![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering
This book focuses on the design, fabrication and applications of carbon-based materials for lithium-sulfur (Li-S) batteries. It provides insights into the localized electrochemical transition of the "solid-solid" reaction instead of the "sulfur-polysulfides-lithium sulfides" reaction through the desolvation effect in subnanometer pores; demonstrates that the dissolution/diffusion of polysulfide anions in electrolyte can be greatly reduced by the strong binding of sulfur to the oxygen-containing groups on reduced graphene oxide; manifests that graphene foam can be used as a 3D current collector for high sulfur loading and high sulfur content cathodes; and presents the design of a unique sandwich structure with pure sulfur between two graphene membranes as a very simple but effective approach to the fabrication of Li-S batteries with ultrafast charge/discharge rates and long service lives. The book offers an invaluable resource for researchers, scientists, and engineers in the field of energy storage, providing essential insights, useful methods, and practical ideas that can be considered for the industrial production and future application of Li-S batteries.
This book provides an analysis of the role of fog computing, cloud computing, and Internet of Things in providing uninterrupted context-aware services as they relate to Healthcare 4.0. The book considers a three-layer patient-driven healthcare architecture for real-time data collection, processing, and transmission. It gives insight to the readers for the applicability of fog devices and gateways in Healthcare 4.0 environments for current and future applications. It also considers aspects required to manage the complexity of fog computing for Healthcare 4.0 and also develops a comprehensive taxonomy.
- the book provides a short and accessible introduction to AI for learners - it examines seven different educational roles and settings, from AI as a peer to AI as a tutor and AI as textbook, among others - it considers both opportunities and risks: technological developments as well as ethical considerations
Solid chemisorption technology is an effective form of energy conversion for recovering low-grade thermal energy, but limited thermal conductivity and agglomeration phenomena greatly limit its performance. Over the past 20 years, researchers have explored the use of thermal conductive porous matrix to improve heat and mass transfer performance. Their efforts have yielded composite sorption technology, which is now extensively being used in refrigeration, heat pumps, energy storage, and de-NOx applications. This book reviews the latest technological advances regarding composite solid sorbents. Various development methods are introduced and compared, kinetic models are presented, and different cycles are analyzed. Given its scope, the book will benefit experts involved in developing novel materials and cycles for energy conversion, as well as engineers working to develop effective commercialized energy conversion systems based on solid sorption technology
This book comprises select proceedings of the international conference ETAEERE 2020. This volume covers latest research in advanced approaches in automation, control based devices, and adaptive learning mechanisms. The contents discuss the complex operations and behaviors of different systems or machines in different environments. Some of the areas covered include control of linear and nonlinear systems, intelligent systems, stochastic control, knowledge-based systems applications, fault diagnosis and tolerant control, and real-time control applications. The contents of this volume can be useful for researchers as well as professionals working in control and automation.
This book brings together real-world accounts of using voltage stability assessment (VSA) and transient stability assessment (TSA) tools for grid management. Chapters are written by leading experts in the field who have used these tools to manage their grids and can provide readers with a unique and international perspective. Case studies and success stories are presented by those who have used these tools in the field, making this book a useful reference for different utilities worldwide that are looking into implementing these tools, as well as students and practicing engineers who are interested in learning the real-time applications of VSA and TSA for grid operation.
This book examines a broad range of advances in hydrogen energy and alternative fuel developments and their role in the energy transition. The respective contributions were presented at the International Symposium on Sustainable Hydrogen, held in Algiers, Algeria on November 27-28, 2019. The transition from non-renewable polluting energy to sustainable green energy requires not only new energy sources but also new storage techniques and smart energy management. This situation has sparked renewed interest in hydrogen and alternative fuels, as they could help meet these needs. Indeed, hydrogen can not only be used as a clean energy vector or as an alternative fuel, but also as a storage medium or as an intermediary that enables improved energy management. This text offers a valuable reference guide for those working in the professional energy sector, as well as for students and instructors in academia who want to learn about the state of the art and future directions in the fields of hydrogen energy, alternative fuels and sustainable energy development.
This book includes high-quality research papers presented at Symposium on Power Electronic and Renewable Energy Systems Control (PERESC 2020), which is held at the School of Electrical Sciences, IIT Bhubaneswar, Odisha, India, during 4-5 December 2020. The book covers original work in power electronics which has greatly enabled integration of renewable and distributed energy systems, control of electric machine drives, high voltage system control and operation. The book is highly useful for academicians, engineers, researchers and students to be familiar with the latest state of the art in power electronics technology and its applications.
An informal and highly accessible writing style, a simple treatment of mathematics, and clear guide to applications have made this book a classic text in electrical and electronic engineering. Students will find it both readable and comprehensive. The fundamental ideas relevant to the understanding of the electrical properties of materials are emphasized; in addition, topics are selected in order to explain the operation of devices having applications (or possible future applications) in engineering. The mathematics, kept deliberately to a minimum, is well within the grasp of a second-year student. This is achieved by choosing the simplest model that can display the essential properties of a phenomenom, and then examining the difference between the ideal and the actual behaviour. The whole text is designed as an undergraduate course. However most individual sections are self contained and can be used as background reading in graduate courses, and for interested persons who want to explore advances in microelectronics, lasers, nanotechnology, and several other topics that impinge on modern life.
This book provides in-depth insights into use cases implementing artificial intelligence (AI) applications at the edge. It covers new ideas, concepts, research, and innovation to enable the development and deployment of AI, the industrial internet of things (IIoT), edge computing, and digital twin technologies in industrial environments. The work is based on the research results and activities of the AI4DI (ECSEL JU) project, including an overview of industrial use cases, research, technological innovation, validation, and deployment. This book's sections build on the research, development, and innovative ideas elaborated for applications in five industries: automotive, semiconductor, industrial machinery, food and beverage, and transportation. The articles included under each of these five industrial sectors discuss AI-based methods, techniques, models, algorithms, and supporting technologies, such as IIoT, edge computing, digital twins, collaborative robots, silicon-born AI circuit concepts, neuromorphic architectures, and augmented intelligence, that are anticipating the development of Industry 5.0. Automotive applications cover use cases addressing AI-based solutions for inbound logistics and assembly process optimisation, autonomous reconfigurable battery systems, virtual AI training platforms for robot learning, autonomous mobile robotic agents, and predictive maintenance for machines on the level of a digital twin. AI-based technologies and applications in the semiconductor manufacturing industry address use cases related to AI-based failure modes and effects analysis assistants, neural networks for predicting critical 3D dimensions in MEMS inertial sensors, machine vision systems developed in the wafer inspection production line, semiconductor wafer fault classifications, automatic inspection of scanning electron microscope cross-section images for technology verification, anomaly detection on wire bond process trace data, and optical inspection. The use cases presented for machinery and industrial equipment industry applications cover topics related to wood machinery, with the perception of the surrounding environment and intelligent robot applications. AI, IIoT, and robotics solutions are highlighted for the food and beverage industry, presenting use cases addressing novel AI-based environmental monitoring; autonomous environment-aware, quality control systems for Champagne production; and production process optimisation and predictive maintenance for soybeans manufacturing. For the transportation sector, the use cases presented cover the mobility-as-a-service development of AI-based fleet management for supporting multimodal transport. This book highlights the significant technological challenges that AI application developments in industrial sectors are facing, presenting several research challenges and open issues that should guide future development for evolution towards an environment-friendly Industry 5.0. The challenges presented for AI-based applications in industrial environments include issues related to complexity, multidisciplinary and heterogeneity, convergence of AI with other technologies, energy consumption and efficiency, knowledge acquisition, reasoning with limited data, fusion of heterogeneous data, availability of reliable data sets, verification, validation, and testing for decision-making processes.
The use of artificial intelligence, especially in the field of optimization is increasing day by day. The purpose of this book is to explore the possibility of using different kinds of optimization algorithms to advance and enhance the tools used for computer and electrical engineering purposes.
The proliferation of Internet of Things (IoT) has enabled rapid enhancements for applications, not only in home and environment scenarios, but also in factory automation. Now, Industrial Internet of Things (IIoT) offers all the advantages of IoT to industry, with applications ranging from remote sensing and actuating, to de-centralization and autonomy. In this book, the editor presents the IIoT and its place during the new industrial revolution (Industry 4.0) as it takes us to a better, sustainable, automated, and safer world. The book covers the cross relations and implications of IIoT with existing wired/wireless communication/networking and safety technologies of the Industrial Networks. Moreover, the book includes practical use-case scenarios from the industry for the application of IIoT on smart factories, smart cities, and smart grids. IoT-driven advances in commercial and industrial building lighting and in street lighting are presented as an example to shed light on the application domain of IIoT. The state of the art in Industrial Automation is also presented to give a better understanding of the enabling technologies, potential advantages, and challenges of the Industry 4.0 and IIoT. Finally, yet importantly, the security section of the book covers the cyber-security related needs of the IIoT users and the services that might address these needs. User privacy, data ownership, and proprietary information handling related to IIoT networks are all investigated. Intrusion prevention, detection, and mitigation are all covered at the conclusion of the book.
The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan. Taking in view that the power plant performance can be evaluated not only based on thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: * selection of critical equipment and components, * definition of maintenance plans, mainly for auxiliary systems, and * execution of decision analysis based on risk concepts. The comprehensive presentation of each analysis allows future application of the methodology making Thermal Power Plant Performance Analysis a key resource for undergraduate and postgraduate students in mechanical and nuclear engineering.
Ensuring cybersecurity for smart cities is crucial for a sustainable cyber ecosystem. Given the undeniable complexity of smart cities, fundamental issues such as device configurations and software updates should be addressed when it is most needed to fight cyber-crime and ensure data privacy. This book addresses the cybersecurity challenges associated with smart cities, aiming to provide a bigger picture of the concepts, intelligent techniques, practices and research directions in this area. Furthermore, this book serves as a single source of reference for acquiring knowledge on the technology, processes and people involved in the next-generation of cyber-smart cities.
This textbook provides an introduction to probabilistic reliability analysis of power systems. It discusses a range of probabilistic methods used in reliability modelling of power system components, small systems and large systems. It also presents the benefits of probabilistic methods for modelling renewable energy sources. The textbook describes real-life studies, discussing practical examples and providing interesting problems, teaching students the methods in a thorough and hands-on way. The textbook has chapters dedicated to reliability models for components (reliability functions, component life cycle, two-state Markov model, stress-strength model), small systems (reliability networks, Markov models, fault/event tree analysis) and large systems (generation adequacy, state enumeration, Monte-Carlo simulation). Moreover, it contains chapters about probabilistic optimal power flow, the reliability of underground cables and cyber-physical power systems. After reading this book, engineering students will be able to apply various methods to model the reliability of power system components, smaller and larger systems. The textbook will be accessible to power engineering students, as well as students from mathematics, computer science, physics, mechanical engineering, policy & management, and will allow them to apply reliability analysis methods to their own areas of expertise.
This book addresses the implications of the Industry 4.0 paradigm in design for the environment. We examine the opportunities for, and challenges of, the implications of cyber-physical systems, big data analytics, Internet of things, additive manufacturing, and simulation in a range of areas in an eco-design context. These include selecting low impact materials, choosing manufacturing processes with environmental considerations, end of life strategies, applying design approaches for disassembly, integrating economic and social components into environmental studies, and stakeholder's involvement. This volume takes a step toward this journey to explore how the three pillars of technology, sustainability, and evolving consumers could shape the future of the product's design.
The book "Analysis and Design of Control Systems using MATLAB", is designed as a supplement to an introductory course in feedback control systems for undergraduate or graduate engineering students of all disciplines. Feedback control systems engineering is a multidisciplinary subject and presents a control engineering methodology based on mathematical fundamentals and stresses physical system modeling.This book includes the coverage of classical methods of control systems engineering: introduction to control systems, matrix analysis, Laplace transforms, mathematical modeling of dynamic systems, control system representation, performance and stability of feedback systems, analysis and design of feedback control systems, state space analysis and design, and MATLAB basics and MATLAB tutorial. The numerous worked examples offer detailed explanations, and guide the students through each set of problems to enable them to save a great deal of time and effort in arriving at an understanding of problems in this subject. Extensive references to guide the students to further sources of information on control systems and MATLAB is provided. In addition to students, practising engineers will also find this book immensely useful.
This book focuses on soft computing techniques for enhancing voltage security in electrical power networks. Artificial neural networks (ANNs) have been chosen as a soft computing tool, since such networks are eminently suitable for the study of voltage security. The different architectures of the ANNs used in this book are selected on the basis of intelligent criteria rather than by a "brute force" method of trial and error. The fundamental aim of this book is to present a comprehensive treatise on power system security and the simulation of power system security. The core concepts are substantiated by suitable illustrations and computer methods. The book describes analytical aspects of operation and characteristics of power systems from the viewpoint of voltage security. The text is self-contained and thorough. It is intended for senior undergraduate students and postgraduate students in electrical engineering. Practicing engineers, Electrical Control Center (ECC) operators and researchers will also find the book useful.
This book is a collection of papers presented at the International Conference on Renewable Power (ICRP 2020), held during 13-14 July 2020 in Rajouri, Jammu, India. The book covers different topics of renewable energy sources in modern power systems. The book focusses on smart grid technologies and applications, renewable power systems including solar PV, solar thermal, wind, power generation, transmission and distribution, transportation electrification and automotive technologies, power electronics and applications in renewable power system, energy management and control system, energy storage in modern power system, active distribution network, artificial intelligence in renewable power systems, and cyber-physical systems and Internet of things in smart grid and renewable power.
This book concentrates on a wide range of advances related to IT cybersecurity management. The topics covered in this book include, among others, management techniques in security, IT risk management, the impact of technologies and techniques on security management, regulatory techniques and issues, surveillance technologies, security policies, security for protocol management, location management, GOS management, resource management, channel management, and mobility management. The authors also discuss digital contents copyright protection, system security management, network security management, security management in network equipment, storage area networks (SAN) management, information security management, government security policy, web penetration testing, security operations, and vulnerabilities management. The authors introduce the concepts, techniques, methods, approaches and trends needed by cybersecurity management specialists and educators for keeping current their cybersecurity management knowledge. Further, they provide a glimpse of future directions where cybersecurity management techniques, policies, applications, and theories are headed. The book is a rich collection of carefully selected and reviewed manuscripts written by diverse cybersecurity management experts in the listed fields and edited by prominent cybersecurity management researchers and specialists.
Nuclear isomers are the long-lived excited states of nuclei. Therefore, they constitute the meta-stable landscape of nuclei. The first isomer was probably identified as early as 1921. Since then, the number of isomers has been growing steadily picking up pace in recent times. Interest in nuclear isomers has grown in recent years for many reasons. The experimental capabilities to observe isomers have been expanding to cover a wider time scale. This has opened up new windows to observe and decipher the underlying nuclear structure and interactions. Further, the isomers are beginning to be seen as potential energy storage devices and nuclear clocks with a host of applications. Possible discovery of a gamma ray laser has also ignited many researches in this area. Isomers now cover the full nuclear landscape with structural peculiarities specific to each region of the nuclear chart. Exploring the nuclear isomers, therefore, provides a novel insight into the nuclear structure properties of that region. There could be many different reasons for the long lives of excited nuclear states, which lead to the classification of isomers. Isomers are broadly classified in to four classes: Spin isomers, shape isomers, fission isomers and K-isomers. Seniority isomers have also been identified which are often clubbed with the spin isomers. We discuss this classification and the underlying causes in detail. Many examples are considered to highlight the large variety of isomers. The range of half-lives covered by the isomers varies from billions of years to nano-seconds and even small. To understand this vast variation is a fascinating endeavor in itself. The angular momentum couplings, nuclear shapes, pairing etc. conspire together to give this vast range of half-lives. We go through these aspects in detail, highlighting the various selection rules at work. It is interesting that the nuclear shapes play an important role in many types of isomers. The spin isomers, which occur in spherical or, near-spherical nuclei, are generally confined to the magic numbers. Seniority isomers are largely found in semi-magic nuclei and should be explored in conjunction with the spin isomers. New developments in seniority and generalized seniority isomers are discussed in detail. As the nuclei deform; the nature of isomers changes. We take a close look into the decay properties of isomers in deformed nuclei, particularly the K isomers, the shape isomers and the fission isomers. While doing so, the theoretical and experimental developments of isomers are also addressed. A number of open questions are posed for possible new experiments and better understanding of the isomers.
This book consists of chapters dedicated to the questions of cyber-physical system design and its usage for the chemical industry and new material design. Also, the contribution of the book covers scientific research and their results for cyber-physical systems design and application in the energy domain and solutions regarding engineering education for cyber-physical systems design. The book offers unique content for researchers and practitioners who are looking for new knowledge and skills in the framework of Industry 4.0 solutions. The book also benefits researchers and practitioners in chemistry and new material design and manufacturing to understand how cyber-physical systems can be applied to increase efficiency and performance. The target audience of the book are practitioners, enterprises representatives, scientists, Ph.D. and master students who perform scientific research or applications of cyber-physical systems in the concept of Industry 4.0.
This book is intended to serve as a textbook for students of electrical engineering at the graduate level. The inclusion of a number of problems, many of which are completely solved, makes this book very useful in understanding topics in applied statistics and physics of dielectrics. Also, the contents are so designed as to provide a broad picture of dielectrics and electrical insulation. In view of this, the author believes that manufacturers of high voltage and high power equipments can be benefited to a considerable extent. The book could be of particular interest to research engineers/scientists working in research laboratories and conducting applied insulation research. Power supply utilities can consult this book for scheduling the diagnostic testing and condition monitoring schedules. Station engineers will be able to derive support in analyzing, for example, gas analysis and partial discharge data, if they are equipped with facilities to carry out such measurements.
This book introduces a passivity-based approach which simplifies the controller design task for AC-motors. It presents the application of this novel approach to several classes of AC motors, magnetic levitation systems, microelectromechanical systems (MEMS) and rigid robot manipulators actuated by AC motors. The novel passivity-based approach exploits the fact that the natural energy exchange existing between the mechanical and the electrical subsystems allows the natural cancellation of several high order terms during the stability analysis. This allows the authors to present some of the simplest controllers proposed in scientific literature, but provided with formal stability proofs. These simple control laws will be of use to practitioners as they are robust with respect to numerical errors and noise amplification, and are provided with tuning guidelines. Energy-based Control of Electromechanical Systems is intended for both theorists and practitioners. Therefore, the stability proofs are not based on abstract mathematical ideas but Lyapunov stability theory. Several interpretations of the proofs are given along the body of the book using simple energy ideas and the complete proofs are included in appendices. The complete modeling of each motor studied is also presented, allowing for a thorough understanding. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control. |
You may like...
Grids, P2P and Services Computing
Frederic Desprez, Vladimir Getov, …
Hardcover
R4,121
Discovery Miles 41 210
Air Traffic Control Automated Systems
Bestugin A.R., Eshenko A.A., …
Hardcover
R3,133
Discovery Miles 31 330
Evolutionary Multi-Agent Systems - From…
Aleksander Byrski, Marek Kisiel-Dorohinicki
Hardcover
R4,287
Discovery Miles 42 870
Multiple Instance Learning - Foundations…
Francisco Herrera, Sebastian Ventura, …
Hardcover
R2,669
Discovery Miles 26 690
|