0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (1,240)
  • R250 - R500 (146)
  • R500+ (1,381)
  • -
Status
Format
Author / Contributor
Publisher

Books > Business & Economics > Economics > Econometrics > Economic statistics

Contemporary Perspectives in Data Mining Volume 4 (Paperback): Kenneth D. Lawrence, Ronald K. Klimberg Contemporary Perspectives in Data Mining Volume 4 (Paperback)
Kenneth D. Lawrence, Ronald K. Klimberg
R1,314 Discovery Miles 13 140 Ships in 10 - 17 working days
Oil and Gas Processing Equipment - Risk Assessment with Bayesian Networks (Hardcover): G Unnikrishnan Oil and Gas Processing Equipment - Risk Assessment with Bayesian Networks (Hardcover)
G Unnikrishnan
R3,374 Discovery Miles 33 740 Ships in 10 - 15 working days

Oil and gas industries apply several techniques for assessing and mitigating the risks that are inherent in its operations. In this context, the application of Bayesian Networks (BNs) to risk assessment offers a different probabilistic version of causal reasoning. Introducing probabilistic nature of hazards, conditional probability and Bayesian thinking, it discusses how cause and effect of process hazards can be modelled using BNs and development of large BNs from basic building blocks. Focus is on development of BNs for typical equipment in industry including accident case studies and its usage along with other conventional risk assessment methods. Aimed at professionals in oil and gas industry, safety engineering, risk assessment, this book Brings together basics of Bayesian theory, Bayesian Networks and applications of the same to process safety hazards and risk assessment in the oil and gas industry Presents sequence of steps for setting up the model, populating the model with data and simulating the model for practical cases in a systematic manner Includes a comprehensive list on sources of failure data and tips on modelling and simulation of large and complex networks Presents modelling and simulation of loss of containment of actual equipment in oil and gas industry such as Separator, Storage tanks, Pipeline, Compressor and risk assessments Discusses case studies to demonstrate the practicability of use of Bayesian Network in routine risk assessments

Counterparty Risk and Funding - A Tale of Two Puzzles (Paperback): Stephane Crepey, Tomasz R. Bielecki, Damiano Brigo Counterparty Risk and Funding - A Tale of Two Puzzles (Paperback)
Stephane Crepey, Tomasz R. Bielecki, Damiano Brigo
R1,488 Discovery Miles 14 880 Ships in 10 - 15 working days

Solve the DVA/FVA Overlap Issue and Effectively Manage Portfolio Credit Risk Counterparty Risk and Funding: A Tale of Two Puzzles explains how to study risk embedded in financial transactions between the bank and its counterparty. The authors provide an analytical basis for the quantitative methodology of dynamic valuation, mitigation, and hedging of bilateral counterparty risk on over-the-counter (OTC) derivative contracts under funding constraints. They explore credit, debt, funding, liquidity, and rating valuation adjustment (CVA, DVA, FVA, LVA, and RVA) as well as replacement cost (RC), wrong-way risk, multiple funding curves, and collateral. The first part of the book assesses today's financial landscape, including the current multi-curve reality of financial markets. In mathematical but model-free terms, the second part describes all the basic elements of the pricing and hedging framework. Taking a more practical slant, the third part introduces a reduced-form modeling approach in which the risk of default of the two parties only shows up through their default intensities. The fourth part addresses counterparty risk on credit derivatives through dynamic copula models. In the fifth part, the authors present a credit migrations model that allows you to account for rating-dependent credit support annex (CSA) clauses. They also touch on nonlinear FVA computations in credit portfolio models. The final part covers classical tools from stochastic analysis and gives a brief introduction to the theory of Markov copulas. The credit crisis and ongoing European sovereign debt crisis have shown the importance of the proper assessment and management of counterparty risk. This book focuses on the interaction and possible overlap between DVA and FVA terms. It also explores the particularly challenging issue of counterparty risk in portfolio credit modeling. Primarily for researchers and graduate students in financial mathematics, the book is also suitable for financial quants, managers in banks, CVA desks, and members of supervisory bodies.

Econometrics (Hardcover): Bruce Hansen Econometrics (Hardcover)
Bruce Hansen
R2,246 Discovery Miles 22 460 Ships in 10 - 15 working days

The most authoritative and up-to-date core econometrics textbook available Econometrics is the quantitative language of economic theory, analysis, and empirical work, and it has become a cornerstone of graduate economics programs. Econometrics provides graduate and PhD students with an essential introduction to this foundational subject in economics and serves as an invaluable reference for researchers and practitioners. This comprehensive textbook teaches fundamental concepts, emphasizes modern, real-world applications, and gives students an intuitive understanding of econometrics. Covers the full breadth of econometric theory and methods with mathematical rigor while emphasizing intuitive explanations that are accessible to students of all backgrounds Draws on integrated, research-level datasets, provided on an accompanying website Discusses linear econometrics, time series, panel data, nonparametric methods, nonlinear econometric models, and modern machine learning Features hundreds of exercises that enable students to learn by doing Includes in-depth appendices on matrix algebra and useful inequalities and a wealth of real-world examples Can serve as a core textbook for a first-year PhD course in econometrics and as a follow-up to Bruce E. Hansen's Probability and Statistics for Economists

Agricultural Statistics - A Guide For Competitive Examinations (Paperback): K. S. Kushwaha Agricultural Statistics - A Guide For Competitive Examinations (Paperback)
K. S. Kushwaha
R1,086 Discovery Miles 10 860 Ships in 9 - 17 working days

The book entitled "Agricultural Statistics" has been designed for all U.G. and P.G. Students of "Pure Statistics, Agricultural Statistics, Biological & Social Sciences" and those who have to appear in competitive examinations of I.S.S., S.S.S., State's P.S.C.' and I.A.S. This book is also useful for faculties of "Department of Statistics" of Indian Universities. The book is the outcome of 28 years of teaching experience of U.G., P.G. and Ph. D. students of different disciplines of Agriculture, Agil. Engg. and Agril. Statistics. in J.N.K.V.V. Jabalpur. The content of the book covers the syllabus on the topic "Statistical Methods.

High Performance Computing for Big Data - Methodologies and Applications (Paperback): Chao Wang High Performance Computing for Big Data - Methodologies and Applications (Paperback)
Chao Wang
R1,389 Discovery Miles 13 890 Ships in 10 - 15 working days

High-Performance Computing for Big Data: Methodologies and Applications explores emerging high-performance architectures for data-intensive applications, novel efficient analytical strategies to boost data processing, and cutting-edge applications in diverse fields, such as machine learning, life science, neural networks, and neuromorphic engineering. The book is organized into two main sections. The first section covers Big Data architectures, including cloud computing systems, and heterogeneous accelerators. It also covers emerging 3D IC design principles for memory architectures and devices. The second section of the book illustrates emerging and practical applications of Big Data across several domains, including bioinformatics, deep learning, and neuromorphic engineering. Features Covers a wide range of Big Data architectures, including distributed systems like Hadoop/Spark Includes accelerator-based approaches for big data applications such as GPU-based acceleration techniques, and hardware acceleration such as FPGA/CGRA/ASICs Presents emerging memory architectures and devices such as NVM, STT- RAM, 3D IC design principles Describes advanced algorithms for different big data application domains Illustrates novel analytics techniques for Big Data applications, scheduling, mapping, and partitioning methodologies Featuring contributions from leading experts, this book presents state-of-the-art research on the methodologies and applications of high-performance computing for big data applications. About the Editor Dr. Chao Wang is an Associate Professor in the School of Computer Science at the University of Science and Technology of China. He is the Associate Editor of ACM Transactions on Design Automations for Electronics Systems (TODAES), Applied Soft Computing, Microprocessors and Microsystems, IET Computers & Digital Techniques, and International Journal of Electronics. Dr. Chao Wang was the recipient of Youth Innovation Promotion Association, CAS, ACM China Rising Star Honorable Mention (2016), and best IP nomination of DATE 2015. He is now on the CCF Technical Committee on Computer Architecture, CCF Task Force on Formal Methods. He is a Senior Member of IEEE, Senior Member of CCF, and a Senior Member of ACM.

Contemporary Perspectives in Data Mining Volume 4 (Hardcover): Kenneth D. Lawrence, Ronald K. Klimberg Contemporary Perspectives in Data Mining Volume 4 (Hardcover)
Kenneth D. Lawrence, Ronald K. Klimberg
R2,529 Discovery Miles 25 290 Ships in 10 - 15 working days
Statistics for Finance - Texts in Statistical Science (Paperback): Erik Lindstroem, Henrik Madsen, Jan Nygaard Nielsen Statistics for Finance - Texts in Statistical Science (Paperback)
Erik Lindstroem, Henrik Madsen, Jan Nygaard Nielsen
R1,488 Discovery Miles 14 880 Ships in 9 - 17 working days

Statistics for Finance develops students' professional skills in statistics with applications in finance. Developed from the authors' courses at the Technical University of Denmark and Lund University, the text bridges the gap between classical, rigorous treatments of financial mathematics that rarely connect concepts to data and books on econometrics and time series analysis that do not cover specific problems related to option valuation. The book discusses applications of financial derivatives pertaining to risk assessment and elimination. The authors cover various statistical and mathematical techniques, including linear and nonlinear time series analysis, stochastic calculus models, stochastic differential equations, Ito's formula, the Black-Scholes model, the generalized method-of-moments, and the Kalman filter. They explain how these tools are used to price financial derivatives, identify interest rate models, value bonds, estimate parameters, and much more. This textbook will help students understand and manage empirical research in financial engineering. It includes examples of how the statistical tools can be used to improve value-at-risk calculations and other issues. In addition, end-of-chapter exercises develop students' financial reasoning skills.

Handbook of Discrete-Valued Time Series - Handbooks of Modern Statistical Methods (Paperback): Richard A. Davis, Scott H Holan,... Handbook of Discrete-Valued Time Series - Handbooks of Modern Statistical Methods (Paperback)
Richard A. Davis, Scott H Holan, Robert Lund, Nalini Ravishanker
R2,178 Discovery Miles 21 780 Ships in 10 - 15 working days

Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed can be applied to other types of discrete-valued time series, such as binary-valued or categorical time series. Explore a Balanced Treatment of Frequentist and Bayesian Perspectives Accessible to graduate-level students who have taken an elementary class in statistical time series analysis, the book begins with the history and current methods for modeling and analyzing univariate count series. It next discusses diagnostics and applications before proceeding to binary and categorical time series. The book then provides a guide to modern methods for discrete-valued spatio-temporal data, illustrating how far modern applications have evolved from their roots. The book ends with a focus on multivariate and long-memory count series. Get Guidance from Masters in the Field Written by a cohesive group of distinguished contributors, this handbook provides a unified account of the diverse techniques available for observation- and parameter-driven models. It covers likelihood and approximate likelihood methods, estimating equations, simulation methods, and a Bayesian approach for model fitting.

Hidden Markov Models in Finance (Hardcover, 2007 ed.): Rogemar S. Mamon, Robert J Elliott Hidden Markov Models in Finance (Hardcover, 2007 ed.)
Rogemar S. Mamon, Robert J Elliott
R2,759 Discovery Miles 27 590 Ships in 10 - 17 working days

A number of methodologies have been employed to provide decision making solutions to a whole assortment of financial problems in today's globalized markets. Hidden Markov Models in Finance by Mamon and Elliott will be the first systematic application of these methods to some special kinds of financial problems; namely, pricing options and variance swaps, valuation of life insurance policies, interest rate theory, credit risk modeling, risk management, analysis of future demand and inventory level, testing foreign exchange rate hypothesis, and early warning systems for currency crises. This book provides researchers and practitioners with analyses that allow them to sort through the random noise of financial markets (i.e., turbulence, volatility, emotion, chaotic events, etc.) and analyze the fundamental components of economic markets. Hence, Hidden Markov Models in Finance provides decision makers with a clear, accurate picture of core financial components by filtering out the random noise in financial markets.

Flexible Regression and Smoothing - Using GAMLSS in R (Paperback): Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller,... Flexible Regression and Smoothing - Using GAMLSS in R (Paperback)
Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller, Vlasios Voudouris, Fernanda De Bastiani
R1,569 Discovery Miles 15 690 Ships in 10 - 15 working days

This book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs) to accommodate large complex datasets, which are increasingly prevalent. In particular, the GAMLSS statistical framework enables flexible regression and smoothing models to be fitted to the data. The GAMLSS model assumes that the response variable has any parametric (continuous, discrete or mixed) distribution which might be heavy- or light-tailed, and positively or negatively skewed. In addition, all the parameters of the distribution (location, scale, shape) can be modelled as linear or smooth functions of explanatory variables. Key Features: Provides a broad overview of flexible regression and smoothing techniques to learn from data whilst also focusing on the practical application of methodology using GAMLSS software in R. Includes a comprehensive collection of real data examples, which reflect the range of problems addressed by GAMLSS models and provide a practical illustration of the process of using flexible GAMLSS models for statistical learning. R code integrated into the text for ease of understanding and replication. Supplemented by a website with code, data and extra materials. This book aims to help readers understand how to learn from data encountered in many fields. It will be useful for practitioners and researchers who wish to understand and use the GAMLSS models to learn from data and also for students who wish to learn GAMLSS through practical examples.

Computational Finance - MATLAB (R) Oriented Modeling (Hardcover): Francesco Cesarone Computational Finance - MATLAB (R) Oriented Modeling (Hardcover)
Francesco Cesarone
R4,217 Discovery Miles 42 170 Ships in 10 - 15 working days

Computational finance is increasingly important in the financial industry, as a necessary instrument for applying theoretical models to real-world challenges. Indeed, many models used in practice involve complex mathematical problems, for which an exact or a closed-form solution is not available. Consequently, we need to rely on computational techniques and specific numerical algorithms. This book combines theoretical concepts with practical implementation. Furthermore, the numerical solution of models is exploited, both to enhance the understanding of some mathematical and statistical notions, and to acquire sound programming skills in MATLAB (R), which is useful for several other programming languages also. The material assumes the reader has a relatively limited knowledge of mathematics, probability, and statistics. Hence, the book contains a short description of the fundamental tools needed to address the two main fields of quantitative finance: portfolio selection and derivatives pricing. Both fields are developed here, with a particular emphasis on portfolio selection, where the author includes an overview of recent approaches. The book gradually takes the reader from a basic to medium level of expertise by using examples and exercises to simplify the understanding of complex models in finance, giving them the ability to place financial models in a computational setting. The book is ideal for courses focusing on quantitative finance, asset management, mathematical methods for economics and finance, investment banking, and corporate finance.

Models for Dependent Time Series (Paperback): Granville Tunnicliffe-Wilson, Marco Reale, John Haywood Models for Dependent Time Series (Paperback)
Granville Tunnicliffe-Wilson, Marco Reale, John Haywood
R1,594 Discovery Miles 15 940 Ships in 10 - 15 working days

Models for Dependent Time Series addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. Whether you work in the economic, physical, or life sciences, the book shows you how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vector) time series data. The first four chapters discuss the two main pillars of the subject that have been developed over the last 60 years: vector autoregressive modeling and multivariate spectral analysis. These chapters provide the foundational material for the remaining chapters, which cover the construction of structural models and the extension of vector autoregressive modeling to high frequency, continuously recorded, and irregularly sampled series. The final chapter combines these approaches with spectral methods for identifying causal dependence between time series. Web ResourceA supplementary website provides the data sets used in the examples as well as documented MATLAB (R) functions and other code for analyzing the examples and producing the illustrations. The site also offers technical details on the estimation theory and methods and the implementation of the models.

Introduction to Statistical Methods for Financial Models (Paperback): Thomas A. Severini Introduction to Statistical Methods for Financial Models (Paperback)
Thomas A. Severini
R1,515 Discovery Miles 15 150 Ships in 10 - 15 working days

This book provides an introduction to the use of statistical concepts and methods to model and analyze financial data. The ten chapters of the book fall naturally into three sections. Chapters 1 to 3 cover some basic concepts of finance, focusing on the properties of returns on an asset. Chapters 4 through 6 cover aspects of portfolio theory and the methods of estimation needed to implement that theory. The remainder of the book, Chapters 7 through 10, discusses several models for financial data, along with the implications of those models for portfolio theory and for understanding the properties of return data. The audience for the book is students majoring in Statistics and Economics as well as in quantitative fields such as Mathematics and Engineering. Readers are assumed to have some background in statistical methods along with courses in multivariate calculus and linear algebra.

Handbook of Applied Economic Statistics (Paperback): Aman Ullah Handbook of Applied Economic Statistics (Paperback)
Aman Ullah
R1,523 Discovery Miles 15 230 Ships in 10 - 15 working days

This work examines theoretical issues, as well as practical developments in statistical inference related to econometric models and analysis. This work offers discussions on such areas as the function of statistics in aggregation, income inequality, poverty, health, spatial econometrics, panel and survey data, bootstrapping and time series.

Introduction to Time Series Modeling with Applications in R - with Applications in R (Hardcover, 2nd edition): Genshiro Kitagawa Introduction to Time Series Modeling with Applications in R - with Applications in R (Hardcover, 2nd edition)
Genshiro Kitagawa
R3,823 Discovery Miles 38 230 Ships in 10 - 15 working days

Praise for the first edition: [This book] reflects the extensive experience and significant contributions of the author to non-linear and non-Gaussian modeling. ... [It] is a valuable book, especially with its broad and accessible introduction of models in the state-space framework. -Statistics in Medicine What distinguishes this book from comparable introductory texts is the use of state-space modeling. Along with this come a number of valuable tools for recursive filtering and smoothing, including the Kalman filter, as well as non-Gaussian and sequential Monte Carlo filters. -MAA Reviews Introduction to Time Series Modeling with Applications in R, Second Edition covers numerous stationary and nonstationary time series models and tools for estimating and utilizing them. The goal of this book is to enable readers to build their own models to understand, predict and master time series. The second edition makes it possible for readers to reproduce examples in this book by using the freely available R package TSSS to perform computations for their own real-world time series problems. This book employs the state-space model as a generic tool for time series modeling and presents the Kalman filter, the non-Gaussian filter and the particle filter as convenient tools for recursive estimation for state-space models. Further, it also takes a unified approach based on the entropy maximization principle and employs various methods of parameter estimation and model selection, including the least squares method, the maximum likelihood method, recursive estimation for state-space models and model selection by AIC. Along with the standard stationary time series models, such as the AR and ARMA models, the book also introduces nonstationary time series models such as the locally stationary AR model, the trend model, the seasonal adjustment model, the time-varying coefficient AR model and nonlinear non-Gaussian state-space models. About the Author: Genshiro Kitagawa is a project professor at the University of Tokyo, the former Director-General of the Institute of Statistical Mathematics, and the former President of the Research Organization of Information and Systems.

Applied Structural Equation Modeling using AMOS - Basic to Advanced Techniques (Hardcover): Joel Collier Applied Structural Equation Modeling using AMOS - Basic to Advanced Techniques (Hardcover)
Joel Collier
R4,234 Discovery Miles 42 340 Ships in 10 - 15 working days

This is an essential how-to guide on the application of structural equation modeling (SEM) techniques with the AMOS software, focusing on the practical applications of both simple and advanced topics. Written in an easy-to-understand conversational style, the book covers everything from data collection and screening to confirmatory factor analysis, structural model analysis, mediation, moderation, and more advanced topics such as mixture modeling, censored date, and non-recursive models. Through step-by-step instructions, screen shots, and suggested guidelines for reporting, Collier cuts through abstract definitional perspectives to give insight on how to actually run analysis. Unlike other SEM books, the examples used will often start in SPSS and then transition to AMOS so that the reader can have full confidence in running the analysis from beginning to end. Best practices are also included on topics like how to determine if your SEM model is formative or reflective, making it not just an explanation of SEM topics, but a guide for researchers on how to develop a strong methodology while studying their respective phenomenon of interest. With a focus on practical applications of both basic and advanced topics, and with detailed work-through examples throughout, this book is ideal for experienced researchers and beginners across the behavioral and social sciences.

Big Data in Complex and Social Networks (Paperback): My T. Thai, Weili Wu, Hui Xiong Big Data in Complex and Social Networks (Paperback)
My T. Thai, Weili Wu, Hui Xiong
R1,385 Discovery Miles 13 850 Ships in 10 - 15 working days

This book presents recent developments on the theoretical, algorithmic, and application aspects of Big Data in Complex and Social Networks. The book consists of four parts, covering a wide range of topics. The first part of the book focuses on data storage and data processing. It explores how the efficient storage of data can fundamentally support intensive data access and queries, which enables sophisticated analysis. It also looks at how data processing and visualization help to communicate information clearly and efficiently. The second part of the book is devoted to the extraction of essential information and the prediction of web content. The book shows how Big Data analysis can be used to understand the interests, location, and search history of users and provide more accurate predictions of User Behavior. The latter two parts of the book cover the protection of privacy and security, and emergent applications of big data and social networks. It analyzes how to model rumor diffusion, identify misinformation from massive data, and design intervention strategies. Applications of big data and social networks in multilayer networks and multiparty systems are also covered in-depth.

State-Space Methods for Time Series Analysis - Theory, Applications and Software (Paperback): Jose Casals, Alfredo... State-Space Methods for Time Series Analysis - Theory, Applications and Software (Paperback)
Jose Casals, Alfredo Garcia-Hiernaux, Miguel Jerez, Sonia Sotoca, A. Alexandre Trindade
R1,588 Discovery Miles 15 880 Ships in 10 - 15 working days

The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors' E4 MATLAB (R) toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.

Mathematics for Finance, Business and Economics (Paperback): Irenee Dondjio, Wouter Krasser Mathematics for Finance, Business and Economics (Paperback)
Irenee Dondjio, Wouter Krasser
R1,658 Discovery Miles 16 580 Ships in 9 - 17 working days

Mastering the basic concepts of mathematics is the key to understanding other subjects such as Economics, Finance, Statistics, and Accounting. Mathematics for Finance, Business and Economics is written informally for easy comprehension. Unlike traditional textbooks it provides a combination of explanations, exploration and real-life applications of major concepts.

Mathematics for Finance, Business and Economics discusses elementary mathematical operations, linear and non-linear functions and equations, differentiation and optimization, economic functions, summation, percentages and interest, arithmetic and geometric series, present and future values of annuities, matrices and Markov chains.

Aided by the discussion of real-world problems and solutions, students across the business and economics disciplines will find this textbook perfect for gaining an understanding of a core plank of their studies.

Introductory Statistics for Business and Economics - Theory, Exercises and Solutions (Hardcover, 1st ed. 2017): Jan Uboe Introductory Statistics for Business and Economics - Theory, Exercises and Solutions (Hardcover, 1st ed. 2017)
Jan Uboe
R2,418 Discovery Miles 24 180 Ships in 10 - 15 working days

This textbook discusses central statistical concepts and their use in business and economics. To endure the hardship of abstract statistical thinking, business and economics students need to see interesting applications at an early stage. Accordingly, the book predominantly focuses on exercises, several of which draw on simple applications of non-linear theory. The main body presents central ideas in a simple, straightforward manner; the exposition is concise, without sacrificing rigor. The book bridges the gap between theory and applications, with most exercises formulated in an economic context. Its simplicity of style makes the book suitable for students at any level, and every chapter starts out with simple problems. Several exercises, however, are more challenging, as they are devoted to the discussion of non-trivial economic problems where statistics plays a central part.

Financial, Macro and Micro Econometrics Using R, Volume 42 (Hardcover): Hrishikesh D Vinod, C.R. Rao Financial, Macro and Micro Econometrics Using R, Volume 42 (Hardcover)
Hrishikesh D Vinod, C.R. Rao
R6,151 Discovery Miles 61 510 Ships in 10 - 15 working days

Financial, Macro and Micro Econometrics Using R, Volume 42, provides state-of-the-art information on important topics in econometrics, including multivariate GARCH, stochastic frontiers, fractional responses, specification testing and model selection, exogeneity testing, causal analysis and forecasting, GMM models, asset bubbles and crises, corporate investments, classification, forecasting, nonstandard problems, cointegration, financial market jumps and co-jumps, among other topics.

An Introduction to Quantitative Economics - Economics and Society Series (Paperback): Brian Haines An Introduction to Quantitative Economics - Economics and Society Series (Paperback)
Brian Haines
R1,101 Discovery Miles 11 010 Ships in 10 - 15 working days

Originally published in 1978. This book is designed to enable students on main courses in economics to comprehend literature which employs econometric techniques as a method of analysis, to use econometric techniques themselves to test hypotheses about economic relationships and to understand some of the difficulties involved in interpreting results. While the book is mainly aimed at second-year undergraduates undertaking courses in applied economics, its scope is sufficiently wide to take in students at postgraduate level who have no background in econometrics - it integrates fully the mathematical and statistical techniques used in econometrics with micro- and macroeconomic case studies.

Handbook of U.S. Labor Statistics 2019 - Employment, Earnings, Prices, Productivity, and Other Labor Data (Hardcover, 22nd... Handbook of U.S. Labor Statistics 2019 - Employment, Earnings, Prices, Productivity, and Other Labor Data (Hardcover, 22nd Edition)
Mary Meghan Ryan
R4,753 Discovery Miles 47 530 Ships in 10 - 15 working days

The Handbook of U.S. Labor Statistics is recognized as an authoritative resource on the U.S. labor force. It continues and enhances the Bureau of Labor Statistics's (BLS) discontinued publication, Labor Statistics. It allows the user to understand recent developments as well as to compare today's economy with past history. This edition includes new tables on occupational safety and health and income in the United States. The Handbook is a comprehensive reference providing an abundance of data on a variety of topics including: *Employment and unemployment; *Earnings; *Prices; *Productivity; *Consumer expenditures; *Occupational safety and health; *Union membership; *Working poor *And much more! Features of the publication In addition to over 215 tables that present practical data, the Handbook provides: *Introductory material for each chapter that contains highlights of salient data and figures that call attention to noteworthy trends in the data *Notes and definitions, which contain concise descriptions of the data sources, concepts, definitions, and methodology from which the data are derived *References to more comprehensive reports which provide additional data and more extensive descriptions of estimation methods, sampling, and reliability measures

Quantitative Trading - Algorithms, Analytics, Data, Models, Optimization (Paperback): Xin Guo, Tze Leung Lai, Howard Shek,... Quantitative Trading - Algorithms, Analytics, Data, Models, Optimization (Paperback)
Xin Guo, Tze Leung Lai, Howard Shek, Samuel Po Shing Wong
R1,857 Discovery Miles 18 570 Ships in 10 - 15 working days

The first part of this book discusses institutions and mechanisms of algorithmic trading, market microstructure, high-frequency data and stylized facts, time and event aggregation, order book dynamics, trading strategies and algorithms, transaction costs, market impact and execution strategies, risk analysis, and management. The second part covers market impact models, network models, multi-asset trading, machine learning techniques, and nonlinear filtering. The third part discusses electronic market making, liquidity, systemic risk, recent developments and debates on the subject.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Latin America and Refugee Protection…
Liliana Lyra Jubilut, Marcia Vera Espinoza, … Hardcover R3,139 Discovery Miles 31 390
Financial Management
Carlos Correia Paperback R1,034 R908 Discovery Miles 9 080
A Golden Treasury for the Children of…
Carl Heinrich Von Bogatzky Paperback R570 Discovery Miles 5 700
Dala Stretch Canvas - 16 x 6…
R153 Discovery Miles 1 530
Geoinformatics and Modelling of…
Sujit Mandal, Subrata Mondal Hardcover R3,120 Discovery Miles 31 200
Daler Rowney Stretched Canvas - Medium…
R1,901 R1,730 Discovery Miles 17 300
Robustness in Econometrics
Vladik Kreinovich, Songsak Sriboonchitta, … Hardcover R4,891 Discovery Miles 48 910
The Sun Also Rises
Ernest Hemingway Paperback R620 Discovery Miles 6 200
Matching, Regression Discontinuity…
Myoung-Jae Lee Hardcover R3,748 Discovery Miles 37 480
Our Land of Palestine
Malcolm Archibald Hardcover R986 R862 Discovery Miles 8 620

 

Partners