![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering
This book is the first systematic exposition on the emerging domain of wireless power transfer in ad hoc communication networks. It selectively spans a coherent, large spectrum of fundamental aspects of wireless power transfer, such as mobility management in the network, combined wireless power and information transfer, energy flow among network devices, joint activities with wireless power transfer (routing, data gathering and solar energy harvesting), and safety provisioning through electromagnetic radiation control, as well as fundamental and novel circuits and technologies enabling the wide application of wireless powering. Comprising a total of 27 chapters, contributed by leading experts, the content is organized into six thematic sections: technologies, communication, mobility, energy flow, joint operations, and electromagnetic radiation awareness. It will be valuable for researchers, engineers, educators, and students, and it may also be used as a supplement to academic courses on algorithmic applications, wireless protocols, distributed computing, and networking.
Metrology is part of the essential but largely hidden infrastructure of the modern world. This book concentrates on the infrastructure aspects of metrology. It introduces the underlying concepts: International system of units, traceability and uncertainty; and describes the concepts that are implemented to assure the comparability, reliability and quantifiable trust of measurement results. It is shown what benefits the traditional metrological principles have in fields as medicine or in the evaluation of cyber physical systems.
Provides a comprehensive guide to measurements with lasers Examines the design of optical and laser-based instruments Reviews the development of measurement strategies Includes two new chapters on self-mixing interferometry and quantum sensing Includes end of chapter problems
The Finite-Difference Time-domain (FDTD) method allows you to
compute electromagnetic interaction for complex problem geometries
with ease. The simplicity of the approach coupled with its
far-reaching usefulness, create the powerful, popular method
presented in The Finite Difference Time Domain Method for
Electromagnetics. This volume offers timeless applications and
formulations you can use to treat virtually any material type and
geometry.
Power System Operation and Planning under Uncertainty provides the mathematical models and tools needed to plan and operate future power systems. It discusses the challenging task of the integration of a high penetration of renewable energies and electric vehicles within existing power systems. This book explores the uncertainty faced by power systems that is associated with the evolution of capital costs, technical developments of immature renewable technologies and energy storage systems, the number of electrical vehicles, and the participation of electricity end users in demand response programs. It helps provide solutions, and points to areas of further research that will help resolve. The models, tools and techniques described in this book are of interest for researches of energy systems, professionals working as power system planners or operators, and for graduate students in power engineering and operations research.
Real-Time Simulation Technology for Modern Power Electronics provides an invaluable foundation and state-of-the-art review on the most advanced implementations of real-time simulation as it appears poised to revolutionize the modeling of power electronics. The book opens with a discussion of power electronics device physic modeling, component modeling, and power converter modeling before addressing numerical methods to solve converter model, emphasizing speed and accuracy. It discusses both CPU-based and FPGA-based real-time implementations and provides an extensive review of current applications, including hardware-in-the-loop and its case studies in the micro-grid and electric vehicle applications. The book closes with a review of the near and long-term outlooks for the evolving technology. Collectively, the work provides a systematic resource for students, researchers, and engineers in the electrical engineering and other closely related fields.
This book introduces the working principle, materials, and design of seawater batteries and reviews the current state-of-the-art technologies in cells and modules. This book looks at the characteristics of seawater, then reviews the basic electrochemical processes involved in the storage of electrical charge in seawater batteries, and then discusses the development of anode, cathode, and membrane materials, and cell engineering progress. In particular, Chapter 3 contains the latest research and development results for rechargeable seawater batteries. The book has been written for a broad readership including graduate students, academic and industrial researchers working on sustainable, low-cost energy.
This volume presents the refereed proceedings of the Conference in Operator The ory in Honour of Moshe Livsic 80th Birthday, held June 29 to July 4, 1997, at the Ben-Gurion University of the Negev (Beer-Sheva, Israel) and at the Weizmann In stitute of Science (Rehovot, Israel). The volume contains papers in operator theory and its applications (understood in a very wide sense), many of them reflecting, 1 directly or indirectly, a profound impact of the work of Moshe Livsic. Moshe (Mikhail Samuilovich) Livsic was born on July 4, 1917, in the small town of Pokotilova near Uman, in the province of Kiev in the Ukraine; his family moved to Odessa when he was four years old. In 1933 he enrolled in the Department of Physics and Mathematics at the Odessa State University, where he became a student of M. G. Krein and an active participant in Krein's seminar - one of the centres where the ideas and methods of functional analysis and operator theory were being developed. Besides M. G. Krein, M. S. Livsic was strongly influenced B. Va. Levin, an outstanding specialist in the theory of analytic functions. A by deep understanding of operator theory as well as function theory and a penetrating search of connections between the two, were to become one of the landmarks of M. S. Livsic's work. M. S. Livsic defended his Ph. D.
The volume contains peer-reviewed proceedings of EPREC 2021 with a focus on control applications in the modern power system. The book includes original research and case studies that present recent developments in the control system, especially load frequency control, wide-area monitoring, control & instrumentation, optimization, intelligent control, energy management system, SCADA systems, etc. The book will be a valuable reference guide for beginners, researchers, and professionals interested in advancements in the control system.
The calculation of short-circuit currents is a central task for Power System engineers, as they are essential parameters for the design of electrical equipment and installations, the operation of power systems and the analysis of outages and faults. Short-circuit Currents gives an overview of the components within power systems with respect to the parameters needed for short-circuit current calculation. It also explains how to use the system of symmetrical components to analyse different types of short-circuits in power systems. The thermal and elctromagnetic effects of short-circuit currents on equipment and installations, short-time interference problems and measures for the limitation of short-circuit currents are also discussed. Detailed calculation procedures and typical data of equipment are provided in a separate chapter for easy reference, and worked examples are included throughout.
This book focuses on the analytical modeling of fractional-slot concentrated-wound (FSCW) interior permanent magnet (IPM) machines and establishes a basis for their magnetic and electrical analysis. Aiming at the precise modeling of FSCW IPM machines' magnetic and electrical characteristics, it presents a comprehensive mathematical treatment of the stator magneto-motive force (MMF), the IPM rotor non-homogeneous magnetic saturation, and its airgap flux density. The FSCW stator spatial MMF harmonics are analytically formulated, providing a basis on which a novel heuristic algorithm is then proposed for the design of optimal winding layouts for multiphase FSCW stators with different slot/pole combinations. In turn, the proposed mathematical models for the FSCW stator and the IPM rotor are combined to derive detailed mathematical expressions of its operational inductances, electromagnetic torque, torque ripple and their respective subcomponents, as a function of the machine geometry and design parameters. Lastly, the proposed theories and analytical models are validated using finite element analysis and experimental tests on a prototype FSCW IPM machine.
Energy consumption is of great interest to manufacturing companies. Beyond considering individual processes and machines, the perspective on process chains and factories as a whole holds major potentials for energy efficiency improvements. To exploit these potentials, dynamic interactions of different processes as well as auxiliary equipment (e.g. compressed air generation) need to be taken into account. In addition, planning and controlling manufacturing systems require balancing technical, economic and environmental objectives. Therefore, an innovative and comprehensive methodology - with a generic energy flow-oriented manufacturing simulation environment as a core element - is developed and embedded into a step-by-step application cycle. The concept is applied in its entirety to a wide range of case studies such as aluminium die casting, weaving mills, and printed circuit board assembly in order to demonstrate the broad applicability and the benefits that can be achieved.
The reliability of induction motors is a major requirement in many industrial applications. It is especially important where an unexpected breakdown might result in the interruption of critical services such as military operations, transportation, aviation, and medical applications. Advanced Condition Monitoring and Fault Diagnosis of Electric Machines is a collection of innovative research on various issues related to machinery condition monitoring, signal processing and conditioning, instrumentation and measurements, and new trends in condition monitoring. It also pays special attention to the fault identification process. While highlighting topics including spectral analysis, electrical engineering, and bearing faults, this book is an ideal reference source for electrical engineers, mechanical engineers, researchers, and graduate-level students seeking current research on various methods of maintaining machinery.
Showing the relation of physics to circuit interruption technology, describes for engineers the switching phenomena, test procedures, and applications of modern, high-voltage circuit breakers, especially SF, gas-blast, and the vacuum types used in medium-voltage ranges. Applies the physical arc mode
The successful transmission of electrical power beneath the surface of the earth depends on a number of factors including ambient temperature, sheath bonding, cable laying depth, and especially the formation of dry zones around underground cables. Environmental Impacts on Underground Power Distribution studies the factors which affect the maximum current rating of subterranean power cables as well as various methods to maximize electrical current transmission. Focusing on the latest tools, methodologies, and research in the field, this publication is designed for use by electrical engineers, academicians, researchers, and upper-level students.
As modern society has become increasingly reliant on electricity, disturbances to the power supply system have become a worldwide industry concern. The range and impact of disturbances are addressed in this comprehensive account of the planning, operation and control of power systems during emergencies.
Voltage references represent important VLSI structures, having multiple appli- tions in analog and mixed-signal circuits: measurement equipment, voltage re- lators, temperature sensors, data acquisition systems, memories, or AD and DA converters. Operating as a subcircuit in a complex system, an important requi- ment for this class of circuits is represented by the possibility of implementation in the existing technology, using the available active and passive devices. The most important performances of a voltage reference circuit are represented by temperature behavior, power supply rejection ratio, transient response and, for the latest designs, by low-power low-voltage operation. Depending on the load - quirements, the output of the circuit can be regulated or unregulated. In order to reduce the sensitivity of the reference voltage with respect to the supply voltage variations, modi?ed cascode structures can be implemented, a trade-off between line regulation and low-voltage operation being necessary in this case. A large bandwidth of the voltage reference improves the transient behavior of the circuit, implying also a good noise rejection. Referringtothe possibilities ofimplementinga voltagereferencecircuit, two d- ferent approaches could be identi?ed: voltage-mode and current-mode topologies, being also possible to design a mixed-mode voltage reference
A comprehensive and up-to-date reference book on modern electric vehicle technology, which covers the engineering philosophy, state-of-the-art technology, and commercialisation of electrical vehicles.
This text seeks to illuminate, mainly for the electrical power engineers of the future, the topic of large scale solar flux gathering schemes, which arguably represent the major source of renewable power available. The aim of the content is to impart, from an electromagnetic perspective, a deep and sound understanding of the topic of solar flux collection, ranging from the characteristics of light to the properties of antennas. To do this five chapters are employed to provide a thorough grounding in relevant aspects of electromagnetism and electromagnetic waves including optics, electromagnetic radiation and reception, aperture antennas and array antennas and the quantum electrodynamics aspects of optical absorption, as it relates to photovoltaic techniques. The principles developed in these chapters are then used to underpin and elucidate the main chapters on photovoltaic collectors, concentrated solar power collectors, satellite based collection systems and optical nantennas. To establish the novel and transformative renewable technologies, which civilisation will soon require, in order to achieve sustainability quickly and effectively, the availability of professional engineers and scientists with a thorough and commanding grasp of the fundamental science is an absolutely essential prerequisite. This book provides this for solar power generating systems.
The computer hardware and software industry is committed to using formal methods. As a result, it is crucial that students who take automata theory and logic courses retain what they have learned and understand how to use their knowledge. Yet many textbooks typically emphasize automata theory only, not logic, thus losing a valuable opportunity to tie these subjects together and reinforce learning. In fact, automata theory and logic evolved hand-in-hand, yet this connection was severed in the '70s as separate automata-theory and logic courses became possible. Now, with computer science departments suffering from overcrowded syllabi, it is often possible for undergraduates to get a BS without having had to take a course in mathematical logic Today's students want to know how knowledge can work for them - learning theory as a tool is preferable to learning theory for theory's sake. To prove that theoretical tenents are not only applicable, but also necessary and relevant, useful examples must be presented. This textbook uses interactive tools throughout, such as simple BDD and SAT tools. shown to be both inviting and current. Topics are also illustrated in multiple domains so that information is reinforced and students can begin to tie theory and logic together. Having used this book, students will not only know and understand automata theory, but also be able to apply their knowledge in real practice.
A large number of solar cell and solar cell systems are described in this volume. The theory of their operation, their design and the levels of their performance is discussed. Originally the book appeared in 1978 but extensive change over the intervening years in the fields of energy generation and consumption, solar energy and solar cells, has necessitated the publication of an updated version. The text initially surveys the requirements of humanity, the subsequent need for solar cells, the nature of sunlight and the properties of semiconductors. Concrete examples, extensive references and theoretical arguments are then used to present a comparison of options available in the design and operation of solar cells and solar cell systems. The cells - constructed from single, crystal, polycrystalline and amorphous semiconductors - and the systems - have varying designs and differing levels of solar energy for input and produce electricity or electrical and thermal energies. Solar cell production, economics and environmental effects are considered throughout the publication.
This brochure offers numerical models of wind-induced aeolian vibrations and sub-span oscillations of the conductors. It highlights what can be expected from numerical models regarding conductor vibrations. Assessment of the aeolian vibration condition of particular lines, with conductors whose mechanical properties are poorly defined, or with special terrain conditions, may require field measurements; Analytical methods based on the EBP and shaker-based technology can provide a useful tool to design damping systems for the protection of single conductors against aeolian vibrations This work reports the state of the art for professionals regarding aeolian vibrations and subspan oscillations modelling.
This book provides an in-depth overview of artificial intelligence and deep learning approaches with case studies to solve problems associated with biometric security such as authentication, indexing, template protection, spoofing attack detection, ROI detection, gender classification etc. This text highlights a showcase of cutting-edge research on the use of convolution neural networks, autoencoders, recurrent convolutional neural networks in face, hand, iris, gait, fingerprint, vein, and medical biometric traits. It also provides a step-by-step guide to understanding deep learning concepts for biometrics authentication approaches and presents an analysis of biometric images under various environmental conditions. This book is sure to catch the attention of scholars, researchers, practitioners, and technology aspirants who are willing to research in the field of AI and biometric security. |
You may like...
On-Site Guide (BS 7671:2018+A2:2022)
The Institution of Engineering and Technology
Spiral bound
R1,080
Discovery Miles 10 800
Uncertainties in Modern Power Systems
Ahmed F. Zobaa, Shady H.E Abdel Aleem
Paperback
R3,339
Discovery Miles 33 390
Hybrid-Renewable Energy Systems in…
Hina Fathima, Prabaharan N, …
Paperback
Power System Analysis and Design, SI…
J. Duncan Glover, Mulukutla Sarma, …
Paperback
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
|