![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This book explains digital signal processing topics in detail, with a particular focus on ease of understanding. Accordingly, it includes a wealth of examples to aid in comprehension, and stresses simplicity. The book is divided into four chapters, which respectively address the topics sampling of continuous time signals; multirate signal processing; the discrete Fourier transform; and filter design concepts. It provides original practical techniques to draw the spectrum of aliased signals, together with well-designed numerical examples to illustrate the operation of the fast transforms, filter algorithms, and circuit designs. Readers of this book should already have some basic understanding of signals and transforms. They will learn fundamental concepts for signals and systems, as the focus is more on digital signal processing concepts rather than continuous time signal processing topics.
This is a book comprising selected papers of colleagues and friends of Heinrich Begehr on the occasion of his 80th birthday. It aims at being a tribute to the excellent achievements of Heinrich Begehr in complex analysis and complex differential equations, and especially to his prominent role as one of the creators and long-time leader of the International Society for Analysis, its Applications and Computation (ISAAC).
This second edition of Elements of Operator Theory is a concept-driven textbook that includes a significant expansion of the problems and solutions used to illustrate the principles of operator theory. Written in a user-friendly, motivating style intended to avoid the formula-computational approach, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, and Hilbert spaces, culminating with the Spectral Theorem. Included in this edition: more than 150 examples, with several interesting counterexamples that demonstrate the frontiers of important theorems, as many as 300 fully rigorous proofs, specially tailored to the presentation, 300 problems, many with hints, and an additional 20 pages of problems for the second edition. *This self-contained work is an excellent text for the classroom as well as a self-study resource for researchers.
The fundamental contributions made by the late Victor Lomonosov in several areas of analysis are revisited in this book, in particular, by presenting new results and future directions from world-recognized specialists in the field. The invariant subspace problem, Burnside's theorem, and the Bishop-Phelps theorem are discussed in detail. This volume is an essential reference to both researchers and graduate students in mathematical analysis.
This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a system are nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences. "The author has greatly expanded the field of positive systems in surprising ways." - Prof. Dr. David G. Luenberger, Stanford University(USA)
This work is solely dedicated to the study of both the one variable as well as the multidimensional Lorentz spaces covering the theory of Lebesgue type spaces invariant by rearrangement. The authors provide proofs in full detail for most theorems. The self-contained text is valuable for advanced students and researchers.
The book is the first systematical treatment of the theory of finite elements in Archimedean vector lattices and contains the results known on this topic up to the year 2013. It joins all important contributions achieved by a series of mathematicians that can only be found in scattered in literature.
This volume consists of twenty peer-reviewed papers from the special session on pseudodifferential operators and the special session on generalized functions and asymptotics at the Eighth Congress of ISAAC held at the Peoples' Friendship University of Russia in Moscow on August 22-27, 2011. The category of papers on pseudo-differential operators contains such topics as elliptic operators assigned to diffeomorphisms of smooth manifolds, analysis on singular manifolds with edges, heat kernels and Green functions of sub-Laplacians on the Heisenberg group and Lie groups with more complexities than but closely related to the Heisenberg group, Lp-boundedness of pseudo-differential operators on the torus, and pseudo-differential operators related to time-frequency analysis. The second group of papers contains various classes of distributions and algebras of generalized functions with applications in linear and nonlinear differential equations, initial value problems and boundary value problems, stochastic and Malliavin-type differential equations. This second group of papers are related to the third collection of papers via the setting of Colombeau-type spaces and algebras in which microlocal analysis is developed by means of techniques in asymptotics. The volume contains the synergies of the three areas treated and is a useful complement to volumes 155, 164, 172, 189, 205 and 213 published in the same series in, respectively, 2004, 2006, 2007, 2009, 2010 and 2011.
This volume is dedicated to Harold Widom, a distinguished mathematician and renowned expert in the area of Toeplitz, Wiener-Hopf and pseudodifferential operators, on the occasion of his sixtieth birthday. The book opens with biographical material and a list of the mathematician's publications, this being followed by two papers based on Toeplitz lectures which he delivered at Tel Aviv University in March, 1993. The rest of the book consists of a selection of papers containing some recent achievements in the following areas: SzegA-Widom asymptotic formulas for determinants of finite sections of Toeplitz matrices and their generalizations, the Fisher-Hartwig conjecture, random matrices, analysis of kernels of Toeplitz matrices, projectional methods and eigenvalue distribution for Toeplitz matrices, the Fredholm theory for convolution type operators, the Nehari interpolation problem with generalizations and applications, and Toeplitz-Hausdorff type theorems. The book will appeal to a wide audience of pure and applied mathematicians.
This research monograph gives a detailed account of a theory which is mainly concerned with certain classes of degenerate differential operators, Markov semigroups and approximation processes. These mathematical objects are generated by arbitrary Markov operators acting on spaces of continuous functions defined on compact convex sets; the study of the interrelations between them constitutes one of the distinguishing features of the book. Among other things, this theory provides useful tools for studying large classes of initial-boundary value evolution problems, the main aim being to obtain a constructive approximation to the associated positive C0-semigroups by means of iterates of suitable positive approximating operators. As a consequence, a qualitative analysis of the solutions to the evolution problems can be efficiently developed. The book is mainly addressed to research mathematicians interested in modern approximation theory by positive linear operators and/or in the theory of positive C0-semigroups of operators and evolution equations. It could also serve as a textbook for a graduate level course.
This book provides a comprehensive introduction to all major topics in digital signal processing (DSP). The book is designed to serve as a textbook for courses offered to undergraduate students enrolled in electrical, electronics, and communication engineering disciplines. The text is augmented with many illustrative examples for easy understanding of the topics covered. Every chapter contains several numerical problems with answers followed by question-and-answer type assignments. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in electrical engineering and related programs.
Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section "Approximation Theory and Fourier Analysis". The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matematica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.
This is the revised and enlarged 2nd edition of the authors' original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.
Tauberian operators were introduced to investigate a problem in summability theory from an abstract point of view. Since that introduction, they have made a deep impact on the isomorphic theory of Banach spaces. In fact, these operators have been useful in several contexts of Banach space theory that have no apparent or obvious connections. For instance, they appear in the famous factorization of Davis, Figiel, Johnson and Pelczynski [49] (henceforth the DFJP factorization), in the study of exact sequences of Banach spaces [174], in the solution of certain summability problems of tauberian type [63, 115], in the problem of the equivalence between the Krein-Milman property and the Radon-Nikodym property [151], in certain sequels of James' characterization of reflexive Banach spaces [135], in the construction of hereditarily indecomposable Banach spaces [13], in the extension of the principle of local reflexivity to operators [27], in the study of certain Calkin algebras associated with the weakly compact operators [16], etc. Since the results concerning tauberian operators appear scattered throughout the literature, in this book we give a unified presentation of their properties and their main applications in functional analysis. We also describe some questions about tauberian operators that remain open. This book has six chapters and an appendix. In Chapter 1 we show how the concept of tauberian operator was introduced in the study of a classical problem in summability theory - the characterization of conservative matrices that sum no bounded divergent sequences - by means of functional analysis techniques. One of those solutions is due to Crawford [45], who considered the second conjugate of the operator associated with one of those matrices.
This monograph is a unified presentation of several theories of
finding explicit formulas for heat kernels for both elliptic and
sub-elliptic operators. These kernels are important in the theory
of parabolic operators because they describe the distribution of
heat on a given manifold as well as evolution phenomena and
diffusion processes.
This book examines in detail the nonlinear Ginzburg-Landau functional, the model most commonly used in the study of superconductivity. Specifically covered are cases in the presence of a strong magnetic field and with a sufficiently large Ginzburg-Landau parameter kappa. Spectral Methods in Surface Superconductivity is intended for students and researchers with a graduate-level understanding of functional analysis, spectral theory, and the analysis of partial differential equations. The book also includes an overview of all nonstandard material as well as important semi-classical techniques in spectral theory that are involved in the nonlinear study of superconductivity.
Piezoelectricity has been a steadily growing field, with recent advances made by researchers from applied physics, acoustics, materials science, and engineering. This collective work presents a comprehensive treatment of selected advanced topics in the subject. The book is written for an intermediate graduate level and is intended for researchers, mechanical engineers, and applied mathematicians interested in the advances and new applications in piezoelectricity.
This contributed volume is based on talks given at the August 2016 summer school "Fluids Under Pressure," held in Prague as part of the "Prague-Sum" series. Written by experts in their respective fields, chapters explore the complex role that pressure plays in physics, mathematical modeling, and fluid flow analysis. Specific topics covered include: Oceanic and atmospheric dynamics Incompressible flows Viscous compressible flows Well-posedness of the Navier-Stokes equations Weak solutions to the Navier-Stokes equations Fluids Under Pressure will be a valuable resource for graduate students and researchers studying fluid flow dynamics.
This book presents applications of hypercomplex analysis to boundary value and initial-boundary value problems from various areas of mathematical physics. Given that quaternion and Clifford analysis offer natural and intelligent ways to enter into higher dimensions, it starts with quaternion and Clifford versions of complex function theory including series expansions with Appell polynomials, as well as Taylor and Laurent series. Several necessary function spaces are introduced, and an operator calculus based on modifications of the Dirac, Cauchy-Fueter, and Teodorescu operators and different decompositions of quaternion Hilbert spaces are proved. Finally, hypercomplex Fourier transforms are studied in detail. All this is then applied to first-order partial differential equations such as the Maxwell equations, the Carleman-Bers-Vekua system, the Schroedinger equation, and the Beltrami equation. The higher-order equations start with Riccati-type equations. Further topics include spatial fluid flow problems, image and multi-channel processing, image diffusion, linear scale invariant filtering, and others. One of the highlights is the derivation of the three-dimensional Kolosov-Mushkelishvili formulas in linear elasticity. Throughout the book the authors endeavor to present historical references and important personalities. The book is intended for a wide audience in the mathematical and engineering sciences and is accessible to readers with a basic grasp of real, complex, and functional analysis.
The analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications.
Examining recent mathematical developments in the study of Fredholm operators, spectral theory and block operator matrices, with a rigorous treatment of classical Riesz theory of polynomially-compact operators, this volume covers both abstract and applied developments in the study of spectral theory. These topics are intimately related to the stability of underlying physical systems and play a crucial role in many branches of mathematics as well as numerous interdisciplinary applications. By studying classical Riesz theory of polynomially compact operators in order to establish the existence results of the second kind operator equations, this volume will assist the reader working to describe the spectrum, multiplicities and localization of the eigenvalues of polynomially-compact operators.
Generalized Schur functions are scalar- or operator-valued holomorphic functions such that certain associated kernels have a finite number of negative squares. This book develops the realization theory of such functions as characteristic functions of coisometric, isometric, and unitary colligations whose state spaces are reproducing kernel Pontryagin spaces. This provides a modern system theory setting for the relationship between invariant subspaces and factorization, operator models, Krein-Langer factorizations, and other topics. The book is intended for students and researchers in mathematics and engineering. An introductory chapter supplies background material, including reproducing kernel Pontryagin spaces, complementary spaces in the sense of de Branges, and a key result on defining operators as closures of linear relations. The presentation is self-contained and streamlined so that the indefinite case is handled completely parallel to the definite case.
Concentration analysis provides, in settings without a priori available compactness, a manageable structural description for the functional sequences intended to approximate solutions of partial differential equations. Since the introduction of concentration compactness in the 1980s, concentration analysis today is formalized on the functional-analytic level as well as in terms of wavelets, extends to a wide range of spaces, involves much larger class of invariances than the original Euclidean rescalings and has a broad scope of applications to PDE. This book represents current research in concentration and blow-up phenomena from various perspectives, with a variety of applications to elliptic and evolution PDEs, as well as a systematic functional-analytic background for concentration phenomena, presented by profile decompositions based on wavelet theory and cocompact imbeddings.
This volume presents current research in functional analysis and its applications to a variety of problems in mathematics and mathematical physics. The book contains over forty carefully refereed contributions to the conference "Functional Analysis in Interdisciplinary Applications" (Astana, Kazakhstan, October 2017). Topics covered include the theory of functions and functional spaces; differential equations and boundary value problems; the relationship between differential equations, integral operators and spectral theory; and mathematical methods in physical sciences. Presenting a wide range of topics and results, this book will appeal to anyone working in the subject area, including researchers and students interested to learn more about different aspects and applications of functional analysis.
This book consists of invited survey articles and research papers in the scientific areas of the "International Workshop on Operator Algebras, Operator Theory and Applications," which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas. |
You may like...
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R1,892
Discovery Miles 18 920
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,319
Discovery Miles 33 190
Hardy Operators On Euclidean Spaces And…
Shanzhen Lu, Zunwei Fu, …
Hardcover
R1,914
Discovery Miles 19 140
Local Fractional Integral Transforms and…
Xiaojun Yang, Dumitru Baleanu, …
Hardcover
R1,806
Discovery Miles 18 060
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
Bloch-type Periodic Functions: Theory…
Yong-kui Chang, Gaston Mandata N'G'Uerekata, …
Hardcover
R1,907
Discovery Miles 19 070
|