![]() |
![]() |
Your cart is empty |
||
Books > Business & Economics > Economics > Econometrics > Economic statistics
-Up-to-date with cutting edge topics -Suitable for professional quants and as library reference for students of finance and financial mathematics
Factor Analysis and Dimension Reduction in R provides coverage, with worked examples, of a large number of dimension reduction procedures along with model performance metrics to compare them. Factor analysis in the form of principal components analysis (PCA) or principal factor analysis (PFA) is familiar to most social scientists. However, what is less familiar is understanding that factor analysis is a subset of the more general statistical family of dimension reduction methods. The social scientist's toolkit for factor analysis problems can be expanded to include the range of solutions this book presents. In addition to covering FA and PCA with orthogonal and oblique rotation, this book's coverage includes higher-order factor models, bifactor models, models based on binary and ordinal data, models based on mixed data, generalized low-rank models, cluster analysis with GLRM, models involving supplemental variables or observations, Bayesian factor analysis, regularized factor analysis, testing for unidimensionality, and prediction with factor scores. The second half of the book deals with other procedures for dimension reduction. These include coverage of kernel PCA, factor analysis with multidimensional scaling, locally linear embedding models, Laplacian eigenmaps, diffusion maps, force directed methods, t-distributed stochastic neighbor embedding, independent component analysis (ICA), dimensionality reduction via regression (DRR), non-negative matrix factorization (NNMF), Isomap, Autoencoder, uniform manifold approximation and projection (UMAP) models, neural network models, and longitudinal factor analysis models. In addition, a special chapter covers metrics for comparing model performance. Features of this book include: Numerous worked examples with replicable R code Explicit comprehensive coverage of data assumptions Adaptation of factor methods to binary, ordinal, and categorical data Residual and outlier analysis Visualization of factor results Final chapters that treat integration of factor analysis with neural network and time series methods Presented in color with R code and introduction to R and RStudio, this book will be suitable for graduate-level and optional module courses for social scientists, and on quantitative methods and multivariate statistics courses.
A Handbook of Statistical Analyses Using SPSS clearly describes how to conduct a range of univariate and multivariate statistical analyses using the latest version of the Statistical Package for the Social Sciences, SPSS 11. Each chapter addresses a different type of analytical procedure applied to one or more data sets, primarily from the social and behavioral sciences areas. Each chapter also contains exercises relating to the data sets introduced, providing readers with a means to develop both their SPSS and statistical skills. Model answers to the exercises are also provided. Readers can download all of the data sets from a companion Web site furnished by the authors.
Teaches the principles of sampling with examples from social sciences, public opinion research, public health, business, agriculture, and ecology. Has been thoroughly revised to incorporate recent research and applications. Includes a new chapter on nonprobability samples, and more than 200 new examples and exercises have been added.
The methodological needs of environmental studies are unique in the breadth of research questions that can be posed, calling for a textbook that covers a broad swath of approaches to conducting research with potentially many different kinds of evidence. Fully updated to address new developments such as the effects of the internet, recent trends in the use of computers, remote sensing, and large data sets, this new edition of Research Methods for Environmental Studies is written specifically for social science-based research into the environment. This revised edition contains new chapters on coding, focus groups, and an extended treatment of hypothesis testing. The textbook covers the best-practice research methods most used to study the environment and its connections to societal and economic activities and objectives. Over five key parts, Kanazawa introduces quantitative and qualitative approaches, mixed methods, and the special requirements of interdisciplinary research, emphasizing that methodological practice should be tailored to the specific needs of the project. Within these parts, detailed coverage is provided on key topics including the identification of a research project, hypothesis testing, spatial analysis, the case study method, ethnographic approaches, discourse analysis, mixed methods, survey and interview techniques, focus groups, and ethical issues in environmental research. Drawing on a variety of extended and updated examples to encourage problem-based learning and fully addressing the challenges associated with interdisciplinary investigation, this book will be an essential resource for students embarking on courses exploring research methods in environmental studies.
Economic history is the most quantitative branch of history, reflecting the interests and profiting from the techniques and concepts of economics. This essay, first published in 1977, provides an extensive contribution to quantitative historiography by delivering a critical guide to the sources of the numerical data of the period 1700 to 1850. This title will be of interest to students of history, finance and economics.
Explores the Origin of the Recent Banking Crisis and how to Preclude Future Crises Shedding new light on the recent worldwide banking debacle, The Banking Crisis Handbook presents possible remedies as to what should have been done prior, during, and after the crisis. With contributions from well-known academics and professionals, the book contains exclusive, new research that will undoubtedly assist bank executives, risk management departments, and other financial professionals to attain a clear picture of the banking crisis and prevent future banking collapses. The first part of the book explains how the crisis originated. It discusses the role of subprime mortgages, shadow banks, ineffective risk management, poor financial regulations, and hedge funds in causing the collapse of financial systems. The second section examines how the crisis affected the global market as well as individual countries and regions, such as Asia and Greece. In the final part, the book explores short- and long-term solutions, including government intervention, financial regulations, efficient bank default risk approaches, and methods to evaluate credit risk. It also looks at when government intervention in financial markets can be ethically justified.
Thijs ten Raa, author of the acclaimed text The Economics of Input-Output Analysis, now takes the reader to the forefront of the field. This volume collects and unifies his and his co-authors' research papers on national accounting, input-output coefficients, economic theory, dynamic models, stochastic analysis, and performance analysis. The research is driven by the task to analyze national economies. The final part of the book scrutinizes the emerging Asian economies in the light of international competition.
Introduction to Statistics with SPSS offers an introduction to statistics that can be used before, during or after a course on statistics. Covering a wide range of terms and techniques, including simple and multiple regressions, this book guides the student to enter data from a simple research project into a computer, provide an adequate analysis of the data and present a report on the findings.
This short book introduces the main ideas of statistical inference in a way that is both user friendly and mathematically sound. Particular emphasis is placed on the common foundation of many models used in practice. In addition, the book focuses on the formulation of appropriate statistical models to study problems in business, economics, and the social sciences, as well as on how to interpret the results from statistical analyses. The book will be useful to students who are interested in rigorous applications of statistics to problems in business, economics and the social sciences, as well as students who have studied statistics in the past, but need a more solid grounding in statistical techniques to further their careers. Jacco Thijssen is professor of finance at the University of York, UK. He holds a PhD in mathematical economics from Tilburg University, Netherlands. His main research interests are in applications of optimal stopping theory, stochastic calculus, and game theory to problems in economics and finance. Professor Thijssen has earned several awards for his statistics teaching.
The purpose of this book is to introduce novice researchers to the tools of meta-analysis and meta-regression analysis and to summarize the state of the art for existing practitioners. Meta-regression analysis addresses the rising "Tower of Babel" that current economics and business research has become. Meta-analysis is the statistical analysis of previously published, or reported, research findings on a given hypothesis, empirical effect, phenomenon, or policy intervention. It is a systematic review of all the relevant scientific knowledge on a specific subject and is an essential part of the evidence-based practice movement in medicine, education and the social sciences. However, research in economics and business is often fundamentally different from what is found in the sciences and thereby requires different methods for its synthesis-meta-regression analysis. This book develops, summarizes, and applies these meta-analytic methods.
News Professor Cheng-Few Lee ranks #1 based on his publications in the 26 core finance journals, and #163 based on publications in the 7 leading finance journals (Source: Most Prolific Authors in the Finance Literature: 1959-2008 by Jean L Heck and Philip L Cooley (Saint Joseph's University and Trinity University).This is an extensively revised edition of a popular statistics textbook for business and economics students. The first edition has been adopted by universities and colleges worldwide, including New York University, Carnegie Mellon University and UCLA.Designed for upper-level undergraduates, MBA and other graduate students, this book closely integrates various statistical techniques with concepts from business, economics and finance and clearly demonstrates the power of statistical methods in the real world of business. While maintaining the essence of the first edition, the new edition places more emphasis on finance, economics and accounting concepts with updated sample data. Students will find this book very accessible with its straightforward language, ample cases, examples, illustrations and real-life applications. The book is also useful for financial analysts and portfolio managers.
How could Finance benefit from AI? How can AI techniques provide an edge? Moving well beyond simply speeding up computation, this book tackles AI for Finance from a range of perspectives including business, technology, research, and students. Covering aspects like algorithms, big data, and machine learning, this book answers these and many other questions.
Ranking of Multivariate Populations: A Permutation Approach with Applications presents a novel permutation-based nonparametric approach for ranking several multivariate populations. Using data collected from both experimental and observation studies, it covers some of the most useful designs widely applied in research and industry investigations, such as multivariate analysis of variance (MANOVA) and multivariate randomized complete block (MRCB) designs. The first section of the book introduces the topic of ranking multivariate populations by presenting the main theoretical ideas and an in-depth literature review. The second section discusses a large number of real case studies from four specific research areas: new product development in industry, perceived quality of the indoor environment, customer satisfaction, and cytological and histological analysis by image processing. A web-based nonparametric combination global ranking software is also described. Designed for practitioners and postgraduate students in statistics and the applied sciences, this application-oriented book offers a practical guide to the reliable global ranking of multivariate items, such as products, processes, and services, in terms of the performance of all investigated products/prototypes.
This comprehensive book is an introduction to multilevel Bayesian models in R using brms and the Stan programming language. Featuring a series of fully worked analyses of repeated-measures data, focus is placed on active learning through the analyses of the progressively more complicated models presented throughout the book. In this book, the authors offer an introduction to statistics entirely focused on repeated measures data beginning with very simple two-group comparisons and ending with multinomial regression models with many 'random effects'. Across 13 well-structured chapters, readers are provided with all the code necessary to run all the analyses and make all the plots in the book, as well as useful examples of how to interpret and write-up their own analyses. This book provides an accessible introduction for readers in any field, with any level of statistical background. Senior undergraduate students, graduate students, and experienced researchers looking to 'translate' their skills with more traditional models to a Bayesian framework, will benefit greatly from the lessons in this text.
The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors' E4 MATLAB (R) toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.
A unique and comprehensive source of information, the International Yearbook of Industrial Statistics is the only international publication providing economists, planners, policy makers and business people with worldwide statistics on current performance and trends in the manufacturing sector.This is the first issue of the annual publication which succeeds the UNIDO's Handbook of Industrial Statistics and, at the same time, replaces the United Nation's Industrial Statistics Yearbook, volume I (General Industrial Statistics). Covering more than 120 countries/areas, the new version contains data which is internationally comparable and much more detailed than that supplied in previous publications. Information has been collected directly from national statistical sources and supplemented with estimates by UNIDO. The Yearbook is designed to facilitate international comparisons relating to manufacturing activity and industrial performance. It provides data which can be used to analyse patterns of growth, structural change and industrial performance in individual industries. Data on employment trends, wages and other key indicators are also presented. Finally, the detailed information presented here enables the user to study different aspects of industry which was not possible using the aggregate data previously available.
Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed can be applied to other types of discrete-valued time series, such as binary-valued or categorical time series. Explore a Balanced Treatment of Frequentist and Bayesian Perspectives Accessible to graduate-level students who have taken an elementary class in statistical time series analysis, the book begins with the history and current methods for modeling and analyzing univariate count series. It next discusses diagnostics and applications before proceeding to binary and categorical time series. The book then provides a guide to modern methods for discrete-valued spatio-temporal data, illustrating how far modern applications have evolved from their roots. The book ends with a focus on multivariate and long-memory count series. Get Guidance from Masters in the Field Written by a cohesive group of distinguished contributors, this handbook provides a unified account of the diverse techniques available for observation- and parameter-driven models. It covers likelihood and approximate likelihood methods, estimating equations, simulation methods, and a Bayesian approach for model fitting.
Accessible to a general audience with some background in statistics and computing Many examples and extended case studies Illustrations using R and Rstudio A true blend of statistics and computer science -- not just a grab bag of topics from each
* Starts from the basics, focusing less on proofs and the high-level math underlying regressions, and adopts an engaging tone to provide a text which is entirely accessible to students who don't have a stats background * New chapter on integrity and ethics in regression analysis * Each chapter offers boxed examples, stories, exercises and clear summaries, all of which are designed to support student learning * Optional appendix of statistical tools, providing a primer to readers who need it * Code in R and Stata, and data sets and exercises in Stata and CSV, to allow students to practice running their own regressions * Author-created videos on YouTube * PPT lecture slides and test bank for instructors
* Explores the exciting and new topic of econophysics * Multidisciplinary approach, that will be of interest to students and researchers from physics, engineering, mathematics, statistics, and other physical sciences * Useful to both students and researchers
Advanced and Multivariate Statistical Methods, Seventh Edition provides conceptual and practical information regarding multivariate statistical techniques to students who do not necessarily need technical and/or mathematical expertise in these methods. This text has three main purposes. The first purpose is to facilitate conceptual understanding of multivariate statistical methods by limiting the technical nature of the discussion of those concepts and focusing on their practical applications. The second purpose is to provide students with the skills necessary to interpret research articles that have employed multivariate statistical techniques. Finally, the third purpose of AMSM is to prepare graduate students to apply multivariate statistical methods to the analysis of their own quantitative data or that of their institutions. New to the Seventh Edition All references to SPSS have been updated to Version 27.0 of the software. A brief discussion of practical significance has been added to Chapter 1. New data sets have now been incorporated into the book and are used extensively in the SPSS examples. All the SPSS data sets utilized in this edition are available for download via the companion website. Additional resources on this site include several video tutorials/walk-throughs of the SPSS procedures. These "how-to" videos run approximately 5-10 minutes in length. Advanced and Multivariate Statistical Methods was written for use by students taking a multivariate statistics course as part of a graduate degree program, for example in psychology, education, sociology, criminal justice, social work, mass communication, and nursing.
Explains modern SDC techniques for data stewards and develop tools to implement them. Explains the logic behind modern privacy protections for researchers and how they may use publicly released data to generate valid statistical inferences-as well as the limitations imposed by SDC techniques.
This book provides an accessible guide to price index and hedonic techniques, with a focus on how to best apply these techniques and interpret the resulting measures. One goal of this book is to provide first-hand experience at constructing these measures, with guidance on practical issues such as what the ideal data would look like and how best to construct these measures when the data are less than ideal. A related objective is to fill the wide gulf between the necessarily simplistic elementary treatments in textbooks and the very complex discussions found in the theoretical and empirical measurement literature. Here, the theoretical results are summarized in an intuitive way and their numerical importance is illustrated using data and results from existing studies. Finally, while the aim of much of the existing literature is to better understand official price indexes like the Consumer Price Index, the emphasis here is more practical: to provide the needed tools for individuals to apply these techniques on their own. As new datasets become increasingly accessible, tools like these will be needed to obtain summary price measures. Indeed, these techniques have been applied for years in antitrust cases that involve pricing, where economic experts typically have access to large, granular datasets.
Analytics is one of a number of terms which are used to describe a data-driven more scientific approach to management. Ability in analytics is an essential management skill: knowledge of data and analytics helps the manager to analyze decision situations, prevent problem situations from arising, identify new opportunities, and often enables many millions of dollars to be added to the bottom line for the organization. The objective of this book is to introduce analytics from the perspective of the general manager of a corporation. Rather than examine the details or attempt an encyclopaedic review of the field, this text emphasizes the strategic role that analytics is playing in globally competitive corporations today. The chapters of this book are organized in two main parts. The first part introduces a problem area and presents some basic analytical concepts that have been successfully used to address the problem area. The objective of this material is to provide the student, the manager of the future, with a general understanding of the tools and techniques used by the analyst. |
![]() ![]() You may like...
Frida Kahlo Pink (Blank Sketch Book)
Flame Tree Studio
Notebook / blank book
|