![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Energy conversion & storage
Polycrystalline silicon (commonly called "polysilicon") is the material of choice for photovoltaic (PV) applications. Polysilicon is the purest synthetic material on the market, though its processing through gas purification and decomposition (commonly called "Siemens" process) carries high environmental risk. While many current optoelectronic applications require high purity, PV applications do not and therefore alternate processes and materials are being explored for PV grade silicon. Solar Silicon Processes: Technologies, Challenges, and Opportunities reviews current and potential future processing technologies for PV applications of solar silicon. It describes alternative processes and issues of material purity, cost, and environmental impact. It covers limits of silicon use with respect to high-efficiency solar cells and challenges arising from R&D activities. The book also defines purity requirements and purification processes of metallurgical grade silicon (MG-Si) and examines production of solar grade silicon by novel processes directly from MG-Si and/or by decomposition of silane gas in a fluidized bed reactor (FBR). Furthermore, the book: Analyzes past research and industrial development of low-cost silicon processes in view of understanding future trends in this field. Discusses challenges and probability of success of various solar silicon processes. Covers processes that are more environmentally sensitive. Describes limits of silicon use with respect to high-efficiency solar cells and challenges arising from R&D activities. Defines purity requirements and purification processes of MG-Si. Examines production of solar grade silicon directly from MG-Si.
Metal-air and metal-sulfur batteries (MABs/MSBs) represent one of the most efficient-energy storage technologies, with high round trip efficiency, a long life cycle, fast response at peak demand/supply of electricity, and decreased weight due to the use of atmospheric oxygen as one of the main reactants. This book presents an overview of the main MABs/MSBs from fundamentals to applications. Recent technological trends in their development are reviewed. It also offers a detailed analysis of these batteries at the material, component, and system levels, allowing the reader to evaluate the different approaches of their integration. The book provides a systematic overview of the components, design, and integration, and discusses current technologies, achievements, and challenges, as well as future directions. Each chapter focuses on a particular battery type including zinc-air batteries, lithium-air batteries, aluminum-air batteries, magnesium-air batteries, lithium-sulfur batteries, and vanadium-air redox flow batteries, and metal-sulfur batteries. Features the most recent advances made in metal-air/metal-sulfur batteries. Describes cutting-edge materials and technology for metal-air/metal-sulfur batteries. Includes both fundamentals and applications, which can be used to guide and promote materials as well as technology development for metal-air/metal-sulfur batteries. Provides a systematic overview of the components, design, and integration, and discusses current technologies, achievements, and challenges, as well as future directions. Covers a variety of battery types in depth, such as zinc-air batteries, lithium-air batteries, aluminum-air batteries, magnesium-air batteries, lithium-sulfur batteries, vanadium-air redox flow batteries, and metal-sulfur batteries.
This book contains detailed information on the types, structure, fabrication, and characterization of organic solar cells (OSCs). It discusses processes to improve efficiencies and the prevention of degradation in OSCs. It compares the cost-effectiveness of OSCs to those based on crystalline silicon and discusses ways to make OSCs more economical. This book provides a practical guide for the fabrication, processing, and characterization of OSCs and paves the way for further development in OSC technology.
Electrochemical Energy: Advanced Materials and Technologies covers the development of advanced materials and technologies for electrochemical energy conversion and storage. The book was created by participants of the International Conference on Electrochemical Materials and Technologies for Clean Sustainable Energy (ICES-2013) held in Guangzhou, China, and incorporates select papers presented at the conference. More than 300 attendees from across the globe participated in ICES-2013 and gave presentations in six major themes: Fuel cells and hydrogen energy Lithium batteries and advanced secondary batteries Green energy for a clean environment Photo-Electrocatalysis Supercapacitors Electrochemical clean energy applications and markets Comprised of eight sections, this book includes 25 chapters featuring highlights from the conference and covering every facet of synthesis, characterization, and performance evaluation of the advanced materials for electrochemical energy. It thoroughly describes electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, hydrogen generation, and their associated materials. The book contains a number of topics that include electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms. It also addresses challenges related to cost and performance, provides varying perspectives, and emphasizes existing and emerging solutions. The result of a conference encouraging enhanced research collaboration among members of the electrochemical energy community, Electrochemical Energy: Advanced Materials and Technologies is dedicated to the development of advanced materials and technologies for electrochemical energy conversion and storage and details the technologies, current achievements, and future directions in the field.
Energy Storage for Sustainable Microgrid addresses the issues related to modelling, operation and control, steady-state and dynamic analysis of microgrids with ESS. This book discusses major electricity storage technologies in depth along with their efficiency, lifetime cycles, environmental benefits and capacity, so that readers can envisage which type of storage technology is best for a particular microgrid application. This book offers solutions to numerous difficulties such as choosing the right ESS for the particular microgrid application, proper sizing of ESS for microgrid, as well as design of ESS control systems for proper interfacing with the microgrid.
This new Routledge collection brings together the major works on the many types of energy-storage technologies and systems, as well as their applications. The energy-storage topics covered include battery storage, hydrogen energy storage, flywheel energy storage, compressed gas energy storage, pumped storage, magnetic storage, chemical storage, thermal energy storage, thermochemical energy storage, organic and biological energy storage, and others. Included are categorizations and comparisons of the main energy-storage technologies. The collection addresses both existing and potential future energy-storage technologies and systems. Existing methods and technologies for energy storage are covered to ensure a sound understanding of the technology utilized today, whereas new techniques that are in development or undergoing research are evaluated to provide a good understanding of what lies at and beyond the state of the art. Energy storage can be utilized in a wide range of applications, and these are also addressed. The types of applications considered range from utility and other electrical power systems, conventional and renewable power generation, and renewable energy sources, through to heat pumps, building heating and cooling and district energy systems. The ability of energy storage to facilitate the efficient, effective, and economic operation of renewable energy systems is covered throughout the collection by, for example, focusing on using energy storage to improve solar- and wind-power systems and other renewable energy applications. The utilization of energy storage in developed, as well as emerging, economies is also covered, to provide global coverage.
Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, then thoroughly presents the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries.
Suitable for readers from broad backgrounds, Graphene: Energy Storage and Conversion Applications describes the fundamentals and cutting-edge applications of graphene-based materials for energy storage and conversion systems. It provides an overview of recent advancements in specific energy technologies, such as lithium ion batteries, supercapacitors, fuel cells, solar cells, lithium sulfur batteries, and lithium air batteries. It also considers the outlook of industrial applications in the near future. Offering a brief introduction to the major synthesis methods of graphene, the text details the latest academic and commercial research and developments, covering all potential avenues for graphene's use in energy-related areas.
This book details state-of-the-art fuel cell systems incorporating methanol reformers as the source of purified hydrogen (rather than compressed hydrogen). Beginning with an overview of PEM fuel cells, the book discusses the various technical approaches to methanol reforming and hydrogen purification. A unique theme carried throughout the discussion is the practical aspects of commercial applications that favor one technical approach over another. The reader gains an understanding of the chemistry, engineering, economics, and agency certification requirements that ultimately shape the optimal approach for methanol fuel cell systems targeting commercial applications.
Providing electric power to remote, cold regions at high latitude or altitude can be an expensive and technically challenging task. Photovoltaics (PV) provide a reliable and cost-effective solution yet their potential is underdeveloped, in part because of a lack of knowledge about their effectiveness in cold climates. This book illustrates the potential and the techniques for using PV in cold climates. The book starts with a general section illustrating how PV can be applied in cold climates, with a succinct overview of the main considerations and chapters covering both the solar resource and the economics. It then covers the effects of cold climates on PV systems looking at the issues around the array and electronics, the battery and energy management. The third section covers design considerations and possible configurations (stand alone/battery systems, hybrid systems, seasonal storage and system simulation). The next part covers installation and operation and the book concludes with several case studies. The book will be invaluable both for all managers charged with providing power to cold climates whether for dwellings, other buildings or technical installations and for all technicians, engineers, installers and researchers working on such installations. It will also be of great interest to those working with PV in any form, or interested to see PV technology reach its full potential.
When the size and the shape of materials are reduced to the nanoscale dimension, their physical and chemical properties can change dramatically. This book demonstrates the controlled size and shape of nanostructured materials and their applications. The applications cover photocatalysts, biomedicals, nanomaterials, fuel cells and supercapacitors, lithium-ion batteries, light-emitting diodes, and field emission display. This book may be the first to clearly point out the relationship between the size and the structure of the materials, which strongly affects their properties. Understanding these control parameters has important technological implications for energy conversion and storage, biotechnology, lighting and display, and so forth.
Electrochemically Enabled Sustainability: Devices, Materials and
Mechanisms for Energy Conversion covers topics related to current
research in electrochemical power sources, highlighting some of the
latest concepts in electrochemical conversion for sustainability.
The book examines the most recent and innovative technologies
employed in battery and fuel cell technology. It introduces the
fundamental concepts applied to these electrochemical power sources
and provides in-depth discussion on the materials, design, and
performance of these devices.
This book summarizes achievements and technology of China's underground gas storage in the past 20 years based on years of experience and technology accumulated in the construction and operation of gas storages. It also analyses and projects the future construction of underground gas storages in China Readers can systematically understand the construction status of China's underground gas storages, the difficulties encountered and the process and solution to such difficulties. It provides important theoretical and technical guidance for both in China and the world. Features of this book are listed as 1. Understand the development history, construction status, development trend of the underground gas storages around the world with countries and regions listed as case studies. 2. Understand the market demand of China's underground gas storages and resource distribution. 3. Understand the underground gas storages already built in China. 4. Understand the integrity management and risk control of the gas storages in China. 5. Understand the operation and management mode of gas storage. The target audience are those engaging in the research and technical management of the underground gas storage. It's a valuable reference for both reseachers and college students as well in the fields of underground storage of carbon dioxide (CO2) and helium (He), Power to Gas energy accumulation.
Advanced high-performance materials enabling precise control of chemical change, characterization tools probing the ultrafast and the ultra small, and new understanding based on advanced theory and simulation are the agents for moving beyond incremental improvements and creating a truly secure and sustainable energy future. This symposium proceedings volume focuses on the synthesis, processing, characterization, and modelling of nanostructured materials and their potential use as "nanoscale building blocks" for photon, phonon and chemical transduction to electrical signal and vice versa for energy management. Nanoscale structures can dramatically alter surface reaction rates and electrical transport, resulting in improvements in the processes and transduction mechanisms concerning energy storage, conversion, and generation.
This book focuses on a group of new materials labeled "graphene oxides." It provides a comprehensive overview of graphene oxide-based nanomaterials in terms of their synthesis, structures, properties, and extensive applications in catalysis, separation, filtration, energy storage and conversion. The book also covers emerging research on graphite oxides and the impact of the research on fundamental and applied sciences.
This book addresses the needs of researchers in electrical engineering interested in the modeling, simulation, dynamics and bifurcations of switched mode power supplies. It presents in a comprehensive and pedagogical manner, state-of-the-art research on bifurcation prediction in switched mode power supplies, which will help yield design-oriented results for power electronics practitioners.
The expected end of the "oil age" will lead to increasing focus and reliance on alternative energy conversion devices, among which fuel cells have the potential to play an important role. Not only can phosphoric acid and solid oxide fuel cells already efficiently convert today's fossil fuels, including methane, into electricity, but other types of fuel cells, such as polymer electrolyte membrane fuel cells, have the potential to become the cornerstones of a possible future hydrogen economy. This handbook offers concise yet comprehensive coverage of the current state of fuel cell research and identifies key areas for future investigation. Internationally renowned specialists provide authoritative introductions to a wide variety of fuel cell types and hydrogen production technologies, and discuss materials and components for these systems. Sustainability and marketing considerations are also covered, including comparisons of fuel cells with alternative technologies. |
![]() ![]() You may like...
Group 2 - The Genesis of World Rallying
John Davenport, Reinhard Klein
Hardcover
Financial Mathematics - A Computational…
K. Pereira, N. Modhien, …
Paperback
R307
Discovery Miles 3 070
|