0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (1,239)
  • R250 - R500 (146)
  • R500+ (1,373)
  • -
Status
Format
Author / Contributor
Publisher

Books > Business & Economics > Economics > Econometrics > Economic statistics

Keeping Races in Their Places - The Dividing Lines That Shaped the American City (Hardcover): Anthony Orlando Keeping Races in Their Places - The Dividing Lines That Shaped the American City (Hardcover)
Anthony Orlando
R2,223 Discovery Miles 22 230 Ships in 10 - 15 working days

"A book perfect for this moment" -Katherine M. O'Regan, Former Assistant Secretary, US Department of Housing and Urban Development More than fifty years after the passage of the Fair Housing Act, American cities remain divided along the very same lines that this landmark legislation explicitly outlawed. Keeping Races in Their Places tells the story of these lines-who drew them, why they drew them, where they drew them, and how they continue to circumscribe residents' opportunities to this very day. Weaving together sophisticated statistical analyses of more than a century's worth of data with an engaging, accessible narrative that brings the numbers to life, Keeping Races in Their Places exposes the entrenched effects of redlining on American communities. This one-of-a-kind contribution to the real estate and urban economics literature applies the author's original geographic information systems analyses to historical maps to reveal redlining's causal role in shaping today's cities. Spanning the era from the Great Migration to the Great Recession, Keeping Races in Their Places uncovers the roots of the Black-white wealth gap, the subprime lending crisis, and today's lack of affordable housing in maps created by banks nearly a century ago. Most of all, it offers hope that with the latest scholarly tools we can pinpoint how things went wrong-and what we must do to make them right.

Deep Learning in Practice (Book): Mehdi Ghayoumi Deep Learning in Practice (Book)
Mehdi Ghayoumi
R1,290 Discovery Miles 12 900 Ships in 10 - 15 working days
Probability, Choice, and Reason (Paperback): Leighton Vaughan-Williams Probability, Choice, and Reason (Paperback)
Leighton Vaughan-Williams
R1,759 Discovery Miles 17 590 Ships in 10 - 15 working days

Much of our thinking is flawed because it is based on faulty intuition. By using the framework and tools of probability and statistics, we can overcome this to provide solutions to many real-world problems and paradoxes. We show how to do this, and find answers that are frequently very contrary to what we might expect. Along the way, we venture into diverse realms and thought experiments which challenge the way that we see the world. Features: An insightful and engaging discussion of some of the key ideas of probabilistic and statistical thinking Many classic and novel problems, paradoxes, and puzzles An exploration of some of the big questions involving the use of choice and reason in an uncertain world The application of probability, statistics, and Bayesian methods to a wide range of subjects, including economics, finance, law, and medicine Exercises, references, and links for those wishing to cross-reference or to probe further Solutions to exercises at the end of the book This book should serve as an invaluable and fascinating resource for university, college, and high school students who wish to extend their reading, as well as for teachers and lecturers who want to liven up their courses while retaining academic rigour. It will also appeal to anyone who wishes to develop skills with numbers or has an interest in the many statistical and other paradoxes that permeate our lives. Indeed, anyone studying the sciences, social sciences, or humanities on a formal or informal basis will enjoy and benefit from this book.

Linear Regression Models - Applications in R (Hardcover): John P. Hoffmann Linear Regression Models - Applications in R (Hardcover)
John P. Hoffmann
R5,372 Discovery Miles 53 720 Ships in 10 - 15 working days

*Furnishes a thorough introduction and detailed information about the linear regression model, including how to understand and interpret its results, test assumptions, and adapt the model when assumptions are not satisfied. *Uses numerous graphs in R to illustrate the model's results, assumptions, and other features. *Does not assume a background in calculus or linear algebra; rather, an introductory statistics course and familiarity with elementary algebra are sufficient. *Provides many examples using real world datasets relevant to various academic disciplines. *Fully integrates the R software environment in its numerous examples.

A Step-by-Step Guide to Exploratory Factor Analysis with Stata (Paperback): Marley Watkins A Step-by-Step Guide to Exploratory Factor Analysis with Stata (Paperback)
Marley Watkins
R1,435 Discovery Miles 14 350 Ships in 10 - 15 working days

1. This book is applicable to courses across the social and behavioral science on a wide range of quantitative methods courses. 2. The book is based solely on Stata for EFA - one of the top statistics software packages used in behavioral and social sciences. 3. Clear step-by-step guidance combined with screen shots to show how to apply EFA to real data.

Gini Inequality Index - Methods and Applications (Hardcover): Nitis Mukhopadhyay, Partha Pratim Sengupta Gini Inequality Index - Methods and Applications (Hardcover)
Nitis Mukhopadhyay, Partha Pratim Sengupta
R4,218 Discovery Miles 42 180 Ships in 10 - 15 working days

"Prof. Nitis Mukhopadhyay and Prof. Partha Pratim Sengupta, who edited this volume with great attention and rigor, have certainly carried out noteworthy activities." - Giovanni Maria Giorgi, University of Rome (Sapienza) "This book is an important contribution to the development of indices of disparity and dissatisfaction in the age of globalization and social strife." - Shelemyahu Zacks, SUNY-Binghamton "It will not be an overstatement when I say that the famous income inequality index or wealth inequality index, which is most widely accepted across the globe is named after Corrado Gini (1984-1965). ... I take this opportunity to heartily applaud the two co-editors for spending their valuable time and energy in putting together a wonderful collection of papers written by the acclaimed researchers on selected topics of interest today. I am very impressed, and I believe so will be its readers." - K.V. Mardia, University of Leeds Gini coefficient or Gini index was originally defined as a standardized measure of statistical dispersion intended to understand an income distribution. It has evolved into quantifying inequity in all kinds of distributions of wealth, gender parity, access to education and health services, environmental policies, and numerous other attributes of importance. Gini Inequality Index: Methods and Applications features original high-quality peer-reviewed chapters prepared by internationally acclaimed researchers. They provide innovative methodologies whether quantitative or qualitative, covering welfare economics, development economics, optimization/non-optimization, econometrics, air quality, statistical learning, inference, sample size determination, big data science, and some heuristics. Never before has such a wide dimension of leading research inspired by Gini's works and their applicability been collected in one edited volume. The volume also showcases modern approaches to the research of a number of very talented and upcoming younger contributors and collaborators. This feature will give readers a window with a distinct view of what emerging research in this field may entail in the near future.

Data Stewardship for Open Science - Implementing FAIR Principles (Paperback): Barend Mons Data Stewardship for Open Science - Implementing FAIR Principles (Paperback)
Barend Mons
R1,383 Discovery Miles 13 830 Ships in 10 - 15 working days

Data Stewardship for Open Science: Implementing FAIR Principles has been written with the intention of making scientists, funders, and innovators in all disciplines and stages of their professional activities broadly aware of the need, complexity, and challenges associated with open science, modern science communication, and data stewardship. The FAIR principles are used as a guide throughout the text, and this book should leave experimentalists consciously incompetent about data stewardship and motivated to respect data stewards as representatives of a new profession, while possibly motivating others to consider a career in the field. The ebook, avalable for no additional cost when you buy the paperback, will be updated every 6 months on average (providing that significant updates are needed or avaialble). Readers will have the opportunity to contribute material towards these updates, and to develop their own data management plans, via the free Data Stewardship Wizard.

Exploring Roots of Inequality in Latin America and Peru (Hardcover, New edition): Feridoon Koohi-Kamali Exploring Roots of Inequality in Latin America and Peru (Hardcover, New edition)
Feridoon Koohi-Kamali
R973 Discovery Miles 9 730 Ships in 10 - 15 working days

This book explores Latin American inequality broadly in terms of its impact on the region's development and specifically with two country studies from Peru on earnings inequality and child labor as a consequence of inequality for child labor. The first chapter provides substantial recent undated analysis of the critical thesis of deindustrialization for Latin America. The second chapter provides an approach to measuring labor market discrimination that departs from the current treatment of unobservable influences in the literature. The third chapter examines a much-neglected topic of child labor using a panel data set specifically on children. The book is appropriate for courses on economic development and labor economics and for anyone interested in inequality, development and applied econometrics.

Risk Measures and Insurance Solvency Benchmarks - Fixed-Probability Levels in Renewal Risk Models (Hardcover): Vsevolod K.... Risk Measures and Insurance Solvency Benchmarks - Fixed-Probability Levels in Renewal Risk Models (Hardcover)
Vsevolod K. Malinovskii
R3,798 Discovery Miles 37 980 Ships in 10 - 15 working days

Risk Measures and Insurance Solvency Benchmarks: Fixed-Probability Levels in Renewal Risk Models is written for academics and practitioners who are concerned about potential weaknesses of the Solvency II regulatory system. It is also intended for readers who are interested in pure and applied probability, have a taste for classical and asymptotic analysis, and are motivated to delve into rather intensive calculations. The formal prerequisite for this book is a good background in analysis. The desired prerequisite is some degree of probability training, but someone with knowledge of the classical real-variable theory, including asymptotic methods, will also find this book interesting. For those who find the proofs too complicated, it may be reassuring that most results in this book are formulated in rather elementary terms. This book can also be used as reading material for basic courses in risk measures, insurance mathematics, and applied probability. The material of this book was partly used by the author for his courses in several universities in Moscow, Copenhagen University, and in the University of Montreal. Features Requires only minimal mathematical prerequisites in analysis and probability Suitable for researchers and postgraduate students in related fields Could be used as a supplement to courses in risk measures, insurance mathematics and applied probability.

Financial Mathematics - A Comprehensive Treatment in Discrete Time (Hardcover, 2nd edition): Giuseppe Campolieti, Roman  N.... Financial Mathematics - A Comprehensive Treatment in Discrete Time (Hardcover, 2nd edition)
Giuseppe Campolieti, Roman N. Makarov
R2,938 Discovery Miles 29 380 Ships in 10 - 15 working days

The book has been tested and refined through years of classroom teaching experience. With an abundance of examples, problems, and fully worked out solutions, the text introduces the financial theory and relevant mathematical methods in a mathematically rigorous yet engaging way. This textbook provides complete coverage of discrete-time financial models that form the cornerstones of financial derivative pricing theory. Unlike similar texts in the field, this one presents multiple problem-solving approaches, linking related comprehensive techniques for pricing different types of financial derivatives. Key features: In-depth coverage of discrete-time theory and methodology. Numerous, fully worked out examples and exercises in every chapter. Mathematically rigorous and consistent yet bridging various basic and more advanced concepts. Judicious balance of financial theory, mathematical, and computational methods. Guide to Material. This revision contains: Almost 200 pages worth of new material in all chapters. A new chapter on elementary probability theory. An expanded the set of solved problems and additional exercises. Answers to all exercises. This book is a comprehensive, self-contained, and unified treatment of the main theory and application of mathematical methods behind modern-day financial mathematics. Table of Contents List of Figures and Tables Preface I Introduction to Pricing and Management of Financial Securities 1 Mathematics of Compounding 2 Primer on Pricing Risky Securities 3 Portfolio Management 4 Primer on Derivative Securities II Discrete-Time Modelling 5 Single-Period Arrow-Debreu Models 6 Introduction to Discrete-Time Stochastic Calculus 7 Replication and Pricing in the Binomial Tree Model 8 General Multi-Asset Multi-Period Model Appendices A Elementary Probability Theory B Glossary of Symbols and Abbreviations C Answers and Hints to Exercises References Index Biographies Giuseppe Campolieti is Professor of Mathematics at Wilfrid Laurier University in Waterloo, Canada. He has been Natural Sciences and Engineering Research Council postdoctoral research fellow and university research fellow at the University of Toronto. In 1998, he joined the Masters in Mathematical Finance as an instructor and later as an adjunct professor in financial mathematics until 2002. Dr. Campolieti also founded a financial software and consulting company in 1998. He joined Laurier in 2002 as Associate Professor of Mathematics and as SHARCNET Chair in Financial Mathematics. Roman N. Makarov is Associate Professor and Chair of Mathematics at Wilfrid Laurier University. Prior to joining Laurier in 2003, he was an Assistant Professor of Mathematics at Siberian State University of Telecommunications and Informatics and a senior research fellow at the Laboratory of Monte Carlo Methods at the Institute of Computational Mathematics and Mathematical Geophysics in Novosibirsk, Russia.

Modelling Spatial and Spatial-Temporal Data - A Bayesian Approach (Paperback): Guangquan Li, Robert P. Haining Modelling Spatial and Spatial-Temporal Data - A Bayesian Approach (Paperback)
Guangquan Li, Robert P. Haining
R1,521 Discovery Miles 15 210 Ships in 10 - 15 working days

Modelling Spatial and Spatial-Temporal Data: A Bayesian Approach is aimed at statisticians and quantitative social, economic and public health students and researchers who work with small-area spatial and spatial-temporal data. It assumes a grounding in statistical theory up to the standard linear regression model. The book compares both hierarchical and spatial econometric modelling, providing both a reference and a teaching text with exercises in each chapter. The book provides a fully Bayesian, self-contained, treatment of the underlying statistical theory, with chapters dedicated to substantive applications. The book includes WinBUGS code and R code and all datasets are available online. Part I covers fundamental issues arising when modelling spatial and spatial-temporal data. Part II focuses on modelling cross-sectional spatial data and begins by describing exploratory methods that help guide the modelling process. There are then two theoretical chapters on Bayesian models and a chapter of applications. Two chapters follow on spatial econometric modelling, one describing different models, the other substantive applications. Part III discusses modelling spatial-temporal data, first introducing models for time series data. Exploratory methods for detecting different types of space-time interaction are presented, followed by two chapters on the theory of space-time separable (without space-time interaction) and inseparable (with space-time interaction) models. An applications chapter includes: the evaluation of a policy intervention; analysing the temporal dynamics of crime hotspots; chronic disease surveillance; and testing for evidence of spatial spillovers in the spread of an infectious disease. A final chapter suggests some future directions and challenges. Robert Haining is Emeritus Professor in Human Geography, University of Cambridge, England. He is the author of Spatial Data Analysis in the Social and Environmental Sciences (1990) and Spatial Data Analysis: Theory and Practice (2003). He is a Fellow of the RGS-IBG and of the Academy of Social Sciences. Guangquan Li is Senior Lecturer in Statistics in the Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle, England. His research includes the development and application of Bayesian methods in the social and health sciences. He is a Fellow of the Royal Statistical Society.

Time Series Clustering and Classification (Paperback): Elizabeth Ann Maharaj, Pierpaolo D'Urso, Jorge Caiado Time Series Clustering and Classification (Paperback)
Elizabeth Ann Maharaj, Pierpaolo D'Urso, Jorge Caiado
R1,468 Discovery Miles 14 680 Ships in 10 - 15 working days

The beginning of the age of artificial intelligence and machine learning has created new challenges and opportunities for data analysts, statisticians, mathematicians, econometricians, computer scientists and many others. At the root of these techniques are algorithms and methods for clustering and classifying different types of large datasets, including time series data. Time Series Clustering and Classification includes relevant developments on observation-based, feature-based and model-based traditional and fuzzy clustering methods, feature-based and model-based classification methods, and machine learning methods. It presents a broad and self-contained overview of techniques for both researchers and students. Features Provides an overview of the methods and applications of pattern recognition of time series Covers a wide range of techniques, including unsupervised and supervised approaches Includes a range of real examples from medicine, finance, environmental science, and more R and MATLAB code, and relevant data sets are available on a supplementary website

A Course in Time Series Analysis (Hardcover): D Pena A Course in Time Series Analysis (Hardcover)
D Pena
R5,375 Discovery Miles 53 750 Ships in 18 - 22 working days

New statistical methods and future directions of research in time series

A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, and signal extraction. They then move on to advanced topics, focusing on heteroscedastic models, nonlinear time series models, Bayesian time series analysis, nonparametric time series analysis, and neural networks. Multivariate time series coverage includes presentations on vector ARMA models, cointegration, and multivariate linear systems. Special features include:

  • Contributions from eleven of the world’s leading figures in time series
  • Shared balance between theory and application
  • Exercise series sets
  • Many real data examples
  • Consistent style and clear, common notation in all contributions
  • 60 helpful graphs and tables

Requiring no previous knowledge of the subject, A Course in Time Series Analysis is an important reference and a highly useful resource for researchers and practitioners in statistics, economics, business, engineering, and environmental analysis.

Time Series Modelling with Unobserved Components (Paperback): Matteo M. Pelagatti Time Series Modelling with Unobserved Components (Paperback)
Matteo M. Pelagatti
R1,473 Discovery Miles 14 730 Ships in 10 - 15 working days

Despite the unobserved components model (UCM) having many advantages over more popular forecasting techniques based on regression analysis, exponential smoothing, and ARIMA, the UCM is not well known among practitioners outside the academic community. Time Series Modelling with Unobserved Components rectifies this deficiency by giving a practical overview of the UCM approach, covering some theoretical details, several applications, and the software for implementing UCMs. The book's first part discusses introductory time series and prediction theory. Unlike most other books on time series, this text includes a chapter on prediction at the beginning because the problem of predicting is not limited to the field of time series analysis. The second part introduces the UCM, the state space form, and related algorithms. It also provides practical modeling strategies to build and select the UCM that best fits the needs of time series analysts. The third part presents real-world applications, with a chapter focusing on business cycle analysis and the construction of band-pass filters using UCMs. The book also reviews software packages that offer ready-to-use procedures for UCMs as well as systems popular among statisticians and econometricians that allow general estimation of models in state space form. This book demonstrates the numerous benefits of using UCMs to model time series data. UCMs are simple to specify, their results are easy to visualize and communicate to non-specialists, and their forecasting performance is competitive. Moreover, various types of outliers can easily be identified, missing values are effortlessly managed, and working contemporaneously with time series observed at different frequencies poses no problem.

Bayesian Statistical Methods (Paperback): Brian J. Reich, Sujit K. Ghosh Bayesian Statistical Methods (Paperback)
Brian J. Reich, Sujit K. Ghosh
R1,323 Discovery Miles 13 230 Ships in 10 - 15 working days

Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures. In addition to the basic concepts of Bayesian inferential methods, the book covers many general topics: Advice on selecting prior distributions Computational methods including Markov chain Monte Carlo (MCMC) Model-comparison and goodness-of-fit measures, including sensitivity to priors Frequentist properties of Bayesian methods Case studies covering advanced topics illustrate the flexibility of the Bayesian approach: Semiparametric regression Handling of missing data using predictive distributions Priors for high-dimensional regression models Computational techniques for large datasets Spatial data analysis The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets, and complete data analyses are available on the book's website. Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award. Sujit K. Ghosh, Professor of Statistics at North Carolina State University, has over 22 years of research and teaching experience in conducting Bayesian analyses, received the Cavell Brownie mentoring award, and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute.

Spreadsheet Modeling and Decision Analysis - A Practical Introduction to Business Analytics (Hardcover, 9th edition): Cliff... Spreadsheet Modeling and Decision Analysis - A Practical Introduction to Business Analytics (Hardcover, 9th edition)
Cliff Ragsdale
R1,374 R1,281 Discovery Miles 12 810 Save R93 (7%) Ships in 10 - 15 working days

Master key spreadsheet and business analytics skills with SPREADSHEET MODELING AND DECISION ANALYSIS: A PRACTICAL INTRODUCTION TO BUSINESS ANALYTICS, 9E, written by respected business analytics innovator Cliff Ragsdale. This edition's clear presentation, realistic examples, fascinating topics and valuable software provide everything you need to become proficient in today's most widely used business analytics techniques using the latest version of Excel (R) in Microsoft (R) Office 365 or Office 2019. Become skilled in the newest Excel functions as well as Analytic Solver (R) and Data Mining add-ins. This edition helps you develop both algebraic and spreadsheet modeling skills. Step-by-step instructions and annotated, full-color screen images make examples easy to follow and show you how to apply what you learn about descriptive, predictive and prescriptive analytics to real business situations. WebAssign online tools and author-created videos further strengthen understanding.

Derivative Pricing - A Problem-Based Primer (Paperback): Ambrose Lo Derivative Pricing - A Problem-Based Primer (Paperback)
Ambrose Lo
R1,396 Discovery Miles 13 960 Ships in 10 - 15 working days

The proliferation of financial derivatives over the past decades, options in particular, has underscored the increasing importance of derivative pricing literacy among students, researchers, and practitioners. Derivative Pricing: A Problem-Based Primer demystifies the essential derivative pricing theory by adopting a mathematically rigorous yet widely accessible pedagogical approach that will appeal to a wide variety of audience. Abandoning the traditional "black-box" approach or theorists' "pedantic" approach, this textbook provides readers with a solid understanding of the fundamental mechanism of derivative pricing methodologies and their underlying theory through a diversity of illustrative examples. The abundance of exercises and problems makes the book well-suited as a text for advanced undergraduates, beginning graduates as well as a reference for professionals and researchers who need a thorough understanding of not only "how," but also "why" derivative pricing works. It is especially ideal for students who need to prepare for the derivatives portion of the Society of Actuaries Investment and Financial Markets Exam. Features Lucid explanations of the theory and assumptions behind various derivative pricing models. Emphasis on intuitions, mnemonics as well as common fallacies. Interspersed with illustrative examples and end-of-chapter problems that aid a deep understanding of concepts in derivative pricing. Mathematical derivations, while not eschewed, are made maximally accessible. A solutions manual is available for qualified instructors. The Author Ambrose Lo is currently Assistant Professor of Actuarial Science at the Department of Statistics and Actuarial Science at the University of Iowa. He received his Ph.D. in Actuarial Science from the University of Hong Kong in 2014, with dependence structures, risk measures, and optimal reinsurance being his research interests. He is a Fellow of the Society of Actuaries (FSA) and a Chartered Enterprise Risk Analyst (CERA). His research papers have been published in top-tier actuarial journals, such as ASTIN Bulletin: The Journal of the International Actuarial Association, Insurance: Mathematics and Economics, and Scandinavian Actuarial Journal.

Agricultural Statistics - A Guide For Competitive Examinations (Paperback): K. S. Kushwaha Agricultural Statistics - A Guide For Competitive Examinations (Paperback)
K. S. Kushwaha
R1,086 Discovery Miles 10 860 Ships in 9 - 17 working days

The book entitled "Agricultural Statistics" has been designed for all U.G. and P.G. Students of "Pure Statistics, Agricultural Statistics, Biological & Social Sciences" and those who have to appear in competitive examinations of I.S.S., S.S.S., State's P.S.C.' and I.A.S. This book is also useful for faculties of "Department of Statistics" of Indian Universities. The book is the outcome of 28 years of teaching experience of U.G., P.G. and Ph. D. students of different disciplines of Agriculture, Agil. Engg. and Agril. Statistics. in J.N.K.V.V. Jabalpur. The content of the book covers the syllabus on the topic "Statistical Methods.

Understanding Chinese GDP (Hardcover, 1st ed. 2019): Xuguang Song Understanding Chinese GDP (Hardcover, 1st ed. 2019)
Xuguang Song
R2,683 Discovery Miles 26 830 Ships in 18 - 22 working days

This book provides in-depth analyses on accounting methods of GDP, statistic calibers and comparative perspectives on Chinese GDP. Beginning with an exploration of international comparisons of GDP, the book introduces the theoretical backgrounds, data sources, algorithms of the exchange rate method and the purchasing power parity method and discusses the advantages, disadvantages, and the latest developments in the two methods. This book further elaborates on the reasons for the imperfections of the Chinese GDP data including limitations of current statistical techniques and the accounting system, as well as the relatively confusing statistics for the service industry. The authors then make suggestions for improvement. Finally, the authors emphasize that evaluation of a country's economy and social development should not be solely limited to GDP, but should focus more on indicators of the comprehensive national power, national welfare, and the people's livelihood. This book will be of interest to economists, China-watchers, and scholars of geopolitics.

Contemporary Perspectives in Data Mining Volume 4 (Paperback): Kenneth D. Lawrence, Ronald K. Klimberg Contemporary Perspectives in Data Mining Volume 4 (Paperback)
Kenneth D. Lawrence, Ronald K. Klimberg
R1,314 Discovery Miles 13 140 Ships in 18 - 22 working days
Oil and Gas Processing Equipment - Risk Assessment with Bayesian Networks (Hardcover): G Unnikrishnan Oil and Gas Processing Equipment - Risk Assessment with Bayesian Networks (Hardcover)
G Unnikrishnan
R3,374 Discovery Miles 33 740 Ships in 10 - 15 working days

Oil and gas industries apply several techniques for assessing and mitigating the risks that are inherent in its operations. In this context, the application of Bayesian Networks (BNs) to risk assessment offers a different probabilistic version of causal reasoning. Introducing probabilistic nature of hazards, conditional probability and Bayesian thinking, it discusses how cause and effect of process hazards can be modelled using BNs and development of large BNs from basic building blocks. Focus is on development of BNs for typical equipment in industry including accident case studies and its usage along with other conventional risk assessment methods. Aimed at professionals in oil and gas industry, safety engineering, risk assessment, this book Brings together basics of Bayesian theory, Bayesian Networks and applications of the same to process safety hazards and risk assessment in the oil and gas industry Presents sequence of steps for setting up the model, populating the model with data and simulating the model for practical cases in a systematic manner Includes a comprehensive list on sources of failure data and tips on modelling and simulation of large and complex networks Presents modelling and simulation of loss of containment of actual equipment in oil and gas industry such as Separator, Storage tanks, Pipeline, Compressor and risk assessments Discusses case studies to demonstrate the practicability of use of Bayesian Network in routine risk assessments

Counterparty Risk and Funding - A Tale of Two Puzzles (Paperback): Stephane Crepey, Tomasz R. Bielecki, Damiano Brigo Counterparty Risk and Funding - A Tale of Two Puzzles (Paperback)
Stephane Crepey, Tomasz R. Bielecki, Damiano Brigo
R1,488 Discovery Miles 14 880 Ships in 10 - 15 working days

Solve the DVA/FVA Overlap Issue and Effectively Manage Portfolio Credit Risk Counterparty Risk and Funding: A Tale of Two Puzzles explains how to study risk embedded in financial transactions between the bank and its counterparty. The authors provide an analytical basis for the quantitative methodology of dynamic valuation, mitigation, and hedging of bilateral counterparty risk on over-the-counter (OTC) derivative contracts under funding constraints. They explore credit, debt, funding, liquidity, and rating valuation adjustment (CVA, DVA, FVA, LVA, and RVA) as well as replacement cost (RC), wrong-way risk, multiple funding curves, and collateral. The first part of the book assesses today's financial landscape, including the current multi-curve reality of financial markets. In mathematical but model-free terms, the second part describes all the basic elements of the pricing and hedging framework. Taking a more practical slant, the third part introduces a reduced-form modeling approach in which the risk of default of the two parties only shows up through their default intensities. The fourth part addresses counterparty risk on credit derivatives through dynamic copula models. In the fifth part, the authors present a credit migrations model that allows you to account for rating-dependent credit support annex (CSA) clauses. They also touch on nonlinear FVA computations in credit portfolio models. The final part covers classical tools from stochastic analysis and gives a brief introduction to the theory of Markov copulas. The credit crisis and ongoing European sovereign debt crisis have shown the importance of the proper assessment and management of counterparty risk. This book focuses on the interaction and possible overlap between DVA and FVA terms. It also explores the particularly challenging issue of counterparty risk in portfolio credit modeling. Primarily for researchers and graduate students in financial mathematics, the book is also suitable for financial quants, managers in banks, CVA desks, and members of supervisory bodies.

High Performance Computing for Big Data - Methodologies and Applications (Paperback): Chao Wang High Performance Computing for Big Data - Methodologies and Applications (Paperback)
Chao Wang
R1,389 Discovery Miles 13 890 Ships in 10 - 15 working days

High-Performance Computing for Big Data: Methodologies and Applications explores emerging high-performance architectures for data-intensive applications, novel efficient analytical strategies to boost data processing, and cutting-edge applications in diverse fields, such as machine learning, life science, neural networks, and neuromorphic engineering. The book is organized into two main sections. The first section covers Big Data architectures, including cloud computing systems, and heterogeneous accelerators. It also covers emerging 3D IC design principles for memory architectures and devices. The second section of the book illustrates emerging and practical applications of Big Data across several domains, including bioinformatics, deep learning, and neuromorphic engineering. Features Covers a wide range of Big Data architectures, including distributed systems like Hadoop/Spark Includes accelerator-based approaches for big data applications such as GPU-based acceleration techniques, and hardware acceleration such as FPGA/CGRA/ASICs Presents emerging memory architectures and devices such as NVM, STT- RAM, 3D IC design principles Describes advanced algorithms for different big data application domains Illustrates novel analytics techniques for Big Data applications, scheduling, mapping, and partitioning methodologies Featuring contributions from leading experts, this book presents state-of-the-art research on the methodologies and applications of high-performance computing for big data applications. About the Editor Dr. Chao Wang is an Associate Professor in the School of Computer Science at the University of Science and Technology of China. He is the Associate Editor of ACM Transactions on Design Automations for Electronics Systems (TODAES), Applied Soft Computing, Microprocessors and Microsystems, IET Computers & Digital Techniques, and International Journal of Electronics. Dr. Chao Wang was the recipient of Youth Innovation Promotion Association, CAS, ACM China Rising Star Honorable Mention (2016), and best IP nomination of DATE 2015. He is now on the CCF Technical Committee on Computer Architecture, CCF Task Force on Formal Methods. He is a Senior Member of IEEE, Senior Member of CCF, and a Senior Member of ACM.

Contemporary Perspectives in Data Mining Volume 4 (Hardcover): Kenneth D. Lawrence, Ronald K. Klimberg Contemporary Perspectives in Data Mining Volume 4 (Hardcover)
Kenneth D. Lawrence, Ronald K. Klimberg
R2,529 Discovery Miles 25 290 Ships in 10 - 15 working days
Risky Business - Why Insurance Markets Fail And What To Do About It (Paperback): Liran Einav, Amy Finkelstein, Ray Fisman Risky Business - Why Insurance Markets Fail And What To Do About It (Paperback)
Liran Einav, Amy Finkelstein, Ray Fisman
R530 R473 Discovery Miles 4 730 Save R57 (11%) In Stock

An engaging and accessible examination of what ails insurance markets—and what to do about it—by three leading economists.

Why is dental insurance so crummy? Why is pet insurance so expensive? Why does your auto insurer ask for your credit score? The answer to these questions lies in understanding how insurance works. Unlike the market for other goods and services—for instance, a grocer who doesn’t care who buys the store’s broccoli or carrots—insurance providers are more careful in choosing their customers, because some are more expensive than others.

Unraveling the mysteries of insurance markets, Liran Einav, Amy Finkelstein, and Ray Fisman explore such issues as why insurers want to know so much about us and whether we should let them obtain this information; why insurance entrepreneurs often fail (and some tricks that may help them succeed); and whether we’d be better off with government-mandated health insurance instead of letting businesses, customers, and markets decide who gets coverage and at what price. With insurance at the center of divisive debates about privacy, equity, and the appropriate role of government, this book offers clear explanations for some of the critical business and policy issues you’ve often wondered about, as well as for others you haven’t yet considered.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
D.D. Kosambi - Selected Works in…
Ramakrishna Ramaswamy Hardcover R3,354 Discovery Miles 33 540
The R Guide for New Data Scientists
Jeffrey Strickland Hardcover R1,808 Discovery Miles 18 080
Matching, Regression Discontinuity…
Myoung-Jae Lee Hardcover R3,748 Discovery Miles 37 480
Operations And Supply Chain Management
David Collier, James Evans Hardcover R1,391 R1,295 Discovery Miles 12 950
E.Europe Russia & C Asia 2001
Europa Publications Hardcover R10,056 Discovery Miles 100 560
Basic mathematics for economics students…
Derek Yu Paperback R420 Discovery Miles 4 200
Fat Chance - Probability from 0 to 1
Benedict Gross, Joe Harris, … Hardcover R1,923 Discovery Miles 19 230
Generalized Method of Moments
Alastair R. Hall Hardcover R4,489 Discovery Miles 44 890
Planner 2021 Vertical Weekly - Planner…
Pilvi Paper Hardcover R582 Discovery Miles 5 820
Quantitative statistical techniques
Swanepoel Swanepoel, Vivier Vivier, … Paperback  (2)
R718 Discovery Miles 7 180

 

Partners