![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Energy conversion & storage
This book presents the select proceedings of the International Conference on Advances in Sustainable Technologies (ICAST 2020), organized by Lovely Professional University, Punjab, India. It gives an overview of recent developments in the field of fluid dynamics and thermal engineering. Some of the topics covered in this book include HVAC systems, alternative fuels, renewable energy, nano fluids, industrial advancements in energy systems, energy storage, multiphase transport and phase change, conventional and non-conventional energy theoretical and experimental fluid dynamics, numerical methods in heat transfer and fluid mechanics, different modes of heat transfer, fluid machinery, turbo machinery, and fluid power. The book will be useful for researchers and professionals working in the field of fluid dynamics and thermal engineering.
Learn how to ensure optimal efficiency! Save money, resources--and guesswork--with this invaluable reference that can help you evaluate and improve transformer efficiency in electrical power systems more reliably. The author, a professional electrical system efficiency expert, clearly explains: the typical causes of poor efficiency in transformer load and no-load losses; traditional efficiency improvement methods, such as the use of larger conductors and properly sizing transformers; effective new solutions, including the use of amorphous steel and cryogenics, laser-etched silicon steel, and advanced design transformers. A diskette is included with the book containing the Environmental Protection Agency's Distribution Transformer Cost Evaluation Model (DTCEM), version 1.1. This program helps engineers perform the complex economic analyses needed to accurately determine the cost-effectiveness and emission reduction potential of high-efficiency transformers. It also provides the information necessary for facilities to weigh purchases of high-efficiency distriubtion transformers against competing resource options. Sure to be of ongoing benefit to any cost-conscious utility engineer or commercial and industrial engineer manager, this timely book plus computer program not only highlights a potentially significant savings opportunity, it also provides a sensible framework for evaluating losses and making more intelligent purchasing decisions.
Direct Energy Conversion is written for students and practicing engineers with an interest in the performance of energy conversion processes that involve direct methods of producing electric power from heat and other primary sources. It provides an in-depth development of key issues from the first principles of the underlying sciences, and examines the means available for converting heat to electricity without the intermediate generation of rotating shaft power. A physical and quantitative understanding of the limitations of a number of commercially interesting methods is developed in order to allow readers assessment of the technologies for specific applications. The list of processes considered is limited by performance measured in terms of cost, conversion efficiency, and power density. Ideal for senior undergraduate and graduate level courses in power production, energy conversion, and power systems, Direct Energy Conversion is also a natural adjunct to the author's previous text, Energy Conversion (OUP, 1994), which focuses on the thermodynamics and mechanics of heat.
'Simplified Design of Micropower and Battery Circuits' provides a
simplified, step-by-step approach to micropower and supply cell
circuit design. No previous experience in design is required to use
the techniques described, thus making the book well suited for the
beginner, student, or experimenter as well as the design
professional.
Energy flow from many primary sources is not constant but depends on the season, time of day and weather conditions. Energy demand also varies with the same circumstances, but generally in reverse. Obviously there needs to be some way for energy suppliers to separate the processes of energy generation and consumption, by storing energy until it is needed. Electricity is the most flexible and convenient form of energy for transmission and use but it is not economically possible to store electrical energy in significant quantities. Secondary energy storage systems can accept energy generated by a power system, convert it to a form suitable for storage, keep it for a certain time and then convert it into the form required by the consumer when it is needed. These systems are an essential tool in managing energy supplies. This book is a comprehensive guide to the various types of secondary storage systems and an introduction to the multidisciplinary problem of choice of their types and parameters. It is chiefly aimed at students of electrical and power engineering, and design and research engineers concerned with the logistics of power supply. It will also be valuable to all those interested in the development of environmentally benign power supplies.
A" Soul of a New Machine"for our time a gripping account of invention, commerce, and duplicity in the age of technology A worldwide race is on to perfect the next engine of economic growth, the advanced lithium-ion battery. It will power the electric car, relieve global warming, and catapult the winner into a new era of economic and political mastery. Can the United States win? Steve LeVine was granted unprecedented access to a secure federal laboratory outside Chicago, where a group of geniuses is trying to solve this next monumental task of physics and engineering. But these scientists almost all foreign born are not alone. With so much at stake, researchers in Japan, South Korea, and China are in the same pursuit. The drama intensifies when a Silicon Valley start-up licenses the federal laboratory s signature invention with the aim of a blockbuster sale to the world s biggest carmakers. "The Powerhouse"is a real-time, two-year account of big invention, big commercialization, and big deception. It exposes the layers of aspiration and disappointment, competition and ambition behind this great turning point in the history of technology."
This new revision of an instant classic presents practical solutions to the problem of energy storage on a massive scale. This problem is especially difficult for renewable energy technologies, such as wind and solar power, that, currently, can only be utilized while the wind is blowing or while the sun is shining. If energy storage on a large scale were possible, this would solve many of our society's problems. For example, power grids would not go down during peak usage. Power plants that run on natural gas, for example, would no longer burn natural gas during the off-hours, as what happens now. These are just two of society's huge problems that could be solved with this new technology. This new edition includes additional discussion and new sections on energy problem including increasing population and greenhouse effects, and an expanded overview of energy storage types. Chapter two has been expanded to provide further discussion of the fundamentals of energy and new sections on elastic, electrical, chemical, and thermal energy. Two new chapters have been added that provide a discussion of electrolytes and membranes and on flexible and stretchable energy storage devices. A new section has also been added on the future of energy storage in the final chapter. This is a potentially revolutionary book insofar as technical books can be "revolutionary." The technologies that are described have their roots in basic chemistry that engineers have been practicing for years, but this is all new material that could revolutionize the energy industry. Whether the power is generated from oil, natural gas, coal, solar, wind, or any of the other emerging sources, energy storage is something that the industry must learn and practice. With the world energy demand increasing, mostly due to the industrial growth in China and India, and with the West becoming increasingly more interested in fuel efficiency and "green" endeavors, energy storage is potentially a key technology in our energy future.
Direct alcohol fuel cells (DAFCs), such as methanol and ethanol ones, are very promising advanced power systems that may considerably reduce dependence on fossil fuels and are, therefore, attracting increased attention worldwide. Nanostructured materials can improve the performance of the cathodes, anodes, and electrolytes of DAFCs. This book focuses on the most recent advances in the science and technology of nanostructured materials for direct alcohol fuel cells, including novel non-noble or low noble metal catalysts deposited on the graphene layer and metal-free doped carbon black for oxygen electroreduction reaction, Sn-based bimetallic and trimetallic nanoparticles for alcohol electro-oxidation reaction, and novel nanomaterials for promoting proton transfer in electrolytes. In addition, the book includes chapters from not only experimentalists but also computational chemists who have worked in the development of advanced power systems for decades. Illustrated throughout with excellent figures, this multidisciplinary work is not just a reference for researchers in chemistry and materials science, but a handy textbook for advanced undergraduate- and graduate-level students in nanoscience- and nanotechnology-related courses, especially those with an interest in developing novel materials for advanced power systems.
The worldwide fusion community continues its research efforts on magnetic confinement as the most promising, long-term, environmentally-friendly power source. Despite the ongoing fusion research efforts in many countries, the technology and materials-related challenges remain formidable and will hinder and delay the first fusion demonstration plant for decades. In this book, the current understanding of technology-related challenges facing fusion research are explored. Advances in fusion neutronics integral experiments in the benchmark mock assemblies for the blanket of a fusion-fission hybrid energy reactor are also described in brief. Cold Fusion (CF) is examined as well, with the authors' argument backed by evidence that cold fusion (CF) can become more understandable, and hence more enable to engineering, especially control engineering. The final chapter details the Force Free Helical Reactor (FFHR) and its implications on fusion power
Federal energy policy since the 1970s has focused primarily on ensuring a secure supply of energy while protecting the environment. The federal government supports and intervenes in U.S. energy production and consumption in various ways, such as providing tax incentives, grants, and other support to promote domestic production of energy, as well as setting standards and requirements. This book provides information on U.S. production and consumption of fossil, nuclear, and renewable energy from 2000 through 2013 and major factors, including federal activities, that influenced energy production and consumption levels. It also provides information on other federal activities that may have influenced aspects of U.S. energy production and consumption from 2000 through 2013 but were not targeted at a specific energy source, as well as information on federal research and development.
Recent events have renewed long-standing congressional interest in safe management of spent nuclear fuel (SNF) and other high level nuclear waste. These issues have been examined and debated for decades, sometimes renewed by world events like the 9/11 terrorist attacks. The incident at the Fukushima Dai-ichi nuclear reactor complex in Japan, combined with the termination of the Yucca Mountain geologic repository project, have contributed to the increased interest. This book focuses on the current situation with spent nuclear fuel storage in the United States. It addresses the SNF storage situation, primarily at current and former reactor facilities and former reactor sites for the potentially foreseeable future. Although no nation has yet established a permanent disposal repository for SNF and other forms of high-level radioactive waste, there is broad consensus that a geological repository is the preferred method for these wastes.
Gain an in-depth understanding of converter-interfaced energy storage systems with this unique text, covering modelling, dynamic behaviour, control, and stability analysis. Providing comprehensive coverage, it demonstrates the technical and economic aspects of energy storage systems, and provides a thorough overview of energy storage technologies. Several different modelling techniques are presented, including power system models, voltage-sourced converter models, and energy storage system models. Using a novel stochastic control approach developed by the authors, you will learn about the impact of energy storage on the dynamic interaction of microgrids with distribution and transmission systems. Compare the numerous real-world simulation data and numerical examples provided with your own models and control strategies. Accompanied online by a wealth of numerical examples and supporting data, this is the ideal text for graduate students, researchers, and industry professionals working in power system dynamics, renewable energy integration, and smart grid development.
An expanding array of state-of-the-art and emerging technologies are opening new opportunities to improve and/or to reduce the costs to generate, deliver and use electricity. One of these technologies is modular electricity storage (MES). In this book, the specific utility application addressed is the use of MES to reduce the cost of electricity delivery by reducing the cost of electricity transmission and distribution (T&D) equipment. Specifically, MES would be used to defer expensive improvements or capacity additions to T&D equipment by providing modular capacity additions as needed.
Direct methanol fuel cells (DMFCs), employing liquid methanol as a fuel, offer an attractive option in portable devices due to their simplicity in the system structure (easy storage and supply), no need for fuel reforming or humidification. For obtaining a higher power density, the membranes that show high proton conductivity, and at the same time, low methanol permeability are strongly desired. However, there is achieved only a little progress because of trade-off relations between these parameters. Also the membrane stability, particular to hydrolytic and chemical stability is recognised as a key factor that affects fuel cell performances. In the authors' recent work, they have been working on the design and the development of new families of cost-effective, readily prepared proton-conducting membranes based on chemically cross-linked PVA-PAMPS [poly(vinyl alcohol) and poly(2-acrylamido-2-methyl-1-propanesulfonic acid)] composites. The authors have first introduced new concepts of secondary polymer chains such as "binary chemical cross-linking" or "hydrophobiciser" and the "stabiliser"effect. Also, the authors have established a new concept of PVA-PAMPS based semi-interpenetrating polymer networks (semi-IPNs) by incorporating plasticizer variants R (R = poly(ethylene glycol)(PEG), poly(ethylene glycol) methyl ether (PEGME), poly(ethylene glycol) dimethyl ether (PEGDE), poly(ethylene glycol) diglycidyl ether (PEGDCE)) and poly(ethylene glycol)bis(carboxymethyl)ether (PEGBCME) as the third components. Incorporation of the above concepts promoted not only the high proton conductivity , flexibility with low methanol permeability (1/3 - 1/2 of Nafion 117 membrane), but also the excellent hydrolytic and the oxidative stability of PVA-PAMPS composites. The membrane electrode assembly (MEA) fabricated with PVA-PAMPS composites has been successfully established, which showed the similar open circuit voltage (OCV) to that of Nafion 115, and a power density 52 mW cm-2 at 80oC. A striking feature of the long-term test was that no appreciable decay of the current density was observed during the whole operation time longer than 130 hours at 50oC, and so was the power density. This book is the first time that such long-term operation of DMFC was reported since PVA-PAMPS composite are all hydrocarbon membranes made simply of aliphatic skeletons. They are very different from the perfluorosulfonic membranes such as Nafion, or other reported membranes with aromatic skeletons. Therefore this affords the PVA-PAMPS composites unique structure compared to most of the proposed membranes, which suggests the good candidacy of PVA-PAMPS composites when they are intended for use in low temperature DMFCs.
Thermoelectric materials have received a great deal of attention in energy-harvesting and cooling applications, primarily due to their intrinsic low cost, energy efficient and eco-friendly nature. The past decade has witnessed heretofore-unseen advances in organic-based thermoelectric materials and devices. This title summarises the significant progress that has been made in the molecular design, physical characterization, and performance optimization of organic thermoelectric materials, focusing on effective routes to minimize thermal conductivity and maximize power factor. Featuring a series of state-of-the-art strategies for enhancing the thermoelectric figure of merit (ZT) of organic thermoelectricity, and highlighting cutting-edge concepts to promote the performance of organic thermoelectricity, chapters will strengthen the exploration of new high-ZT thermoelectric materials and their potential applications. With contributions from leading worldwide authors, Organic Thermoelectric Materials will appeal to graduate students as well as academic and industrial researchers across chemistry, materials science, physics and engineering interested in the materials and their applications.
"PEM Fuel Cell Testing and Diagnosis" covers the recent advances in PEM (proton exchange membrane) fuel cell systems, focusing on instruments and techniques for testing and diagnosis, and the application of diagnostic techniques in practical tests and operation. This book is a unique source of electrochemical techniques for researchers, scientists and engineers working in the area of fuel cells. Proton exchange membrane fuel cells are currently considered the
most promising clean energy-converting devices for stationary,
transportation, and micro-power applications due to their high
energy density, high efficiency, and environmental friendliness. To
advance research and development of this emerging technology,
testing and diagnosis are an essential combined step. This book
aids those efforts, addressing effects of humidity, temperature and
pressure on fuel cells, degradation and failure analysis, and
design and assembly of MEAs, single cells and stacks.
Variable Speed Generators, the second of two volumes in the Electric Generators Handbook, provides extensive coverage of variable speed generators in distributed generation and renewable energy applications around the world. The book delves into the steady state, transients, control, and design of claw-pole-rotor synchronous, induction, permanent-magnet-(PM)-assisted synchronous, and switched reluctance starter alternators for electric hybrid vehicles. It discusses PM synchronous, transverse flux PM, and flux reversal PM generators for low-speed wind and hydro energy conversion. It also explores linear motion alternators for residential and spacecraft applications. Numerous design and control examples illustrate the exposition. Fully revised and updated to reflect the last decade's worth of progress in the field, this Second Edition adds new sections that: Address the ride-through control of doubly fed induction generators under unbalanced voltage sags Consider the control of stand-alone doubly fed induction generators under unbalanced nonlinear loads Detail a stand-alone squirrel cage induction generator (SCIG) with AC output and a low-rating pulse-width modulated (PWM) converter Present a twin stator winding SCIG with 50 percent rating inverter and diode rectifier, and a dual stator winding induction generator with nested cage rotor Examine interior permanent magnet claw-pole-alternator systems for more vehicle braking energy recuperation, and high power factor Vernier PM generators Depict a PM-assisted reluctance synchronous motor/generator for an electric hybrid vehicle, and a double stator switched reluctance generator with segmented rotor Describe the grid to stand-alone transition motion-sensorless dual-inverter control of permanent magnet synchronous generators with asymmetrical grid voltage sags and harmonics filtering The promise of renewable, sustainable energy rests on our ability to design innovative power systems that are able to harness energy from a variety of sources. Variable Speed Generators, Second Edition supplies state-of-the-art tools necessary to design, validate, and deploy the right power generation technologies to fulfill tomorrow's complex energy needs.
This book addresses the comprehensive understanding of Ni-rich layered oxide of lithium-ion batteries cathodes materials, especially focusing on the effect of dopant on the intrinsic and extrinsic effect to its host materials. This book can be divided into three parts, that is, 1. overall understanding of layered oxide system, 2. intrinsic effect of dopant on layered oxides, and 3. extrinsic effect of dopant on layered oxides. To truly understand and discover the fundamental solution (e.g. doping) to improve the Ni-rich layered oxides cathodic performance, understanding the foundation of layered oxide degradation mechanism is the key, thus, the first chapter focuses on discovering the true degradation mechanisms of layered oxides systems. Then, the second and third chapter deals with the effect of dopant on alleviating the fundamental degradation mechanism of Ni-rich layered oxides, which we believe is the first insight ever been provided. The content described in this book will provide research insight to develop high-performance Ni-rich layered oxide cathode materials and serve as a guide for those who study energy storage systems.
This research aims to make an original and advanced contribution to state-of-the-art sky models. It focuses on high-resolution sky radiance and luminance models given their essential importance in a host of scientific and engineering applications. For example, improved sky radience and luminance models can be used to improve the design and operation of energy-efficient and sustainable buildings. All these applications require high-fidelity information on spatial and temporal distribution of solar irradiance and illuminance on building surfaces. The empirical basis for related decision-making processes is, however, rather limited: Available measured data a collected by typical weather stations a is typically restricted to global horizontal irradiance. Few research-class climatic monitoring stations also record the diffuse component of solar irradiance. This research will therefore examine a number of such models in detail and explore both improvement possibilities of existing models and the potential for alternative modeling approaches in future developments. Specifically, this research aims at developing accurate high-resolution sky radiance and sky luminance models for the city of Vienna. In order to generate sky radiance maps, the diffuse radiation component of the global horizontal irradiance should be typically derived based on proper diffuse fraction models. Accordingly, this research starts with an attempt to improve the existing diffuse fraction models. When both diffuse and direct horizontal irradiance data are available, the existing models intended for the sky radiance generation can be comprehensively evaluated and further developed to arrive at a more reliable locally verified sky radiance distribution model. In addition to sky radiance distribution maps, which greatly support the design of buildings' solar energy systems, sky luminance maps are needed to support the design of buildings' daylighting systems. However, to generate sky luminance maps from sky radiance maps, appropriate luminous efficacy information is required, which is not available from typical weather stations. Therefore, this research shall also explore methods with various degrees of resolution to derive illuminance data based on more broadly available global irradiance data. Solid high-resolution empirical data is needed not only to evaluate the existing models, but also to develop and validate new models. For this purpose, I will deploy our existing monitoring facility to systematically collect both typical weather station data and additional information concerning the diffuse component of the global horizontal irradiance, global horizontal illuminance, vertical irradiance, as well as detailed sky luminance and radiance distributions.
This book develops a novel and simple, yet rigorous methodology that, by means of basic techniques and tools available to any engineer, enables the study of solar concentrator performance parameter scattering on the control of the solar field outlet temperature. Several simulations are performed considering a realistic solar field comprised of a large set of solar collectors with slight differences in performance. Sets of scattered parameter distributions are randomly assigned to the collectors in the solar field. Sensitivity analysis of solar field behavior is then performed in terms of the distribution of the performance parameters of the solar collectors, followed by a comparison between different configurations of the solar field according to the number of subfields. The latter is of great interest in order to evaluate the effect of a subfield number on the ability of the solar fields operator to control the temperature of the solar field when a flow control valve is not available in each loop. As a special feature, this book proposes a new model for characterizing the energetic behavior of grid connected PV inverters. The model has been obtained from a detailed study of the main loss processes in small size PV inverters in the market. The main advantage of the used method is to obtain a model that comprises two antagonistic features, since both are simple, easy to compute and apply, and accurate. One of the main features of this model is how it handles the maximum power point tracking (MPPT) and its efficiency: Concerning both parts, the model uses the same approach and is achieved by two resistive elements which simulate the losses inherent to each parameter. This makes this model easy to implement, compact and refine. The model presented here also includes other parameters, such as the start threshold, standby consumption and islanding behavior. As an example, the model has been implemented in the PSPICE electronic simulator, and this approach has been used to teach grid-connected PV systems. The use of this model for the maintenance of working PV facilities is also shown.
Inorganic 2D nanomaterials, or inorganic graphene analogues, are gaining great attention due to their unique properties and potential energy applications. They contain ultrathin nanosheet morphology with one-dimensional confinement, but unlike pure carbon graphene, inorganic two-dimensional nanomaterials have a more abundant elemental composition and can form different crystallographic structures. These properties contribute to their unique chemical reaction activity, tunable physical properties and facilitate applications in the field of energy conversion and storage. Inorganic Two-dimensional Nanomaterials details the development of the nanostructures from computational simulation and theoretical understanding to their synthesis and characterization. Individual chapters then cover different applications of the materials as electrocatalysts, flexible supercapicitors, flexible lithium ion batteries and thermoelectrical devices. The book provides a comprehensive overview of the field for researchers working in the areas of materials chemistry, physics, energy and catalysis.
The last two decades have seen unprecedented research progress made in the fabrication and testing of organic solar cell (OSC) devices due to, among other things, rapid growth of interest in the development of organic materials for photovoltaic applications, the ease of processing, and the prospect of achieving high power conversion efficiency (PCE) cost effectively. The effects of impurity doping at the ppm level in photovoltaic organic semiconductors, including: (i) Seven-nines purification of organic semiconductors, (ii) pn-control of single and co-deposited organic semiconductors by impurity doping, (iii) ionisation sensitisation of doping showing the doping efficiency of 100%, (iv) ppm-doping effects in the simplest n+p-homojunction organic photovoltaic cells, and (v) the Hall effect of bulk-doped organic single crystals, are discussed in Chapter One. In Chapter Two the fabrication and characterisation of perovskite-type solar cells are reviewed and summarised such as CH3NH3PbI3, [HC(NH2)2]PbI3, and CsSnI3, which are expected for solar cell materials. Chapter Three proposes an experimental method to tailor SDE and optimise the power conversion efficiency (PCE), based on the electrical transport curve. Chapter Four provides a brief history of organic photovoltaic cell devices, factors limiting stability and power conversion efficiency, fundamental parameters that have been reported to improve the general performance of the devices, and recent developments in organic solar cell devices.
Polymer solar cells have gained much attention as they offer a potentially economic and viable way of commercially manufacturing lightweight, flexible and low-cost photovoltaics. With contributions from leading scientists, Polymer Photovoltaics provides an international perspective on the latest research for this rapidly expanding field. The book starts with an Introduction to polymer solar cells and covers several important topics that govern their photovoltaic properties including the chemistry and the design of new light harvesting and interfacial materials and their structure-property relationship; the physics for photocurrent generation in the polymer solar cells; new characterization tools to study morphology effect on the property of donor/acceptor bulk heterojunctions; new device concepts such as tandem cells and semi-transparent cells and advanced roll-to-roll processes for large-scale manufacturing of polymer solar cells. Written by active researchers, the book provides a comprehensive overview of the recent advancements in polymer solar cell technology for both researchers and students that are interested in this field. |
You may like...
The Gnostic Heresies of the First and…
Henry Longueville Mansel
Paperback
R535
Discovery Miles 5 350
Glowworm Swarm Optimization - Theory…
Krishnanand N. Kaipa, Debasish Ghose
Hardcover
Secret Cinema - Gnostic Vision in Film
Eric G. Wilson
Hardcover
Research Anthology on Multi-Industry…
Information Reso Management Association
Hardcover
R12,408
Discovery Miles 124 080
|