![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Business & Economics > Economics > Econometrics > Economic statistics
Delivering cutting-edge coverage that includes the latest thinking and practices from the field, QUALITY AND PERFORMANCE EXCELLENCE, 8e presents the basic principles and tools associated with quality and performance excellence. Packed with relevant, real-world examples, the text thoroughly illustrates how these principles and methods have been put into effect in a variety of organizations. It also highlights the relationship between basic principles and the popular theories and models studied in management courses. The eighth edition reflects the 2015-16 Baldrige criteria and includes new boxed features, experiential exercises, and up-to-date case studies that give you practical experience working with real-world issues. Many cases focus on large and small companies in manufacturing and service industries in North and South America, Europe, and Asia-Pacific. In addition, chapters now open with a "Performance Excellence Profile" highlighting a recent Baldrige recipient.
Statistics is used in two senses, singular and plural. In the singular, it concerns with the whole subject of statistics, as a branch of knowledge. In the plural sense, it relates to the numerical facts, data gathered systematically with some definite object in view. Thus, Statistics is the science, which deals with the collection, analysis and interpretation of data. An understanding of the logic and theory of statistics is essential for the students of agriculture who are expected to know the technique of analyzing numerical data and drawing useful conclusions. It is the intention of the author to keep the practical manual at a readability level at appropriate for students who do not have a mathematical background. This book has been prepared for the students and teachers as well to acquaint the basic concepts of statistical principles and procedures of calculations as per the syllabi of 5th Dean's committee of ICAR for undergraduate courses in agriculture and allied sciences.
The present book has been well prepared to meet the requirements of the students of Animal and Veterinary Science, Animal Biotechnology and other related fields. The book will serve as a text book not only for students in Veterinary science but also for those who want to know "What statistics in all about" or who need to be familiar with at least the language and fundamental concepts of statistics. The book will serve well to build necessary background for those who will take more advanced courses in statistics including the specialized applications. The salient features are: The book has been designed in accordance with the new VCI syllabus, 2016 (MSVE-2016). The book will be very useful for students of SAU's/ICAR institutes and those preparing for JRF/SRF/various competitive examinations. Each chapter of this book contains complete self explanatory theory and a fairly number of solved examples. Solved examples for each topic are given in an elegant and more interesting way to make the users understand them easily. Subject matter has been explained in a simple way that the students can easily understand and feel encouraged to solve questions themselves given in unsolved problems.
The chapters in this book describe various aspects of the application of statistical methods in finance. It will interest and attract statisticians to this area, illustrate some of the many ways that statistical tools are used in financial applications, and give some indication of problems which are still outstanding. The statisticians will be stimulated to learn more about the kinds of models and techniques outlined in the book - both the domain of finance and the science of statistics will benefit from increased awareness by statisticians of the problems, models, and techniques applied in financial applications. For this reason, extensive references are given. The level of technical detail varies between the chapters. Some present broad non-technical overviews of an area, while others describe the mathematical niceties. This illustrates both the range of possibilities available in the area for statisticians, while simultaneously giving a flavour of the different kinds of mathematical and statistical skills required. Whether you favour data analysis or mathematical manipulation, if you are a statistician there are problems in finance which are appropriate to your skills.
This volume in Advances in Econometrics showcases fresh methodological and empirical research on the econometrics of networks. Comprising both theoretical, empirical and policy papers, the authors bring together a wide range of perspectives to facilitate a dialogue between academics and practitioners for better understanding this groundbreaking field and its role in policy discussions. This edited collection includes thirteen chapters which covers various topics such as identification of network models, network formation, networks and spatial econometrics and applications of financial networks. Readers can also learn about network models with different types of interactions, sample selection in social networks, trade networks, stochastic dynamic programming in space, spatial panels, survival and networks, financial contagion, spillover effects, interconnectedness on consumer credit markets and a financial risk meter. The topics covered in the book, centered on the econometrics of data and models, are a valuable resource for graduate students and researchers in the field. The collection is also useful for industry professionals and data scientists due its focus on theoretical and applied works.
'A manual for the 21st-century citizen... accessible, refreshingly critical, relevant and urgent' - Financial Times 'Fascinating and deeply disturbing' - Yuval Noah Harari, Guardian Books of the Year In this New York Times bestseller, Cathy O'Neil, one of the first champions of algorithmic accountability, sounds an alarm on the mathematical models that pervade modern life -- and threaten to rip apart our social fabric. We live in the age of the algorithm. Increasingly, the decisions that affect our lives - where we go to school, whether we get a loan, how much we pay for insurance - are being made not by humans, but by mathematical models. In theory, this should lead to greater fairness: everyone is judged according to the same rules, and bias is eliminated. And yet, as Cathy O'Neil reveals in this urgent and necessary book, the opposite is true. The models being used today are opaque, unregulated, and incontestable, even when they're wrong. Most troubling, they reinforce discrimination. Tracing the arc of a person's life, O'Neil exposes the black box models that shape our future, both as individuals and as a society. These "weapons of math destruction" score teachers and students, sort CVs, grant or deny loans, evaluate workers, target voters, and monitor our health. O'Neil calls on modellers to take more responsibility for their algorithms and on policy makers to regulate their use. But in the end, it's up to us to become more savvy about the models that govern our lives. This important book empowers us to ask the tough questions, uncover the truth, and demand change.
A classic text for accuracy and statistical precision. Statistics for Business and Economics enables readers to conduct serious analysis of applied problems rather than running simple "canned" applications. This text is also at a mathematically higher level than most business statistics texts and provides readers with the knowledge they need to become stronger analysts for future managerial positions. The eighth edition of this book has been revised and updated to provide readers with improved problem contexts for learning how statistical methods can improve their analysis and understanding of business and economics.
This book analyzes the following four distinct, although not dissimilar, areas of social choice theory and welfare economics: nonstrategic choice, Harsanyi's aggregation theorems, distributional ethics and strategic choice. While for aggregation of individual ranking of social states, whether the persons behave strategically or non-strategically, the decision making takes place under complete certainty; in the Harsanyi framework uncertainty has a significant role in the decision making process. Another ingenious characteristic of the book is the discussion of ethical approaches to evaluation of inequality arising from unequal distributions of achievements in the different dimensions of human well-being. Given its wide coverage, combined with newly added materials, end-chapter problems and bibliographical notes, the book will be helpful material for students and researchers interested in this frontline area research. Its lucid exposition, along with non-technical and graphical illustration of the concepts, use of numerical examples, makes the book a useful text.
Factor Analysis and Dimension Reduction in R provides coverage, with worked examples, of a large number of dimension reduction procedures along with model performance metrics to compare them. Factor analysis in the form of principal components analysis (PCA) or principal factor analysis (PFA) is familiar to most social scientists. However, what is less familiar is understanding that factor analysis is a subset of the more general statistical family of dimension reduction methods. The social scientist's toolkit for factor analysis problems can be expanded to include the range of solutions this book presents. In addition to covering FA and PCA with orthogonal and oblique rotation, this book's coverage includes higher-order factor models, bifactor models, models based on binary and ordinal data, models based on mixed data, generalized low-rank models, cluster analysis with GLRM, models involving supplemental variables or observations, Bayesian factor analysis, regularized factor analysis, testing for unidimensionality, and prediction with factor scores. The second half of the book deals with other procedures for dimension reduction. These include coverage of kernel PCA, factor analysis with multidimensional scaling, locally linear embedding models, Laplacian eigenmaps, diffusion maps, force directed methods, t-distributed stochastic neighbor embedding, independent component analysis (ICA), dimensionality reduction via regression (DRR), non-negative matrix factorization (NNMF), Isomap, Autoencoder, uniform manifold approximation and projection (UMAP) models, neural network models, and longitudinal factor analysis models. In addition, a special chapter covers metrics for comparing model performance. Features of this book include: Numerous worked examples with replicable R code Explicit comprehensive coverage of data assumptions Adaptation of factor methods to binary, ordinal, and categorical data Residual and outlier analysis Visualization of factor results Final chapters that treat integration of factor analysis with neural network and time series methods Presented in color with R code and introduction to R and RStudio, this book will be suitable for graduate-level and optional module courses for social scientists, and on quantitative methods and multivariate statistics courses.
Volume 40 in the Advances in Econometrics series features twenty-three chapters that are split thematically into two parts. Part A presents novel contributions to the analysis of time series and panel data with applications in macroeconomics, finance, cognitive science and psychology, neuroscience, and labor economics. Part B examines innovations in stochastic frontier analysis, nonparametric and semiparametric modeling and estimation, A/B experiments, big-data analysis, and quantile regression. Individual chapters, written by both distinguished researchers and promising young scholars, cover many important topics in statistical and econometric theory and practice. Papers primarily, though not exclusively, adopt Bayesian methods for estimation and inference, although researchers of all persuasions should find considerable interest in the chapters contained in this work. The volume was prepared to honor the career and research contributions of Professor Dale J. Poirier. For researchers in econometrics, this volume includes the most up-to-date research across a wide range of topics.
The book focuses on problem solving for practitioners and model building for academicians under multivariate situations. This book helps readers in understanding the issues, such as knowing variability, extracting patterns, building relationships, and making objective decisions. A large number of multivariate statistical models are covered in the book. The readers will learn how a practical problem can be converted to a statistical problem and how the statistical solution can be interpreted as a practical solution. Key features: Links data generation process with statistical distributions in multivariate domain Provides step by step procedure for estimating parameters of developed models Provides blueprint for data driven decision making Includes practical examples and case studies relevant for intended audiences The book will help everyone involved in data driven problem solving, modeling and decision making.
Volume 40 in the Advances in Econometrics series features twenty-three chapters that are split thematically into two parts. Part A presents novel contributions to the analysis of time series and panel data with applications in macroeconomics, finance, cognitive science and psychology, neuroscience, and labor economics. Part B examines innovations in stochastic frontier analysis, nonparametric and semiparametric modeling and estimation, A/B experiments, big-data analysis, and quantile regression. Individual chapters, written by both distinguished researchers and promising young scholars, cover many important topics in statistical and econometric theory and practice. Papers primarily, though not exclusively, adopt Bayesian methods for estimation and inference, although researchers of all persuasions should find considerable interest in the chapters contained in this work. The volume was prepared to honor the career and research contributions of Professor Dale J. Poirier. For researchers in econometrics, this volume includes the most up-to-date research across a wide range of topics.
Statistical Programming in SAS Second Edition provides a foundation for programming to implement statistical solutions using SAS, a system that has been used to solve data analytic problems for more than 40 years. The author includes motivating examples to inspire readers to generate programming solutions. Upper-level undergraduates, beginning graduate students, and professionals involved in generating programming solutions for data-analytic problems will benefit from this book. The ideal background for a reader is some background in regression modeling and introductory experience with computer programming. The coverage of statistical programming in the second edition includes Getting data into the SAS system, engineering new features, and formatting variables Writing readable and well-documented code Structuring, implementing, and debugging programs that are well documented Creating solutions to novel problems Combining data sources, extracting parts of data sets, and reshaping data sets as needed for other analyses Generating general solutions using macros Customizing output Producing insight-inspiring data visualizations Parsing, processing, and analyzing text Programming solutions using matrices and connecting to R Processing text Programming with matrices Connecting SAS with R Covering topics that are part of both base and certification exams.
Time Series: A First Course with Bootstrap Starter provides an introductory course on time series analysis that satisfies the triptych of (i) mathematical completeness, (ii) computational illustration and implementation, and (iii) conciseness and accessibility to upper-level undergraduate and M.S. students. Basic theoretical results are presented in a mathematically convincing way, and the methods of data analysis are developed through examples and exercises parsed in R. A student with a basic course in mathematical statistics will learn both how to analyze time series and how to interpret the results. The book provides the foundation of time series methods, including linear filters and a geometric approach to prediction. The important paradigm of ARMA models is studied in-depth, as well as frequency domain methods. Entropy and other information theoretic notions are introduced, with applications to time series modeling. The second half of the book focuses on statistical inference, the fitting of time series models, as well as computational facets of forecasting. Many time series of interest are nonlinear in which case classical inference methods can fail, but bootstrap methods may come to the rescue. Distinctive features of the book are the emphasis on geometric notions and the frequency domain, the discussion of entropy maximization, and a thorough treatment of recent computer-intensive methods for time series such as subsampling and the bootstrap. There are more than 600 exercises, half of which involve R coding and/or data analysis. Supplements include a website with 12 key data sets and all R code for the book's examples, as well as the solutions to exercises.
How the obsession with quantifying human performance threatens business, medicine, education, government-and the quality of our lives Today, organizations of all kinds are ruled by the belief that the path to success is quantifying human performance, publicizing the results, and dividing up the rewards based on the numbers. But in our zeal to instill the evaluation process with scientific rigor, we've gone from measuring performance to fixating on measuring itself-and this tyranny of metrics now threatens the quality of our organizations and lives. In this brief, accessible, and powerful book, Jerry Muller uncovers the damage metrics are causing and shows how we can begin to fix the problem. Filled with examples from business, medicine, education, government, and other fields, the book explains why paying for measured performance doesn't work, why surgical scorecards may increase deaths, and much more. But Muller also shows that, when used as a complement to judgment based on personal experience, metrics can be beneficial, and he includes an invaluable checklist of when and how to use them. The result is an essential corrective to a harmful trend that increasingly affects us all.
A unique and comprehensive source of information, this book is the only international publication providing economists, planners, policymakers and business people with worldwide statistics on current performance and trends in the manufacturing sector. The Yearbook is designed to facilitate international comparisons relating to manufacturing activity and industrial development and performance. It provides data which can be used to analyse patterns of growth and related long term trends, structural change and industrial performance in individual industries. Statistics on employment patterns, wages, consumption and gross output and other key indicators are also presented.
Advanced and Multivariate Statistical Methods, Seventh Edition provides conceptual and practical information regarding multivariate statistical techniques to students who do not necessarily need technical and/or mathematical expertise in these methods. This text has three main purposes. The first purpose is to facilitate conceptual understanding of multivariate statistical methods by limiting the technical nature of the discussion of those concepts and focusing on their practical applications. The second purpose is to provide students with the skills necessary to interpret research articles that have employed multivariate statistical techniques. Finally, the third purpose of AMSM is to prepare graduate students to apply multivariate statistical methods to the analysis of their own quantitative data or that of their institutions. New to the Seventh Edition All references to SPSS have been updated to Version 27.0 of the software. A brief discussion of practical significance has been added to Chapter 1. New data sets have now been incorporated into the book and are used extensively in the SPSS examples. All the SPSS data sets utilized in this edition are available for download via the companion website. Additional resources on this site include several video tutorials/walk-throughs of the SPSS procedures. These "how-to" videos run approximately 5-10 minutes in length. Advanced and Multivariate Statistical Methods was written for use by students taking a multivariate statistics course as part of a graduate degree program, for example in psychology, education, sociology, criminal justice, social work, mass communication, and nursing.
This compendium contains and explains essential statistical formulas within an economic context. A broad range of aids and supportive examples will help readers to understand the formulas and their practical applications. This statistical formulary is presented in a practice-oriented, clear, and understandable manner, as it is needed for meaningful and relevant application in global business, as well as in the academic setting and economic practice. The topics presented include, but are not limited to: statistical signs and symbols, descriptive statistics, empirical distributions, ratios and index figures, correlation analysis, regression analysis, inferential statistics, probability calculation, probability distributions, theoretical distributions, statistical estimation methods, confidence intervals, statistical testing methods, the Peren-Clement index, and the usual statistical tables. Given its scope, the book offers an indispensable reference guide and is a must-read for undergraduate and graduate students, as well as managers, scholars, and lecturers in business, politics, and economics.
* A useful guide to financial product modeling and to minimizing business risk and uncertainty * Looks at wide range of financial assets and markets and correlates them with enterprises' profitability * Introduces advanced and novel machine learning techniques in finance such as Support Vector Machine, Neural Networks, Random Forest, K-Nearest Neighbors, Extreme Learning Machine, Deep Learning Approaches and applies them to analyze finance data sets * Real world applicable examples to further understanding
This textbook provides future data analysts with the tools, methods, and skills needed to answer data-focused, real-life questions; to carry out data analysis; and to visualize and interpret results to support better decisions in business, economics, and public policy. Data wrangling and exploration, regression analysis, machine learning, and causal analysis are comprehensively covered, as well as when, why, and how the methods work, and how they relate to each other. As the most effective way to communicate data analysis, running case studies play a central role in this textbook. Each case starts with an industry-relevant question and answers it by using real-world data and applying the tools and methods covered in the textbook. Learning is then consolidated by 360 practice questions and 120 data exercises. Extensive online resources, including raw and cleaned data and codes for all analysis in Stata, R, and Python, can be found at www.gabors-data-analysis.com.
If you know a little bit about financial mathematics but don't yet know a lot about programming, then C++ for Financial Mathematics is for you. C++ is an essential skill for many jobs in quantitative finance, but learning it can be a daunting prospect. This book gathers together everything you need to know to price derivatives in C++ without unnecessary complexities or technicalities. It leads the reader step-by-step from programming novice to writing a sophisticated and flexible financial mathematics library. At every step, each new idea is motivated and illustrated with concrete financial examples. As employers understand, there is more to programming than knowing a computer language. As well as covering the core language features of C++, this book teaches the skills needed to write truly high quality software. These include topics such as unit tests, debugging, design patterns and data structures. The book teaches everything you need to know to solve realistic financial problems in C++. It can be used for self-study or as a textbook for an advanced undergraduate or master's level course.
Focusing on Bayesian approaches and computations using analytic and simulation-based methods for inference, Time Series: Modeling, Computation, and Inference, Second Edition integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling, analysis and forecasting, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and contacts research frontiers in multivariate time series modeling and forecasting. It presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. It explores the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian formulations and computation, including use of computations based on Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. It illustrates the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, environmental science, and finance. Along with core models and methods, the book represents state-of-the art approaches to analysis and forecasting in challenging time series problems. It also demonstrates the growth of time series analysis into new application areas in recent years, and contacts recent and relevant modeling developments and research challenges. New in the second edition: Expanded on aspects of core model theory and methodology. Multiple new examples and exercises. Detailed development of dynamic factor models. Updated discussion and connections with recent and current research frontiers. |
You may like...
Madam & Eve 2018 - The Guptas Ate My…
Stephen Francis, Rico Schacherl
Paperback
|