![]()  | 
		
			 Welcome to Loot.co.za!  
				Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
			 | 
		
 Your cart is empty  | 
	||
| 
				 Books > Business & Economics > Economics > Econometrics > Economic statistics 
 Today, public conversations are increasingly driven by numbers. Although charts, infographics, and diagrams can make us wiser, they can also deceive-intentionally or unintentionally. To be informed citizens, we must all be able to decode and use the visual information that politicians, journalists and even our employers present to us each day. How Charts Lie examines contemporary examples ranging from election result infographics to global GDP maps and box office record charts, demystifying an essential new literacy for our data-driven world. * With a new afterword on the reporting of the Covid-19 statistics. 
 In-depth coverage of discrete-time theory and methodology. Numerous, fully worked out examples and exercises in every chapter. Mathematically rigorous and consistent yet bridging various basic and more advanced concepts. Judicious balance of financial theory, mathematical, and computational methods. Guide to Material. 
 
This book has become one of the main statistical tools for the
analysis of economic and financial data. Designed for both
theoreticians and practitioners, this book provides a comprehensive
treatment of GMM estimation and inference. All the main statistical
results are discussed intuitively and proved formally, and all the
inference techniques are illustrated using empirical examples in
macroeconomics and finance. This book is the first to provide an
intuitive introduction to the method combined with a unified
treatment of GMM statistical theory and a survey of recent
important developments in the field.  
 Dependence Modeling with Copulas covers the substantial advances that have taken place in the field during the last 15 years, including vine copula modeling of high-dimensional data. Vine copula models are constructed from a sequence of bivariate copulas. The book develops generalizations of vine copula models, including common and structured factor models that extend from the Gaussian assumption to copulas. It also discusses other multivariate constructions and parametric copula families that have different tail properties and presents extensive material on dependence and tail properties to assist in copula model selection. The author shows how numerical methods and algorithms for inference and simulation are important in high-dimensional copula applications. He presents the algorithms as pseudocode, illustrating their implementation for high-dimensional copula models. He also incorporates results to determine dependence and tail properties of multivariate distributions for future constructions of copula models. 
 Exotic Betting at the Racetrack is unique as it covers the efficient-inefficient strategy to price and find profitable racetrack bets, along with handicapping that provides actual bets made by the author on essentially all of the major wagers offered at US racetracks. The book starts with efficiency, accuracy of the win odds, arbitrage, and optimal betting strategies. Examples and actual bets are shown for various wagers including win, place and show, exacta, quinella, double, trifecta, superfecta, Pick 3, 4 and 6 and rainbow pick 5 and 6. There are discussions of major races including the Breeders' Cup, Pegasus, Dubai World Cup and the US Triple Crown from 2012-2018. Dosage analysis is also described and used. An additional feature concerns great horses such as the great mares Rachel Alexandra, Zenyatta, Goldikova, Treve, Beholder and Song Bird. There is a discussion of horse ownership and a tour through arguably the world's top trainer Frederico Tesio and his stables and horses in Italy.Related Link(s) 
 Medicine Price Surveys, Analyses and Comparisons establishes guidelines for the study and implementation of pharmaceutical price surveys, analyses, and comparisons. Its contributors evaluate price survey literature, discuss the accessibility and reliability of data sources, and provide a checklist and training kit on conducting price surveys, analyses, and comparisons. Their investigations survey price studies while accounting for the effects of methodologies and explaining regional differences in medicine prices. They also consider policy objectives such as affordable access to medicines and cost-containment as well as options for improving the effectiveness of policies. 
 Military organizations around the world are normally huge producers and consumers of data. Accordingly, they stand to gain from the many benefits associated with data analytics. However, for leaders in defense organizations-either government or industry-accessible use cases are not always available. This book presents a diverse collection of cases that explore the realm of possibilities in military data analytics. These use cases explore such topics as: Context for maritime situation awareness Data analytics for electric power and energy applications Environmental data analytics in military operations Data analytics and training effectiveness evaluation Harnessing single board computers for military data analytics Analytics for military training in virtual reality environments A chapter on using single board computers explores their application in a variety of domains, including wireless sensor networks, unmanned vehicles, and cluster computing. The investigation into a process for extracting and codifying expert knowledge provides a practical and useful model for soldiers that can support diagnostics, decision making, analysis of alternatives, and myriad other analytical processes. Data analytics is seen as having a role in military learning, and a chapter in the book describes the ongoing work with the United States Army Research Laboratory to apply data analytics techniques to the design of courses, evaluation of individual and group performances, and the ability to tailor the learning experience to achieve optimal learning outcomes in a minimum amount of time. Another chapter discusses how virtual reality and analytics are transforming training of military personnel. Virtual reality and analytics are also transforming monitoring, decision making, readiness, and operations. Military Applications of Data Analytics brings together a collection of technical and application-oriented use cases. It enables decision makers and technologists to make connections between data analytics and such fields as virtual reality and cognitive science that are driving military organizations around the world forward. 
 This book presents a unique collection of contributions on modern topics in statistics and econometrics, written by leading experts in the respective disciplines and their intersections. It addresses nonparametric statistics and econometrics, quantiles and expectiles, and advanced methods for complex data, including spatial and compositional data, as well as tools for empirical studies in economics and the social sciences. The book was written in honor of Christine Thomas-Agnan on the occasion of her 65th birthday. Given its scope, it will appeal to researchers and PhD students in statistics and econometrics alike who are interested in the latest developments in their field. 
 This comprehensive book is an introduction to multilevel Bayesian models in R using brms and the Stan programming language. Featuring a series of fully worked analyses of repeated-measures data, focus is placed on active learning through the analyses of the progressively more complicated models presented throughout the book. In this book, the authors offer an introduction to statistics entirely focused on repeated measures data beginning with very simple two-group comparisons and ending with multinomial regression models with many 'random effects'. Across 13 well-structured chapters, readers are provided with all the code necessary to run all the analyses and make all the plots in the book, as well as useful examples of how to interpret and write-up their own analyses. This book provides an accessible introduction for readers in any field, with any level of statistical background. Senior undergraduate students, graduate students, and experienced researchers looking to 'translate' their skills with more traditional models to a Bayesian framework, will benefit greatly from the lessons in this text. 
 This textbook introduces readers to practical statistical issues by presenting them within the context of real-life economics and business situations. It presents the subject in a non-threatening manner, with an emphasis on concise, easily understandable explanations. It has been designed to be accessible and student-friendly and, as an added learning feature, provides all the relevant data required to complete the accompanying exercises and computing problems, which are presented at the end of each chapter. It also discusses index numbers and inequality indices in detail, since these are of particular importance to students and commonly omitted in textbooks. Throughout the text it is assumed that the student has no prior knowledge of statistics. It is aimed primarily at business and economics undergraduates, providing them with the basic statistical skills necessary for further study of their subject. However, students of other disciplines will also find it relevant. 
 Self-contained chapters on the most important applications and methodologies in finance, which can easily be used for the reader’s research or as a reference for courses on empirical finance. Each chapter is reproducible in the sense that the reader can replicate every single figure, table, or number by simply copy-pasting the code we provide. A full-fledged introduction to machine learning with tidymodels based on tidy principles to show how factor selection and option pricing can benefit from Machine Learning methods. Chapter 2 on accessing & managing financial data shows how to retrieve and prepare the most important datasets in the field of financial economics: CRSP and Compustat. The chapter also contains detailed explanations of the most important data characteristics. Each chapter provides exercises that are based on established lectures and exercise classes and which are designed to help students to dig deeper. The exercises can be used for self-studying or as source of inspiration for teaching exercises. 
 Essentials of Time Series for Financial Applications serves as an agile reference for upper level students and practitioners who desire a formal, easy-to-follow introduction to the most important time series methods applied in financial applications (pricing, asset management, quant strategies, and risk management). Real-life data and examples developed with EViews illustrate the links between the formal apparatus and the applications. The examples either directly exploit the tools that EViews makes available or use programs that by employing EViews implement specific topics or techniques. The book balances a formal framework with as few proofs as possible against many examples that support its central ideas. Boxes are used throughout to remind readers of technical aspects and definitions and to present examples in a compact fashion, with full details (workout files) available in an on-line appendix. The more advanced chapters provide discussion sections that refer to more advanced textbooks or detailed proofs. 
 Operation Research methods are often used in every field of modern life like industry, economy and medicine. The authors have compiled of the latest advancements in these methods in this volume comprising some of what is considered the best collection of these new approaches. These can be counted as a direct shortcut to what you may search for. This book provides useful applications of the new developments in OR written by leading scientists from some international universities. Another volume about exciting applications of Operations Research is planned in the near future. We hope you enjoy and benefit from this series! 
 Features Accessible to readers with a basic background in probability and statistics Covers fundamental concepts of experimental design and cause-effect relationships Introduces classical ANOVA models, including contrasts and multiple testing Provides an example-based introduction to mixed models Features basic concepts of split-plot and incomplete block designs R code available for all steps Supplementary website with additional resources and updates 
 The second book in a set of ten on quantitative finance for practitioners Presents the theory needed to better understand applications Supplements previous training in mathematics Built from the author's four decades of experience in industry, research, and teaching 
 The second book in a set of ten on quantitative finance for practitioners Presents the theory needed to better understand applications Supplements previous training in mathematics Built from the author's four decades of experience in industry, research, and teaching 
 The book describes the theoretical principles of nonstatistical methods of data analysis but without going deep into complex mathematics. The emphasis is laid on presentation of solved examples of real data either from authors' laboratories or from open literature. The examples cover wide range of applications such as quality assurance and quality control, critical analysis of experimental data, comparison of data samples from various sources, robust linear and nonlinear regression as well as various tasks from financial analysis. The examples are useful primarily for chemical engineers including analytical/quality laboratories in industry, designers of chemical and biological processes. Features: Exclusive title on Mathematical Gnostics with multidisciplinary applications, and specific focus on chemical engineering. Clarifies the role of data space metrics including the right way of aggregation of uncertain data. Brings a new look on the data probability, information, entropy and thermodynamics of data uncertainty. Enables design of probability distributions for all real data samples including smaller ones. Includes data for examples with solutions with exercises in R or Python. The book is aimed for Senior Undergraduate Students, Researchers, and Professionals in Chemical/Process Engineering, Engineering Physics, Stats, Mathematics, Materials, Geotechnical, Civil Engineering, Mining, Sales, Marketing and Service, and Finance. 
 
 Features Accessible to readers with a basic background in probability and statistics Covers fundamental concepts of experimental design and cause-effect relationships Introduces classical ANOVA models, including contrasts and multiple testing Provides an example-based introduction to mixed models Features basic concepts of split-plot and incomplete block designs R code available for all steps Supplementary website with additional resources and updates 
 This study examines the determinants of current account, export market share and exchange rates. The author identifies key determinants using Bayesian Model Averaging, which allows evaluation of probability that each variable is in fact a determinant of the analysed competitiveness measure. The main implication of the results presented in the study is that increasing international competitiveness is a gradual process that requires institutional and technological changes rather than short-term adjustments in relative prices. 
 Getting Data Science Done outlines the essential stages in running successful data science projects-providing comprehensive guidelines to help you identify potential issues and then a range of strategies for mitigating them. Data science is a field that synthesizes statistics, computer science and business analytics to deliver results that can impact almost any type of process or organization. Data science is also an evolving technical discipline, whose practice is full of pitfalls and potential problems for managers, stakeholders and practitioners. Many organizations struggle to consistently deliver results with data science due to a wide range of issues, including knowledge barriers, problem framing, organizational change and integration with IT and engineering. Getting Data Science Done outlines the essential stages in running successful data science projects. The book provides comprehensive guidelines to help you identify potential issues and then a range of strategies for mitigating them. The book is organized as a sequential process allowing the reader to work their way through a project from an initial idea all the way to a deployed and integrated product. 
 In this monograph the authors give a systematic approach to the probabilistic properties of the fixed point equation X=AX+B. A probabilistic study of the stochastic recurrence equation X_t=A_tX_{t-1}+B_t for real- and matrix-valued random variables A_t, where (A_t,B_t) constitute an iid sequence, is provided. The classical theory for these equations, including the existence and uniqueness of a stationary solution, the tail behavior with special emphasis on power law behavior, moments and support, is presented. The authors collect recent asymptotic results on extremes, point processes, partial sums (central limit theory with special emphasis on infinite variance stable limit theory), large deviations, in the univariate and multivariate cases, and they further touch on the related topics of smoothing transforms, regularly varying sequences and random iterative systems. The text gives an introduction to the Kesten-Goldie theory for stochastic recurrence equations of the type X_t=A_tX_{t-1}+B_t. It provides the classical results of Kesten, Goldie, Guivarc'h, and others, and gives an overview of recent results on the topic. It presents the state-of-the-art results in the field of affine stochastic recurrence equations and shows relations with non-affine recursions and multivariate regular variation. 
 A unique and comprehensive source of information, the International Yearbook of Industrial Statistics is the only international publication providing economists, planners, policymakers and business people with worldwide statistics on current performance and trends in the manufacturing sector.Covering more than 120 countries/areas, the 1996 edition of the Yearbook contains data which are internationally comparable and much more detailed in industrial classification than those supplied in previous publications. This is the second issue of the annual publication which succeeds the UNIDO's Handbook of Industrial Statistics and, at the same time, replaces the United Nation's Industrial Statistics Yearbook, volume I (General Industrial Statistics). Information has been collected directly from national statistical sources and supplemented with estimates by UNIDO. The Yearbook is designed to facilitate international comparisons relating to manufacturing activity and industrial performance. It provides data which can be used to analyse patterns of growth, structural change and industrial performance in individual industries. Data on employment trends, wages and other key indicators are also presented. Finally, the detailed information presented here enables the user to study different aspects of industry which was not possible using the aggregate data previously available. 
 Today econometrics has been widely applied in the empirical study of economics. As an empirical science, econometrics uses rigorous mathematical and statistical methods for economic problems. Understanding the methodologies of both econometrics and statistics is a crucial departure for econometrics. The primary focus of this book is to provide an understanding of statistical properties behind econometric methods. Following the introduction in Chapter 1, Chapter 2 provides the methodological review of both econometrics and statistics in different periods since the 1930s. Chapters 3 and 4 explain the underlying theoretical methodologies for estimated equations in the simple regression and multiple regression models and discuss the debates about p-values in particular. This part of the book offers the reader a richer understanding of the methods of statistics behind the methodology of econometrics. Chapters 5-9 of the book are focused on the discussion of regression models using time series data, traditional causal econometric models, and the latest statistical techniques. By concentrating on dynamic structural linear models like state-space models and the Bayesian approach, the book alludes to the fact that this methodological study is not only a science but also an art. This work serves as a handy reference book for anyone interested in econometrics, particularly in relevance to students and academic and business researchers in all quantitative analysis fields. 
 It is well-known that modern stochastic calculus has been exhaustively developed under usual conditions. Despite such a well-developed theory, there is evidence to suggest that these very convenient technical conditions cannot necessarily be fulfilled in real-world applications. Optional Processes: Theory and Applications seeks to delve into the existing theory, new developments and applications of optional processes on "unusual" probability spaces. The development of stochastic calculus of optional processes marks the beginning of a new and more general form of stochastic analysis. This book aims to provide an accessible, comprehensive and up-to-date exposition of optional processes and their numerous properties. Furthermore, the book presents not only current theory of optional processes, but it also contains a spectrum of applications to stochastic differential equations, filtering theory and mathematical finance. Features Suitable for graduate students and researchers in mathematical finance, actuarial science, applied mathematics and related areas Compiles almost all essential results on the calculus of optional processes in unusual probability spaces Contains many advanced analytical results for stochastic differential equations and statistics pertaining to the calculus of optional processes Develops new methods in finance based on optional processes such as a new portfolio theory, defaultable claim pricing mechanism, etc.  | 
			
				
	 
 
You may like...
	
	
	
		
			
				Organizational Behavior and Theory in…
			
			
		
	
	 
	
	
	
		
			Kenneth L Johnson, Stephen L. Walston
		
		Hardcover
		
		
			
				
				
				
				
				
					 
	
  |