![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Enzymology
Vibrational Spectroscopy in Protein Research offers a thorough discussion of vibrational spectroscopy in protein research, providing researchers with clear, practical guidance on methods employed, areas of application, and modes of analysis. With chapter contributions from international leaders in the field, the book addresses basic principles of vibrational spectroscopy in protein research, instrumentation and technologies available, sampling methods, quantitative analysis, origin of group frequencies, and qualitative interpretation. In addition to discussing vibrational spectroscopy for the analysis of purified proteins, chapter authors also examine its use in studying complex protein systems, including protein aggregates, fibrous proteins, membrane proteins and protein assemblies. Emphasis throughout the book is placed on applications in human tissue, cell development, and disease analysis, with chapters dedicated to studies of molecular changes that occur during disease progression, as well as identifying changes in tissues and cells in disease studies.
Is red wine good for you? And if so, why? How much? And what are the actual benefits? This addition to the SpringerBriefs in Cell Biology series thoroughly but succinctly answers these questions. It covers the biochemistry, health benefits and therapeutic potential of wine grapes. It begins with an overview of phytoalexin production in Vitis vinifera (Common Grape Vine), detailing the relationship of resveratrol to analogues such as pterostilbene, piceid and the viniferins (resveratrol oligomers). The discussion then turns to the hundreds of reports linking resveratrol and related grape vine polyphenols to various beneficial health effects especially cardio- and cerebro- vascular, metabolic, anti-inflammatory and more. Also addressed are the numerous intracellular mechanisms that have been shown to mediate the effects of these compounds in mammalian cells and tissues. Finally, the authors discuss aspects of polyphenol bioavailability and how this will influence choices taken for delivering these compounds as nutritional supplements. A brief chapter containing general conclusions and prospectus rounds out the information. ai
Glycans play essential roles in diverse biological and etiological processes and their structural complexity endow various functions. The glycome is the entire set of glycans produced by an individual organism. As the glycan microarray emerged, a good amount of knowledge has been obtained in understanding the functions of glycans. However, limited accessibility of glycans is a major obstacle to the functional glycomics study. Although isolation from biology samples provided some structures, the low abundance of glycans obtained and the difficulty in complete structural assignment restricted the subsequent assay. To circumvent this limitation, many synthetic strategies, including chemical, enzymatic and chemo-enzymatic ones have been developed to make libraries of structurally defined complex glycans available. The glycans provided by these techniques combined with high-throughput glycoarray techniques have broadened and deepened our understanding about functional glycomics. The aim of this book is to provide a comprehensive review of the current state of the synthetic glycome and a brief introduction of the application of the synthetic glycome in glycoarray assay. Accordingly, synthetic strategies toward generating glycans with comprehensive structures as well as the glycoarrays to unveil the glycan functions are described in this book.
The invention of the polymerase chain reaction (PCR) won the Nobel Prize in Chemistry in 1994 and remains one of the most important scientific discoveries of the twentieth century. More than 50,000 researchers in the United States use PCR replication technology, and yet a book has not been published on the subject in more than ten years. In this book, Dr. Stephen A. Bustin, a world-renowned PCR expert, examines in detail the latest innovations and the overall impact of PCR on many areas of molecular research. The book contains personal reflections, opinions, and comments by leading authorities on the many applications of the PCR and how this technology has revolutionized their respective areas of interest. This book conveys the ways in which PCR has overcome many obstacles in life science and clinical research and also charts the PCR s development from time-consuming, low throughput, non-quantitative procedure to today s rapid, high throughput, quantitative super method."
This textbook is designed for students of biology, molecular biology, ecology,medicine, agriculture, forestry and other professions where the knowledge of organic chemistry plays an important role. The work may also be of interest to non-professionals, as well as to teachers in high schools. The book consists of 13 chapters that cover the essentials of organic chemistry, including - basic principles of structure and constitution of organic compounds, - the elements of the nomenclature, - the concepts of the nature of chemical bond, - introductions in NMR and IR spectroscopy, - the concepts and main classes of the organic reaction mechanisms, - reactions and properties of common classes or organic compounds, - and the introduction to the chemistry of the natural organic products followed by basic principles of the reactions in living cells. This second edition includes revisions and suggestions made by the readers of the first edition and the author's colleagues. In addition, it includes substantial changes compared to the first edition. The chapter on Cycloaddition has been completed by including the other pericyclic reactions (sigmatropic rearrangements, electrocyclic reactions). The chapter on Organic Natural Products has been extended to include new section covering the principles of organic synthesis. New chapter "Organic Supramolecular and Supermolecular Structures" is added. This chapter covers the basic knowledge about the molecular recognition, supramolecular structures, and the mechanisms of the enzyme catalyzed reactions.
This textbook presents a concise comparison of catalytic and biocatalytic systems outlining their catalytic properties and peculiarities. Moreover, it presents a brief introduction to the science of catalysis and attempts to unify different catalytic systems into a single, conceptually coherent structure. In fact, molecular dynamics and complexity may occur in both catalysts and biocatalysts, with many similarities in both their structural configuration and operational mechanisms. Moreover, the interactions between the different components of the catalytic system that are important in defining the overall activity, including the nature of active sites are discussed. Each chapter includes end of chapter questions supported by an online instructor solution manual. This textbook will be useful for undergraduate and graduate chemistry and biochemistry students.
Enzymes are giant macromolecules which catalyse biochemical reactions. They are remarkable in many ways. Their three-dimensional structures are highly complex, yet they are formed by spontaneous folding of a linear polypeptide chain. Their catalytic properties are far more impressive than synthetic catalysts which operate under more extreme conditions. Each enzyme catalyses a single chemical reaction on a particular chemical substrate with very high enantioselectivity and enantiospecificity at rates which approach "catalytic perfection." Living cells are capable of carrying out a huge repertoire of enzyme-catalysed chemical reactions, some of which have little or no precedent in organic chemistry. The popular textbook "Introduction to Enzyme and Coenzyme Chemistry "has been thoroughly updated to include information on the most recent advances in our understanding of enzyme action, with additional recent examples from the literature used to illustrate key points. A major new feature is the inclusion of two-colour figures, and the addition of over 40 new figures of the active sites of enzymes discussed in the text, in order to illustrate the interplay between enzyme structure and function. This new edition provides a concise but comprehensive account from the perspective of organic chemistry, what enzymes are, how they work, and how they catalyse many of the major classes of enzymatic reactions, and will continue to prove invaluable to both undergraduate and postgraduate students of organic, bio-organic and medicinal chemistry, chemical biology, biochemistry and biotechnology.
This book provides comprehensive methods and protocols about enzyme design. The chapters are grouped by main topic, starting with methodologies describing library preparation and screening, state of the art techniques in directed evolution and rational design, followed by examples of immobilization of enzymes on sustainable polymers, as well as biocatalytic conversions mediated by homogenous enzymatic preparations or whole cells. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and timely, Enzyme Engineering: Methods and Protocols is an ideal guide for both the novice and the veteran researcher interested in biocatalysis. Chapter 13 is available open access under a CC BY 4.0 license.
Accessible and comprehensive, this book describes the universal cellular nature of living organisms and is an indispensable tool for anyone in the sciences who wishes to get a quick overview of molecular biology. Individual chapters cover nucleic acids and proteins, genetic code and protein synthesis, the fidelity of transferring genetic information to the next generations, and the regulation of various processes inside the cells. Special attention is paid to new areas rising from modern DNA sequencing technologies which transform biology. The book also touches on developing areas, such as cures for cancer and CRISPR, which are important for medicine and the future of humankind.
This collection explores detailed experimental protocols necessary for setting up a variety of in vitro cytochrome P450 (CYP) assays that are vital in selecting drug candidates in a drug discovery pipeline. Major factors affecting drug metabolism include CYP expression levels, kinetic parameters for individual CYP enzymes, CYP inhibition and induction, time-dependent inhibition (TDI), CYP stability, non-CYP stability, UDP-glucuronosyltransferases (UGT) stability, excretion mechanisms, and drug-drug interactions (DDI), all addressed in this volume. Written for the Methods in Pharmacology and Toxicology series, chapters include helpful background information on the in vitro assay, a list of all the materials, reagents, and equipment necessary to carry out the assay, a step-by-step protocol, notes containing common and unexpected experimental problems in the assay, as well as references containing important supplementary reading. Authoritative and practical, Cytochrome P450: In Vitro Methods and Protocols serves as a key guide for researchers in the area of discovery and development of new medicines.
Ribonucleic acid (RNA) is a macromolecule that plays a central role in cell physiology: RNA molecules act as intermediates between the deoxyribonucleic acid (DNA), where genetic information is stored, and proteins, which perform the necessary functions within the cell. Traditionally, the structural and functional properties of RNA are closely linked to gene expression. However, RNA-based enzymes, called ribozymes, are also involved in catalysis and small RNAs regulate key cellular processes, such as cell growth, division, differentiation, aging and death. RNA is a sensitive macromolecule that can be easily damaged by environmental conditions (ultraviolet radiation, oxidative stress) and biological factors (ribonucleases, ribotoxins, CRISPR-Cas systems). Therefore, cells have developed mechanisms to protect and/or repair RNA molecules. This book presents an overview of the biology of RNA damage, protection and repair in prokaryotes and eukaryotes. Individual chapters cover the expression regulation, enzymology and physiological role of such systems, and link them to important human diseases such as cancer and degenerative diseases.
This second edition further develops the principles of applying kinetic principles to drug metabolizing enzymes and transporters. Chapters are divided into six sections detailing fundamental principles of enzyme kinetics, enzyme and transporter structures, highlighting specific oxidative and conjugative drug metabolizing enzymes and drug transporters, modeling approaches for drug metabolizing enzymes and transporters, understanding of variability both experimental and interindividual (pharmacogenomic), and expanded case studies that provide real life examples of applying these principles. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, in some cases step-by-step instructions with readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls with extensive cross referencing to assist in learning. Authoritative and fully updated, Enzyme Kinetics in Drug Metabolism: Fundamentals and Applications, Second Edition serves as a practical teaching tool for novice and advanced scientists interested in the fundamental concepts.
This book of protocols is devoted to the yellow coenzymes derived from riboflavin or vitamin B2 and to the hundreds of enzymes whose functionality depends on them, and represents a compendium of techniques for working with flavoproteins or with the wide spectrum of functions that flavoproteins can drive in the cells. Starting with Rf production in microorganisms and the chemical, optical, and redox properties of these fascinating molecules and moving along to the variety and the peculiarity of some single flavoenzymes, the volume explores the complexity of functions and distribution of these molecules in the cell. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Flavin and Flavoproteins: Methods and Protocols serves as an ideal guide for protein chemists interested in purifying and characterizing flavoproteins, as well as microbiologists, physiologists, and clinicians, who wish to further study problems connected with flavoproteins.
The enzymology of milk and other products is of enormous significance for the production and quality of almost every dairy product. Milk itself is a complex biological fluid that contains a wide range of enzymes with diverse activities, some of which have identifiable functions while others are present as an accidental consequence of the mechanism of milk secretion. Over time milk enzymology has become an incredibly essential component of milk and other dairy product production, and with advancing technology and processing techniques, its importance is at its peak. Dairy Enzymology presents an expansive overview of the enzymology of milk and other dairy products, focusing on the use of indigenous and endogenous enzymes in milk and exogenous enzymes in cheese processing. A full section is dedicated to the enzymology of bovine milk, focusing on the main families of indigenous enzymes as well as their potential significance in the mammary gland plus the technological significance for the properties of dairy products. Implications for the manufacture and ripening of cheese plus the use of enzymes such as alkaline phosphatase for measuring heat treatment in milk are explored in full, and the role of milk protease plasmin and other indigenous enzymes in the age-gelation is focused on. Further sections focus on enzymes found in raw milk and enzymes deliberately added for manufacture or modification of properties and the manufacture of food ingredients from dairy-derived ingredients. The key bacterial families are discussed in depth as well as their known contributions to the quality of dairy products. With its comprehensive scope and fully up-to-date coverage of dairy product enzymology, this text is a singular source for researchers looking to understand this essential dairy processing aspect.
This book presents specific key natural and artificial systems that are promising biocatalysts in the areas of health, agriculture, environment and energy. It provides a comprehensive account of the state of the art of these systems and outlines the significant progress made in the last decade using these systems to develop innovative, sustainable and environmentally friendly solutions. Chapters from expert contributors explore how natural enzymes and artificial systems tackle specific targets such as: climate change, carbon footprint and economy and carbon dioxide utilisation; nitrogen footprint and fixation and nitrous oxide mitigation; hydrogen production, fuel cells and energy from bacteria; biomass transformation and production of added-value compounds, as well as biosensors development. This book provides an important and inspiring account for the designing of new natural and artificial systems with enhanced properties, and it appeals not only to students and researchers working in the fields of energy, health, food and environment, but also to a wider audience of educated readers that are interested in these up-to-date and exciting subjects.Chapter "Carbon Dioxide Utilisation-The Formate Route" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This detailed book collects standard techniques and cutting-edge methods that are frequently used by the research community studying the fungus Trichoderma reesei. Beginning with overviews of its evolution, its use in the production of industrially-relevant enzymes, and synthetic biology applications, the volume continues with methods covering topics from transformation techniques and gene editing to downstream-analytical applications and -omics analyses and the corresponding bioinformatics approaches. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Trichoderma reesei: Methods and Protocols serves as an ideal guide for a wide range of audiences, from students who want to familiarize themselves with basic research protocols to experienced scientists who are planning to establish a new method in their laboratories, working with this dynamic fungus.
This book gathers selected studies on the industrial applications of glycoside hydrolases (GHs), presenting an updated classification of these enzymes, and discussing their structure, mechanisms, and various approaches to improve their catalytic efficiency. Further, it explains the various industrial applications of glycoside hydrolases in food, effluent treatment, biofuel production, and the paper and pulp industries. Lastly, the book provides a comparative analysis of glycoside hydrolases and discusses the role of metagenomics in the discovery of industrially important enzymes. As such it is a thought-provoking, instructive and informative resource for biochemists, enzymologists, molecular biologists and bioprocess technologists.
This book delves into the field of immobilizing biologically active and non-active molecules. It discusses the designing strategy of immobilization and the current state-of-the-art applications for advancing biomedical, agricultural, environmental and industrial practices. It focuses on aspects ranging from fundamental principles to current technological advances at multi-scale levels (macro, micro, and nano) which are suitable for cell, enzyme, and nano-catalyst based applications. Written by experts from across the globe, the contents deal with illustrated examples of molecular and cellular interactions with materials/scaffolds and discussions on factors that can affect the functionality and yield of the process. With its discussions on material science, design of delivery vehicles, separation science, additive manufacturing, agriculture and environmental science, this book will be a useful reference for researchers across multiple disciplines.
This Microbiology Monographs volume covers the latest advances in laccase applications in bioremediation and waste valorisation. The first three chapters provide a comprehensive introduction to fungal and bacterial laccases (the two most important enzyme groups from an application viewpoint) and their practical use in bioremediation and lignocellulosic waste valorisation. Subsequent chapters discuss possible combinations of laccases and further potentially collaborating enzymes, and offer in-depth insights into laccase immobilisation for wastewater treatment and environmental biosensor applications of laccases. Lastly, the book addresses the quest for enzymes with improved and better-fitting properties, covering laccase engineering by directed and computational evolution, and novel enzymes from extreme environments. As such, it is a fascinating read for microbiologists in both industry and academia.
This book discusses a broad range of basic and advanced topics in the field of protein structure, function, folding, flexibility, and dynamics. Starting with a basic introduction to protein purification, estimation, storage, and its effect on the protein structure, function, and dynamics, it also discusses various experimental and computational structure determination approaches; the importance of molecular interactions and water in protein stability, folding and dynamics; kinetic and thermodynamic parameters associated with protein-ligand binding; single molecule techniques and their applications in studying protein folding and aggregation; protein quality control; the role of amino acid sequence in protein aggregation; muscarinic acetylcholine receptors, antimuscarinic drugs, and their clinical significances. Further, the book explains the current understanding on the therapeutic importance of the enzyme dopamine beta hydroxylase; structural dynamics and motions in molecular motors; role of cathepsins in controlling degradation of extracellular matrix during disease states; and the important structure-function relationship of iron-binding proteins, ferritins. Overall, the book is an important guide and a comprehensive resource for understanding protein structure, function, dynamics, and interaction.
Targeting protein degradation using small molecules is one of the most exciting small-molecule therapeutic strategies in decades and a rapidly growing area of research. In particular, the development of proteolysis targeting chimera (PROTACs) as potential drugs capable of recruiting target proteins to the cellular quality control machinery for elimination has opened new avenues to address traditionally 'difficult to target' proteins. This book provides a comprehensive overview from the leading academic and industrial experts on recent developments, scope and limitations in this dynamically growing research area; an ideal reference work for researchers in drug discovery and chemical biology as well as advanced students.
This book presents an authoritative review of the most significant findings about all the epigenetic targets (writers, readers, and erasers) and their implication in physiology and pathology. The book also covers the design, synthesis and biological validation of epigenetic chemical modulators, which can be useful as novel chemotherapeutic agents. Particular attention is given to the chemical mechanisms of action of these molecules and to the drug discovery prose which allows their identification. This book will appeal to students who want to know the extensive progresses made by epigenetics (targets and modulators) in the last years from the beginning, and to specialized scientists who need an instrument to quickly search and check historical and/or updated notices about epigenetics.
This book provides a comprehensive, organized, and concise overview of xenobiotic metabolic enzymes and their health implications. The subjects addressed are broad in scope with an emphasis on recent advances in research on biochemical and biomedical aspects of these enzymes. The xenobiotics discussed include not just drugs, but also food, smoke, and other environmental chemicals. The subjects covered in this work include: metabolic enzymes and their catalyzed reactions, reactive intermediates generated from metabolic activation, oxidative stress mediated by electrophilic reactive intermediates, bioactivation - mediated cellular and functional damages, activation of Nrf2 - ARE pathway, genetic variations affecting metabolic enzyme expression, enzyme polymorphisms affecting xenobiotic - mediated toxicity, induction of metabolic enzymes for health benefits, and a diversity of metabolic enzyme modulators.
This book introduces the new concept of "nanozyme", which refers to nanomaterials with intrinsic enzymatic activity, rather than nanomaterials with biological enzymes incorporated on the surface. The book presents the cutting-edge advances in nanozyme, with emphasis on state-of-the-art applications in many important fields, such as in the biomedical fields and for environmental protection. The nanozyme is a totally new type of artificial enzyme and exhibits huge advantages over natural enzymes, including greater stability, low cost, versatility, simplicity, and suitability for industry. It is of interest to university researchers, R&D engineers, as well as graduate students in nanoscience and technology, and biology wishing to learn the core principles, methods, and the corresponding applications of "nanozyme".
This book introduces readers to industrially important enzymes and discusses in detail their structures and functions, as well as their manifold applications. Due to their selective biocatalytic capabilities, enzymes are used in a broad range of industries and processes. The book highlights selected enzymes and their applications in agriculture, food processing and discoloration, as well as their role in biomedicine. In turn, it discusses biochemical engineering strategies such as enzyme immobilization, metabolic engineering, and cross-linkage of enzyme aggregates, and critically weighs their pros and cons. Offering a wealth of information, and stimulating further research by presenting new concepts on enzymatic catalytic functions in basic and applied contexts, the book represents a valuable asset for researchers from academia and industry who are engaged in biochemical engineering, microbiology and biotechnology. |
You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
A Bibliographic Guide to Resources in…
Jeffrey R. Yost
Hardcover
The Oxford Handbook of Applied Bayesian…
Anthony O'Hagan, Mike West
Hardcover
R4,188
Discovery Miles 41 880
Fully Charged - How Great Leaders Boost…
Heike Bruch, Bernd Vogel
Hardcover
|