discussed in existing actuarial literature. The book mainly focuses on the analysis of an individual life and describes statistical methods based on empirical and related processes. Coverage ranges from analyzing the tails of distributions of lifetimes to modeling population dynamics with migrations. To help readers understand the technical points, the text covers topics such as the Stieltjes, Wiener, and Ito integrals. It also introduces other themes of interest in demography, including mixtures of distributions, analysis of longevity and extreme value theory, and the age structure of a population. In addition, the author discusses net premiums for various insurance policies. Mathematical statements are carefully and clearly formulated and proved while avoiding excessive technicalities as much as possible. The book illustrates how these statements help solve numerous statistical problems. It also includes more than 70 exercises.
"It's the economy, stupid," as Democratic strategist James Carville
would say. After many years of study, Ray C. Fair has found that
the state of the economy has a dominant influence on national
elections. Just in time for the 2012 presidential election, this
new edition of his classic text, "Predicting Presidential Elections
and Other Things," provides us with a look into the likely future
of our nation's political landscape--but Fair doesn't stop there.
Originally published in 1978. This book is designed to enable students on main courses in economics to comprehend literature which employs econometric techniques as a method of analysis, to use econometric techniques themselves to test hypotheses about economic relationships and to understand some of the difficulties involved in interpreting results. While the book is mainly aimed at second-year undergraduates undertaking courses in applied economics, its scope is sufficiently wide to take in students at postgraduate level who have no background in econometrics - it integrates fully the mathematical and statistical techniques used in econometrics with micro- and macroeconomic case studies.
The beginning of the age of artificial intelligence and machine learning has created new challenges and opportunities for data analysts, statisticians, mathematicians, econometricians, computer scientists and many others. At the root of these techniques are algorithms and methods for clustering and classifying different types of large datasets, including time series data. Time Series Clustering and Classification includes relevant developments on observation-based, feature-based and model-based traditional and fuzzy clustering methods, feature-based and model-based classification methods, and machine learning methods. It presents a broad and self-contained overview of techniques for both researchers and students. Features Provides an overview of the methods and applications of pattern recognition of time series Covers a wide range of techniques, including unsupervised and supervised approaches Includes a range of real examples from medicine, finance, environmental science, and more R and MATLAB code, and relevant data sets are available on a supplementary website
Pathwise estimation and inference for diffusion market models discusses contemporary techniques for inferring, from options and bond prices, the market participants' aggregate view on important financial parameters such as implied volatility, discount rate, future interest rate, and their uncertainty thereof. The focus is on the pathwise inference methods that are applicable to a sole path of the observed prices and do not require the observation of an ensemble of such paths. This book is pitched at the level of senior undergraduate students undertaking research at honors year, and postgraduate candidates undertaking Master's or PhD degree by research. From a research perspective, this book reaches out to academic researchers from backgrounds as diverse as mathematics and probability, econometrics and statistics, and computational mathematics and optimization whose interest lie in analysis and modelling of financial market data from a multi-disciplinary approach. Additionally, this book is also aimed at financial market practitioners participating in capital market facing businesses who seek to keep abreast with and draw inspiration from novel approaches in market data analysis. The first two chapters of the book contains introductory material on stochastic analysis and the classical diffusion stock market models. The remaining chapters discuss more special stock and bond market models and special methods of pathwise inference for market parameter for different models. The final chapter describes applications of numerical methods of inference of bond market parameters to forecasting of short rate. Nikolai Dokuchaev is an associate professor in Mathematics and Statistics at Curtin University. His research interests include mathematical and statistical finance, stochastic analysis, PDEs, control, and signal processing. Lin Yee Hin is a practitioner in the capital market facing industry. His research interests include econometrics, non-parametric regression, and scientific computing.
World Statistics on Mining and Utilities 2018 provides a unique biennial overview of the role of mining and utility activities in the world economy. This extensive resource from UNIDO provides detailed time series data on the level, structure and growth of international mining and utility activities by country and sector. Country level data is clearly presented on the number of establishments, employment and output of activities such as: coal, iron ore and crude petroleum mining as well as production and supply of electricity, natural gas and water. This unique and comprehensive source of information meets the growing demand of data users who require detailed and reliable statistical information on the primary industry and energy producing sectors. The publication provides internationally comparable data to economic researchers, development strategists and business communities who influence the policy of industrial development and its environmental sustainability.
Prepares readers to analyze data and interpret statistical results using the increasingly popular R more quickly than other texts through LessR extensions which remove the need to program. By introducing R through less R, readers learn how to organize data for analysis, read the data into R, and produce output without performing numerous functions and programming first. Readers can select the necessary procedure and change the relevant variables without programming. Quick Starts introduce readers to the concepts and commands reviewed in the chapters. Margin notes define, illustrate, and cross-reference the key concepts. When readers encounter a term previously discussed, the margin notes identify the page number to the initial introduction. Scenarios highlight the use of a specific analysis followed by the corresponding R/lessR input and an interpretation of the resulting output. Numerous examples of output from psychology, business, education, and other social sciences demonstrate how to interpret results and worked problems help readers test their understanding. www.lessRstats.com website features the lessR program, the book's 2 data sets referenced in standard text and SPSS formats so readers can practice using R/lessR by working through the text examples and worked problems, PDF slides for each chapter, solutions to the book's worked problems, links to R/lessR videos to help readers better understand the program, and more. New to this edition: o upgraded functionality and data visualizations of the lessR package, which is now aesthetically equal to the ggplot 2 R standard o new features to replace and extend previous content, such as aggregating data with pivot tables with a simple lessR function call.
Modern marketing managers need intuitive and effective tools not just for designing strategies but also for general management. This hands-on book introduces a range of contemporary management and marketing tools and concepts with a focus on forecasting, creating stimulating processes, and implementation. Topics addressed range from creating a clear vision, setting goals, and developing strategies, to implementing strategic analysis tools, consumer value models, budgeting, strategic and operational marketing plans. Special attention is paid to change management and digital transformation in the marketing landscape. Given its approach and content, the book offers a valuable asset for all professionals and advanced MBA students looking for 'real-life' tools and applications.
Originating in economics but now used in a variety of disciplines, including medicine, epidemiology and the social sciences, this book provides accessible coverage of the theoretical foundations of the Logit model as well as its applications to concrete problems. It is written not only for economists but for researchers working in disciplines where it is necessary to model qualitative random variables. J.S. Cramer has also provided data sets on which to practice Logit analysis.
This book is based on two Sir Richard Stone lectures at the Bank of England and the National Institute for Economic and Social Research. Largely non-technical, the first part of the book covers some of the broader issues involved in Stone's and others' work in statistics. It explores the more philosophical issues attached to statistics, econometrics and forecasting and describes the paradigm shift back to the Bayesian approach to scientific inference. The first part concludes with simple examples from the different worlds of educational management and golf clubs. The second, more technical part covers in detail the structural econometric time series analysis (SEMTSA) approach to statistical and econometric modeling.
Introduction to Financial Mathematics: Option Valuation, Second Edition is a well-rounded primer to the mathematics and models used in the valuation of financial derivatives. The book consists of fifteen chapters, the first ten of which develop option valuation techniques in discrete time, the last five describing the theory in continuous time. The first half of the textbook develops basic finance and probability. The author then treats the binomial model as the primary example of discrete-time option valuation. The final part of the textbook examines the Black-Scholes model. The book is written to provide a straightforward account of the principles of option pricing and examines these principles in detail using standard discrete and stochastic calculus models. Additionally, the second edition has new exercises and examples, and includes many tables and graphs generated by over 30 MS Excel VBA modules available on the author's webpage https://home.gwu.edu/~hdj/.
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath-Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of stochastic processes with continuous and discontinuous paths. It also covers a wide selection of popular models in finance and insurance, from Black-Scholes to stochastic volatility to interest rate to dynamic mortality. Through its many numerical and graphical illustrations and simple, insightful examples, this book provides a deep understanding of the scope of Monte Carlo methods and their use in various financial situations. The intuitive presentation encourages readers to implement and further develop the simulation methods.
Advanced Statistics for Kinesiology and Exercise Science is the first textbook to cover advanced statistical methods in the context of the study of human performance. Divided into three distinct sections, the book introduces and explores in depth both analysis of variance (ANOVA) and regressions analyses, including chapters on: preparing data for analysis; one-way, factorial, and repeated-measures ANOVA; analysis of covariance and multiple analyses of variance and covariance; diagnostic tests; regression models for quantitative and qualitative data; model selection and validation; logistic regression Drawing clear lines between the use of IBM SPSS Statistics software and interpreting and analyzing results, and illustrated with sport and exercise science-specific sample data and results sections throughout, the book offers an unparalleled level of detail in explaining advanced statistical techniques to kinesiology students. Advanced Statistics for Kinesiology and Exercise Science is an essential text for any student studying advanced statistics or research methods as part of an undergraduate or postgraduate degree programme in kinesiology, sport and exercise science, or health science.
Originally published in 1978. This book is designed to enable students on main courses in economics to comprehend literature which employs econometric techniques as a method of analysis, to use econometric techniques themselves to test hypotheses about economic relationships and to understand some of the difficulties involved in interpreting results. While the book is mainly aimed at second-year undergraduates undertaking courses in applied economics, its scope is sufficiently wide to take in students at postgraduate level who have no background in econometrics - it integrates fully the mathematical and statistical techniques used in econometrics with micro- and macroeconomic case studies.
There is no shortage of incentives to study and reduce poverty in our societies. Poverty is studied in economics and political sciences, and population surveys are an important source of information about it. The design and analysis of such surveys is principally a statistical subject matter and the computer is essential for their data compilation and processing. Focusing on The European Union Statistics on Income and Living Conditions (EU-SILC), a program of annual national surveys which collect data related to poverty and social exclusion, Statistical Studies of Income, Poverty and Inequality in Europe: Computing and Graphics in R presents a set of statistical analyses pertinent to the general goals of EU-SILC. The contents of the volume are biased toward computing and statistics, with reduced attention to economics, political and other social sciences. The emphasis is on methods and procedures as opposed to results, because the data from annual surveys made available since publication and in the near future will degrade the novelty of the data used and the results derived in this volume. The aim of this volume is not to propose specific methods of analysis, but to open up the analytical agenda and address the aspects of the key definitions in the subject of poverty assessment that entail nontrivial elements of arbitrariness. The presented methods do not exhaust the range of analyses suitable for EU-SILC, but will stimulate the search for new methods and adaptation of established methods that cater to the identified purposes.
Originally published in 1970; with a second edition in 1989. Empirical Bayes methods use some of the apparatus of the pure Bayes approach, but an actual prior distribution is assumed to generate the data sequence. It can be estimated thus producing empirical Bayes estimates or decision rules. In this second edition, details are provided of the derivation and the performance of empirical Bayes rules for a variety of special models. Attention is given to the problem of assessing the goodness of an empirical Bayes estimator for a given set of prior data. Chapters also focus on alternatives to the empirical Bayes approach and actual applications of empirical Bayes methods.
Originally published in 1929. This balanced combination of fieldwork, statistical measurement, and realistic applications shows a synthesis of economics and political science in a conception of an organic relationship between the two sciences that involves functional analysis, institutional interpretation, and a more workmanlike approach to questions of organization such as division of labour and the control of industry. The treatise applies the test of fact through statistical analysis to economic and political theories for the quantitative and institutional approach in solving social and industrial problems. It constructs a framework of concepts, combining both economic and political theory, to systematically produce an original statement in general terms of the principles and methods for statistical fieldwork. The separation into Parts allows selective reading for the methods of statistical measurement; the principles and fallacies of applying these measures to economic and political fields; and the resultant construction of a statistical economics and politics. Basic statistical concepts are described for application, with each method of statistical measurement illustrated with instances relevant to the economic and political theory discussed and a statistical glossary is included.
In order to make informed decisions, there are three important elements: intuition, trust, and analytics. Intuition is based on experiential learning and recent research has shown that those who rely on their "gut feelings" may do better than those who don't. Analytics, however, are important in a data-driven environment to also inform decision making. The third element, trust, is critical for knowledge sharing to take place. These three elements-intuition, analytics, and trust-make a perfect combination for decision making. This book gathers leading researchers who explore the role of these three elements in the process of decision-making.
Originally published in 1985. Mathematical methods and models to facilitate the understanding of the processes of economic dynamics and prediction were refined considerably over the period before this book was written. The field had grown; and many of the techniques involved became extremely complicated. Areas of particular interest include optimal control, non-linear models, game-theoretic approaches, demand analysis and time-series forecasting. This book presents a critical appraisal of developments and identifies potentially productive new directions for research. It synthesises work from mathematics, statistics and economics and includes a thorough analysis of the relationship between system understanding and predictability. |
![]() ![]() You may like...
The Jew's Daughter - A Cultural History…
Efraim Sicher
Hardcover
|