Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering
Blockchain technology has been penetrating every aspect of Information and Communications Technology (ICT), and its use has been growing rapidly in recent years. The interest and development of this technology has primarily been driven by the enormous value growth of cryptocurrencies and large investments of venture capital in blockchain start-ups. Blockchain for Smart Systems: Computing Technologies and Applications is intended to clarify and define, in simple terms, the technology behind blockchain. It provides a deep dive into the core fundamentals of blockchain: hashing algorithm behind each block, distributed technology, smart contracts, and private vs. public blockchain. Features Discusses fundamental theories of practical and sophisticated applications of blockchain technology Includes case studies Discusses the concepts with illustrations, appropriate figures, tables, and simple language This book is primarily aimed at undergraduates, graduates, research scholars, academicians, and industry and technology enthusiasts working in various aspects of blockchain technology.
Articulates a series of scientific and technological developments described in a didactic way Shows a broad view of biometrics in several contexts: Current cases of study in five different areas Provides experimental results in different environments (availability of data and computer code to reproduce the experiments) Includes transdisciplinary approaches and discussions for each chapter Innovation as part of the final cases of study: developments are already affecting the new businesses of the digital age and the era of the brain
Energy Systems Transition: Digitalization, Decarbonization, Decentralization, and Democratization provides a thorough multidisciplinary overview of the operation of modern green energy systems and examines the role of 4D energy transition in global decarbonization mitigation efforts for meeting long-term climate goals. Contributions present practical aspects and approaches with evidence from applications to real-world energy systems, offering in-depth technical discussions, case studies, and examples to help readers understand the methods, current challenges, and future directions. A hands-on reference to energy distribution systems, it is suitable for researchers and industry practitioners from different branches of engineering, energy, data science, economics, and operation research.
Updated to reflect the 2020 National Electrical Code (NEC), Ugly's Conduit Bending, 2020 Edition, is a quick, on-the-job reference specifically designed to provide the most commonly required information on how to properly bend conduit, including information on bending types and techniques. An ideal tool for electricians, contractors, instructors, and students, this essential pocket guide uses diagrams, calculations, illustrations, photos, and quick explanations to ensure bending is completed safely and correctly. Features & Benefits: Contains numerous examples of how to perform conduit bends Offers easy-to-follow steps for performing bends while on the job Includes photos to illustrate exactly how to properly and safely, bend conduit at each step of the process
"Thermo-Fluid Behaviour of Periodic Cellular Metals" introduces the study of coupled thermo-fluid behaviour of cellular metals with periodic structure in response to thermal loads, which is an interdisciplinary research area that requires a concurrent-engineering approach. The book, for the first time, systematically adopts experimental, numerical, and analytical approaches, presents the fluid flow and heat transfer in periodic cellular metals under forced convection conditions, aiming to establish structure-property relationships for tailoring material structures to achieve properties and performance levels that are customized for defined multifunctional applications. The book, as a textbook and reference book, is intended for both academic and industrial people, including graduate students, researchers and engineers. Dr. Tian Jian Lu is a professor at the School of Aerospace, Xi an Jiaotong University, Xi an, China. Dr. Feng Xu is a professor at the Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi an Jiaotong University. Dr. Ting Wen is now an engineer at Shell Global Solutions Inc. Dr. Lu and Dr. Xu are also affiliated with Biomedical Engineering and Biomechanics Center, Xi an Jiaotong University."
A comprehensive approach to Wind Turbine Generator Systems (WTGS) and their operation in dynamic electric power system analysis. The presented advanced models arose from the author's research. They describe the complicated dynamical system behavior of wind turbines much better than the over-simplified static models. In particular, the control structure is taken into account. This book provides advanced tools for design, projection and optimization of turbines and systems that have yet not been available.
Force and motion control systems of varying degrees of sophistication have shaped the lives of all individuals living in industrialized countries all over the world, and together with communication technology are largely responsible for the high standard ofliving prevalent in many communities. The brains of the vast majority of current control systems are electronic, in the shape of computers, microprocessors or programmable logic controllers (PLC), the nerves are provided by sensors, mainly electromech anical transducers, and the muscle comprises the drive system, in most cases either electric, pneumatic or hydraulic. The factors governing the choice of the most suitable drive are the nature of the application, the performance specification, size, weight, environ mental and safety constraints, with higher power levels favouring hydraulic drives. Past experience, especially in the machine tool sector, has clearly shown that, in the face of competition from electric drives, it is difficult to make a convincing case for hydraulic drives at the bottom end of the power at fractional horsepower level. A further, and frequently range, specifically overriding factor in the choice of drive is the familiarity of the system designer with a particular discipline, which can inhibit the selection of the optimum and most cost-effective solution for a given application. One of the objectives of this book is to help the electrical engineer overcome his natural reluctance to apply any other than electric drives."
Explores text mining and IoT applications for monitoring and controlling smart industrial systems Describes the key principles and techniques for Big-data analytics, security, and optimization for industrial applications. Provides context-aware insights, human-centric industry, smart computing for next-generation industry
The book presents the modeling and control of hydrogen-air PEM fuel cells, including simultaneous estimation of the parameters and states, fuzzy cluster modeling, SPM-based predictive control and advanced fuzzy control. MATLAB/Simulink-based modeling and control programs are discussed in detail. With simulations and experiments, it is an essential reference for both scientists and industrial engineers.
This comprehensive book examines a range of examples, prepared by a diverse group of academic and industry practitioners, which demonstrate how cloud-based simulation is being extensively used across many disciplines, including cyber-physical systems engineering. This book is a compendium of the state of the art in cloud-based simulation that instructors can use to inform the next generation. It highlights the underlying infrastructure, modeling paradigms, and simulation methodologies that can be brought to bear to develop the next generation of systems for a highly connected society. Such systems, aptly termed cyber-physical systems (CPS), are now widely used in e.g. transportation systems, smart grids, connected vehicles, industrial production systems, healthcare, education, and defense. Modeling and simulation (M&S), along with big data technologies, are at the forefront of complex systems engineering research. The disciplines of cloud-based simulation and CPS engineering are evolving at a rapid pace, but are not optimally supporting each other's advancement. This book brings together these two communities, which already serve multi-disciplinary applications. It provides an overview of the simulation technologies landscape, and of infrastructure pertaining to the use of cloud-based environments for CPS engineering. It covers the engineering, design, and application of cloud simulation technologies and infrastructures applicable for CPS engineering. The contributions share valuable lessons learned from developing real-time embedded and robotic systems deployed through cloud-based infrastructures for application in CPS engineering and IoT-enabled society. The coverage incorporates cloud-based M&S as a medium for facilitating CPS engineering and governance, and elaborates on available cloud-based M&S technologies and their impacts on specific aspects of CPS engineering.
The Lean Approach to Digital Transformation: From Customer to Code and From Code to Customer is organized into three parts that expose and develop the three capabilities that are essential for a successful digital transformation: 1. Understanding how to co-create digital services with users, whether they are customers or future customers. This ability combines observation, dialogue, and iterative experimentation. The approach proposed in this book is based on the Lean Startup approach, according to an extended vision that combines Design Thinking and Growth Hacking. Companies must become truly "customer-centric", from observation and listening to co-development. The revolution of the digital age of the 21st century is that customer orientation is more imperative -- the era of abundance, usages rate of change, complexity of experiences, and shift of power towards communities -- are easier, using digital tools and digital communities. 2. Developing an information system (IS) that is the backbone of the digital transformation - called "exponential information system" to designate an open IS (in particular on its borders), capable of interfacing and combining with external services, positioned as a player in software ecosystems and built for processing scalable and dynamic data flows. The exponential information system is constantly changing and it continuously absorbs the best of information processing technology, such as Artificial Intelligence and Machine Learning. 3. Building software "micro-factories" that produce service platforms, which are called "Lean software factories." This "software factory" concept covers the integration of agile methods, tooling and continuous integration and deployment practices, a customer-oriented product approach, and a platform approach based on modularity, as well as API-based architecture and openness to external stakeholders. This software micro-factory is the foundation that continuously produces and provides constantly evolving services. These three capabilities are not unique or specific to this book, they are linked to other concepts such as agile methods, product development according to lean principles, software production approaches such as CICD (continuous integration and deployment) or DevOps. This book weaves a common frame of reference for all these approaches to derive more value from the digital transformation and to facilitate its implementation. The title of the book refers to the "lean approach to digital transformation" because the two underlying frameworks, Lean Startup and Lean Software Factory, are directly inspired by Lean, in the sense of the Toyota Way. The Lean approach is present from the beginning to the end of this book -- it provides the framework for customer orientation and the love of a job well done, which are the conditions for the success of a digital transformation.
This reference text introduces the classical probabilistic model, deep learning, and big data techniques for improving medical imaging and detecting various diseases. The text addresses a wide variety of application areas in medical imaging where deep learning techniques provide solutions with lesser human intervention and reduced time. It comprehensively covers important machine learning for signal analysis, deep learning techniques for cancer detection, diabetic cases, skin image analysis, Alzheimer's disease detection, coronary disease detection, medical image forensic, fetal anomaly detection, and plant phytology. The text will serve as a useful text for graduate students and academic researchers in the fields of electronics engineering, computer science, biomedical engineering, and electrical engineering.
The proliferation of multicore processors in the embedded market for Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) makes developing real-time embedded applications increasingly difficult. What is the underlying theory that makes multicore real-time possible? How does theory influence application design? When is a real-time operating system (RTOS) useful? What RTOS features do applications need? How does a mature RTOS help manage the complexity of multicore hardware? Real-Time Systems Development with RTEMS and Multicore Processors answers these questions and more with exemplar Real-Time Executive for Multiprocessor Systems (RTEMS) RTOS to provide concrete advice and examples for constructing useful, feature-rich applications. RTEMS is free, open-source software that supports multi-processor systems for over a dozen CPU architectures and over 150 specific system boards in applications spanning the range of IoT and CPS domains such as satellites, particle accelerators, robots, racing motorcycles, building controls, medical devices, and more. The focus of this book is on enabling real-time embedded software engineering while providing sufficient theoretical foundations and hardware background to understand the rationale for key decisions in RTOS and application design and implementation. The topics covered in this book include: Cross-compilation for embedded systems development Concurrent programming models used in real-time embedded software Real-time scheduling theory and algorithms used in wide practice Usage and comparison of two application programmer interfaces (APIs) in real-time embedded software: POSIX and the RTEMS Classic APIs Design and implementation in RTEMS of commonly found RTOS features for schedulers, task management, time-keeping, inter-task synchronization, inter-task communication, and networking The challenges introduced by multicore hardware, advances in multicore real-time theory, and software engineering multicore real-time systems with RTEMS All the authors of this book are experts in the academic field of real-time embedded systems. Two of the authors are primary open-source maintainers of the RTEMS software project.
Focuses on the definition, engineering, and delivery of AI solutions as opposed to AI itself Reader will still gain a strong understanding of AI, but through the perspective of delivering real solutions Explores the core AI issues that impact the success of an overall solution including i. realities of dealing with data, ii. impact of AI accuracy on the ability of the solution to meet business objectives, iii. challenges in managing the quality of machine learning models Includes real world examples of enterprise scale solutions Provides a series of (optional) technical deep dives and thought experiments.
This book showcases the strengths of Linear Programming models for Cyber Physical Systems (CPS), such as the Smart Grids. Cyber-Physical Systems (CPS) consist of computational components interconnected by computer networks that monitor and control switched physical entities interconnected by physical infrastructures. A fundamental challenge in the design and analysis of CPS is the lack of understanding in formulating constraints for complex networks. We address this challenge by employing collection of Linear programming solvers that models the constraints of sub-systems and micro grids in a distributed fashion. The book can be treated as a useful resource to adaptively schedule resource transfers between nodes in a smart power grid. In addition, the feasibility conditions and constraints outlined in the book will enable in reaching optimal values that can help maintain the stability of both the computer network and the physical systems. It details the collection of optimization methods that are reliable for electric-utilities to use for resource scheduling, and optimizing their existing systems or sub-systems. The authors answer to key questions on ways to optimally allocate resources during outages, and contingency cases (e.g., line failures, and/or circuit breaker failures), how to design de-centralized methods for carrying out tasks using decomposition models; and how to quantify un-certainty and make decisions in the event of grid failures.
Although conventional cogeneration systems have been used successfully in the last two decades, most of them have been large units using mainly hydrocarbon fuels that are becoming increasingly expensive. New cogeneration systems based on fuel cells and sorption air conditioning systems promise to be an energy-saving alternative for situations when cooling, heating and power are needed at low and medium capacities. Cogeneration Fuel Cell-Sorption Air Conditioning Systems examines the thermodynamic principles of fuel cell performance and sorption air conditioning systems, and gives relevant information about the state of the art of these technologies. It also provides the reader with the theoretical bases and knowledge needed to understand the operation of these new cogeneration systems, as well as discussing the design basis and economical evaluation. Topics covered include: * selected fuel cells for cogeneration CHP processes; * state-of-the-art sorption refrigeration systems; * potential applications in demonstration projects; and * profitability assessment of the cogeneration system. Air conditioning and fuel cell engineers; postgraduates and researchers in energy fields; and designers of cooling, heating and power cogeneration systems will find Cogeneration Fuel Cell-Sorption Air Conditioning Systems a useful and informative reference.
This book gathers the proceedings of the I-ESA'20 Conference, which was organised by the National Engineering School of Tarbes (ENIT), on behalf of the European Virtual Laboratory, for Enterprise Interoperability (INTEROP-VLab) and the Pole Grand Sud-Ouest (PGSO) and was held virtually in Tarbes, France, in November 2020. It presents contributions ranging from academic research and case studies to industrial and administrative experiences with interoperability. These contributions show how, in a globalised market scenario-where the ability to cooperate with other organisations efficiently is essential in order to remain economically, socially and environmentally cost-effective-the most innovative digitised and networked enterprises ensure that their systems and applications can interoperate across heterogeneous collaborative networks of independent organisations. The focus of this edition of the conference is on interoperability in the era of artificial intelligence and so particular attention is paid to Industry 4.0 and the Internet of Things. The content also addresses smart services and the business impact of enterprise interoperability on organisations. Many of the papers in this tenth volume of the I-ESA Conference proceedings include examples and illustrations to help deepen readers' understanding and generate new ideas. Offering a detailed guide to the state of the art in systems interoperability, the book will be of great value to all engineers and computer scientists working in manufacturing and other process industries, and to software engineers and electronic and manufacturing engineers working in academic settings.
Recent Developments of Electrical Drives is composed of the papers which were presented at the XVI International Conference on Electrical Machines - ICEMa (TM)2004, which was held in Cracow, Poland on September 5-8, 2004. The contributions selected for the book cover a wide spectrum of theory and practice, thus they are deeply rooted in engineering problems, being simultaneously of high theoretical level. This way the contents of the book is believed to touch the heart of the matter in electrical drives (theory, control systems and applications). The book, stating the recent developments of electrical drives, can be useful for engineers and researchers investigating and designing electrical and electronic devices as well as for students and young researchers dealing with electrical and electronic engineering, computer sciences (advanced computer modelling, sophisticated control systems with artificial intelligence tools applied, optimal design bye use of classical and genetic algorithms employed), applied mathematics and all the topics where electromagnetic, thermal, mechanical phenomena occur. Recent Developments of Electrical Drives covers a wide range of interest of industry engineers, and scientists involved in modelling, control, measurements, new motor structures design, and could be also useful for engineers working in the field of electrical drives implementation.
This book presents revealing case studies on carbon footprint calculation and mitigation in various industrial sectors. There are numerous sectors whose carbon footprints need to be calculated, and effective ways to mitigate the greenhouse-gas emissions from these sectors need to be found. Using representative case studies, this book highlights the carbon footprint of national power generation systems, crude glycerol production plants and the Brazilian highway network system, as well as the integration of renewable energy sources in expansion planning, so as to promote and implement power system decarbonization.
The storage of electroenergy is an essential feature of modem energy technologies. Unfortunately, no economical and technically feasible method for the solution of this severe problem is presently available. But electrochemistry is a favourite candidate from an engineering point of view. It promises the highest energy densities of all possible alternatives. If this is true, there will be a proportionality between the amount of electricity to be stored and the possible voltage, together with the mass of materials which make this storage possible. Insofar it is a matter of material science to develop adequate systems. Electricity is by far the most important secondary energy source. The present production rate, mainly in the thermal electric power stations, is in the order of 1.3 TW. Rechargeable batteries (RB) are of widespread use in practice for electroenergy storage and supply. The total capacity of primary and rechargeable batteries being exploited is the same as that of the world electric power stations. However, the important goal in the light of modem energy technology, namely the economical storage of large amounts of electricity for electric vehicles, electric route transport, load levelling, solar energy utilization, civil video & audio devices, earth and spatial communications, etc. will not be met by the presently available systems. Unless some of the new emerging electrochemical systems are established up to date, RB's based on aqueous acidic or alkali accumulators are mainly produced today.
- Covers the state-of-the-art in hybrid power cycles for power generation with lower emission - Discusses ongoing research & development activities, challenges, constraints, and opportunities in both theoretical as well as application aspects of several hybrid technologies for power generation - Presents new energy storage technique - Contains exergoeconomic and environmental analysis for several hybrid configurations - Presents SOFC integrated blade cooled gas turbine hybrid power cycles
The author has shown that practically all our laws, principles, and theories are not physically realizable, since they were derived from an empty space paradigm. From which this book is started with the origin of our temporal (t > 0) universe, it shows that temporal subspace is a physically realizable space within our universe. As in contrasted with generally accepted paradigm where time is an independent variable. From which the author has shown that it is not how rigorous mathematics is, but it is the temporal (t > 0) space paradigm determines the physically realizable solution. Although Einstein's relativity and Schroedinger's principle had revolutionized the modern science, this book has shown that both theory and principle are physically non-realizable since they were developed from an empty space paradigm. One of the most important contribution of this book must be the revolutionary idea of our temporal (t > 0) space, for which the author has shown that absolute certainty exists only at the present (t = 0) moment. Where past-time information has no physical substance and future-time represents a physically realizable yet uncertainty. From which the author has shown that all the existent laws, principles, and theories were based on past-time certainties to predict the future, but science is supposed to be approximated. The author has also shown that this is precisely our theoretical science was developed. But time independent laws and principles are not existed within our temporal universe, in view of the author's temporal exclusive principle. By which the author has noted that timeless science has already created a worldwide conspiracy for examples such as superposition principle, qubit information, relativity theory, wormhole travelling and many others. This book has also shown that Heisenberg's uncertainty is an observational principle independent with time, yet within our universe everything changes with time. In this book the author has also noted that micro space behaviors the same as macro space regardless of the particle size. Finally, one of interesting feature is that, that big bang creation was ignited by a self-induced gravitational force instead by time as commonly believed. Nevertheless, everything has a price to pay; a section of time t and an amount of energy E and it is not free. The author has also shown that time is the only variable that cannot be changed. Although we can squeeze a section of time t as small as we wish but we can never able to squeeze t to zero even we have all the needed energy. Nevertheless, this revolutionary book closer to the truth is highly recommended to every scientist and engineer, otherwise we will forever be trapped within the timeless fantasyland of science. This book is intended for cosmologists, particle physicists, astrophysicists, quantum physicists, computer scientists, optical scientists, communication engineers, professors, and students as a reference or a research-oriented book.
Focusing on how visual information is represented, stored and extracted in the human brain, this book uses cognitive neural modeling in order to show how visual information is represented and memorized in the brain. Breaking through traditional visual information processing methods, the author combines our understanding of perception and memory from the human brain with computer vision technology, and provides a new approach for image recognition and classification. While biological visual cognition models and human brain memory models are established, applications such as pest recognition and carrot detection are also involved in this book. Given the range of topics covered, this book is a valuable resource for students, researchers and practitioners interested in the rapidly evolving field of neurocomputing, computer vision and machine learning. |
You may like...
Liberalism in Modern Times - Essays in…
Ernest Gellner, Cesar Cansino
Hardcover
R1,501
Discovery Miles 15 010
The Last British Liberals in Africa…
Dickson Mungazi [Deceased]
Hardcover
R2,717
Discovery Miles 27 170
Russia's Road to Democracy - Parliament…
Victor Sergeyev, Nikolai Biryukov
Hardcover
R3,067
Discovery Miles 30 670
|