![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
Ring theory provides the algebraic underpinnings for many areas of mathematics, computer science, and physics. For example, ring theory appears in: functional analysis; algebraic topology; algebraic number theory; coding theory; and in the study of quantum theory. This volume is a collection of research papers, many presented at the 3rd Korea-China-Japan International Symposium on Ring Theory held jointly with the 2nd Korea-Japan Ring Theory Seminar, in Korea, The articles examine wide-ranging developments and methodologies in various areas, including classical Hopf algebras and quantum groups.
This book, based on a graduate course given by the authors, is a pedagogic and self-contained introduction to the renormalization group with special emphasis on the functional renormalization group. The functional renormalization group is a modern formulation of the Wilsonian renormalization group in terms of formally exact functional differential equations for generating functionals. In Part I the reader is introduced to the basic concepts of the renormalization group idea, requiring only basic knowledge of equilibrium statistical mechanics. More advanced methods, such as diagrammatic perturbation theory, are introduced step by step. Part II then gives a self-contained introduction to the functional renormalization group. After a careful definition of various types of generating functionals, the renormalization group flow equations for these functionals are derived. This procedure is shown to encompass the traditional method of the mode elimination steps of the Wilsonian renormalization group procedure. Then, approximate solutions of these flow equations using expansions in powers of irreducible vertices or in powers of derivatives are given. Finally, in Part III the exact hierarchy of functional renormalization group flow equations for the irreducible vertices is used to study various aspects of non-relativistic fermions, including the so-called BCS-BEC crossover, thereby making the link to contemporary research topics.
This authoritative text studies pseudodifferential and Fourier integral operators in the framework of time-frequency analysis, providing an elementary approach, along with applications to almost diagonalization of such operators and to the sparsity of their Gabor representations. Moreover, Gabor frames and modulation spaces are employed to study dispersive equations such as the Schroedinger, wave, and heat equations and related Strichartz problems. The first part of the book is addressed to non-experts, presenting the basics of time-frequency analysis: short time Fourier transform, Wigner distribution and other representations, function spaces and frames theory, and it can be read independently as a short text-book on this topic from graduate and under-graduate students, or scholars in other disciplines.
The book is complemented by biographical information. This volume is dedicated to Peter Lancaster, an outstanding expert in operator and matrix theory, numerical analysis and applications, on the occasion of his seventieth birthday. The book contains a selection of recent original research papers in linear algebra and analysis, areas in which Peter Lancaster was very active. The articles are complemented by biographical data and a list of publications. Contributed volume in honor of Peter Lancaster, an outstanding expert in operator theory, matrix theory and numerical analysis. The articles have been carefully selected and refereed and cover topics in linear algebra and analysis where Peter Lancaster was very active.
In 1917, Johann Radon published his fundamental work, where he introduced what is now called the Radon transform. Including important contributions by several experts, this book reports on ground-breaking developments related to the Radon transform throughout these years, and also discusses novel mathematical research topics and applications for the next century.
In this monograph, we combine operator techniques with state space methods to solve factorization, spectral estimation, and interpolation problems arising in control and signal processing. We present both the theory and algorithms with some Matlab code to solve these problems. A classical approach to spectral factorization problems in control theory is based on Riccati equations arising in linear quadratic control theory and Kalman ?ltering. One advantage of this approach is that it readily leads to algorithms in the non-degenerate case. On the other hand, this approach does not easily generalize to the nonrational case, and it is not always transparent where the Riccati equations are coming from. Operator theory has developed some elegant methods to prove the existence of a solution to some of these factorization and spectral estimation problems in a very general setting. However, these techniques are in general not used to develop computational algorithms. In this monograph, we will use operator theory with state space methods to derive computational methods to solve factorization, sp- tral estimation, and interpolation problems. It is emphasized that our approach is geometric and the algorithms are obtained as a special application of the theory. We will present two methods for spectral factorization. One method derives al- rithms based on ?nite sections of a certain Toeplitz matrix. The other approach uses operator theory to develop the Riccati factorization method. Finally, we use isometric extension techniques to solve some interpolation problems.
This book contains the proceedings of the 23rd International Workshop on Operator Theory and its Applications (IWOTA2012), which was held at the University of New South Wales (Sydney, Australia) from 16 July to 20 July 2012. It includes twelve articles presenting both surveys of current research in operator theory and original results."
This is the second, completely revised and expanded edition of the author's first book, covering numerous new topics and recent developments in ultrametric summability theory. Ultrametric analysis has emerged as an important branch of mathematics in recent years. This book presents a brief survey of the research to date in ultrametric summability theory, which is a fusion of a classical branch of mathematics (summability theory) with a modern branch of analysis (ultrametric analysis). Several mathematicians have contributed to summability theory as well as functional analysis. The book will appeal to both young researchers and more experienced mathematicians who are looking to explore new areas in analysis. The book is also useful as a text for those who wish to specialize in ultrametric summability theory.
the recent IWOTA meetings, IWOTA 2006 was focused on a few special themes, without loss of the general IWOTA mission. Our special interest areas were Hilbert/Krein space operator theory; Complex function theory related to Hilbert space operators; Systems theory related to Hilbert space operators. This volume contains 16 contributions, which re?ect the recent development in operator theory and applications. The organizers gratefully acknowledge the support of the following institutions: KRF (Korea Research Foundation); Department of Mathematics, Seoul National University; Research Institute of Mathematics, Seoul National University. Tsuyoshi Ando, Raul ' Curto Il Bong Jung, Woo Young Lee (Editors) OperatorTheory: Advances andApplications,Vol.187, 1-16 c 2008Birkh. auserVerlagBasel/Switzerland AConnectionbetweenSzegoandNehari SequencesintheMatrix-valuedCase Daniel Alpay and Israel Gohberg Abstract. One can associate to a rational function which is moreover strictly positive on the unit circle two sequences of numbers in the open unit disk, called the Szeg. o sequence and the Nehari sequence. In the scalar case, they coincide up to multiplication by?1. We study the corresponding result in the matrix-valued case. Mathematics Subject Classi?cation (2000). Primary: 34A55, 49N45, 70G30; Secondary: 93B15, 47B35. Keywords. Inverse problems, scattering matrix, Schurparameters, state space method, extension problems. 1. Introduction Letw(z) be a scalar rational function strictly positive on the unit circle. One can associate to it an in?nite sequence of numbers in the open unit disk, called in [1] a Szeg. o sequence. This sequence characterizes in a unique wayw(z)providedsome normalization is chosen; we will take 2? 1 it w(e )dt=1.
This book proves that Feynman's original definition of the path integral actually converges to the fundamental solution of the Schroedinger equation at least in the short term if the potential is differentiable sufficiently many times and its derivatives of order equal to or higher than two are bounded. The semi-classical asymptotic formula up to the second term of the fundamental solution is also proved by a method different from that of Birkhoff. A bound of the remainder term is also proved.The Feynman path integral is a method of quantization using the Lagrangian function, whereas Schroedinger's quantization uses the Hamiltonian function. These two methods are believed to be equivalent. But equivalence is not fully proved mathematically, because, compared with Schroedinger's method, there is still much to be done concerning rigorous mathematical treatment of Feynman's method. Feynman himself defined a path integral as the limit of a sequence of integrals over finite-dimensional spaces which is obtained by dividing the time interval into small pieces. This method is called the time slicing approximation method or the time slicing method.This book consists of two parts. Part I is the main part. The time slicing method is performed step by step in detail in Part I. The time interval is divided into small pieces. Corresponding to each division a finite-dimensional integral is constructed following Feynman's famous paper. This finite-dimensional integral is not absolutely convergent. Owing to the assumption of the potential, it is an oscillatory integral. The oscillatory integral techniques developed in the theory of partial differential equations are applied to it. It turns out that the finite-dimensional integral gives a finite definite value. The stationary phase method is applied to it. Basic properties of oscillatory integrals and the stationary phase method are explained in the book in detail.Those finite-dimensional integrals form a sequence of approximation of the Feynman path integral when the division goes finer and finer. A careful discussion is required to prove the convergence of the approximate sequence as the length of each of the small subintervals tends to 0. For that purpose the book uses the stationary phase method of oscillatory integrals over a space of large dimension, of which the detailed proof is given in Part II of the book. By virtue of this method, the approximate sequence converges to the limit. This proves that the Feynman path integral converges. It turns out that the convergence occurs in a very strong topology. The fact that the limit is the fundamental solution of the Schroedinger equation is proved also by the stationary phase method. The semi-classical asymptotic formula naturally follows from the above discussion.A prerequisite for readers of this book is standard knowledge of functional analysis. Mathematical techniques required here are explained and proved from scratch in Part II, which occupies a large part of the book, because they are considerably different from techniques usually used in treating the Schroedinger equation.
This volume, which is dedicated to Heinz Langer, includes biographical material and carefully selected papers. Heinz Langer has made fundamental contributions to operator theory. In particular, he has studied the domains of operator pencils and nonlinear eigenvalue problems, the theory of indefinite inner product spaces, operator theory in Pontryagin and Krein spaces, and applications to mathematical physics. His works include studies on and applications of Schur analysis in the indefinite setting, where the factorization theorems put forward by Krein and Langer for generalized Schur functions, and by Dijksma-Langer-Luger-Shondin, play a key role. The contributions in this volume reflect Heinz Langer's chief research interests and will appeal to a broad readership whose work involves operator theory.
The authors present a completely new and highly application-oriented field of nonlinear analysis. The work covers the theory of non-smooth input-output systems and presents various methods to non-standard applications in mathematics and physics. A particular focus lies on hysteresis and relay phenomena, electric circuits with diode nonlinearities, and biological systems with constraints.
Banach algebras is a multilayered area in mathematics with many ramifications. With a diverse coverage of different schools working on the subject, this proceedings volume reflects recent achievements in areas such as Banach algebras over groups, abstract harmonic analysis, group actions, amenability, topological homology, Arens irregularity, C*-algebras and dynamical systems, operator theory, operator spaces, and locally compact quantum groups.
The ISAAC Group in Pseudo-Differential Operators (IGPDO) met at the Fifth ISAAC Congress held at Universita di Catania in Italy in July, 2005. This volume consists of papers based on lectures given at the special session on pseudodifferential operators and invited papers that bear on the themes of IGPDO. Nineteen peer-reviewed papers represent modern trends in pseudo-differential operators. Diverse topics related to pseudo-differential operators are covered.
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: * Dunford decomposition, * tensor and exterior calculus, polynomial identities, * regularity of eigenvalues for complex matrices, * functional calculus and the Dunford-Taylor formula, * numerical range, * Weyl's and von Neumann's inequalities, and * Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the Ecole Normale Superieure de Lyon.
GA1/4nter Lumer was an outstanding mathematician whose work has great influence on the research community in mathematical analysis and evolution equations. He was at the origin of the breath-taking development the theory of semigroups saw after the pioneering book of Hille and Phillips of 1957. This volume contains invited contributions presenting the state of the art of these topics and reflecting the broad interests of GA1/4nter Lumer.
Srinivasa Ramanujan was a mathematician brilliant beyond comparison who inspired many great mathematicians. There is extensive literature available on the work of Ramanujan. But what is missing in the literature is an analysis that would place his mathematics in context and interpret it in terms of modern developments. The 12 lectures by Hardy, delivered in 1936, served this purpose at the time they were given. This book presents Ramanujan's essential mathematical contributions and gives an informal account of some of the major developments that emanated from his work in the 20th and 21st centuries. It contends that his work still has an impact on many different fields of mathematical research. This book examines some of these themes in the landscape of 21st-century mathematics. These essays, based on the lectures given by the authors focus on a subset of Ramanujan's significant papers and show how these papers shaped the course of modern mathematics.
This book has evolved from the lecture course on Functional Analysis I had given several times at the ETH. The text has a strict logical order, in the style of "Definition - Theorem - Proof - Example - Exercises". The proofs are rather thorough and there many examples. The first part of the book(the first three chapters, resp. the first two volumes) is devoted to the theory of Banach spaces in the most general sense of the term. The purpose of the first chapter (resp. first volume) is to introduce those results on Banach spaces which are used later or which are closely connected with the book. It therefore only contains a small part of the theory, and several results are stated (and proved) in a diluted form. The second chapter (which together with Chapter 3 makes the second volume) deals with Banach algebras (and involutive Banach algebras), which constitute the main topic of the first part of the book. The third chapter deals with compact operators on Banach spaces and linear (ordinary and partial) differential equations - applications of the, theory of Banach algebras.
This graduate-level textbook is a detailed exposition of key mathematical tools in analysis aimed at students, researchers, and practitioners across science and engineering. Every topic covered has been specifically chosen because it plays a key role outside the field of pure mathematics. Although the treatment of each topic is mathematical in nature, and concrete applications are not delineated, the principles and tools presented are fundamental to exploring the computational aspects of physics and engineering. Readers are expected to have a solid understanding of linear algebra, in Rn and in general vector spaces. Familiarity with the basic concepts of calculus and real analysis, including Riemann integrals and infinite series of real or complex numbers, is also required.
In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderon Zygmund decomposition. These new Calderon Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderon Zygmund singular integral operators. The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical Calderon Zygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals."
This monograph develops an operator viewpoint for functional equations in classical function spaces of analysis, thus filling a void in the mathematical literature. Major constructions or operations in analysis are often characterized by some elementary properties, relations or equations which they satisfy. The authors present recent results on the problem to what extent the derivative is characterized by equations such as the Leibniz rule or the Chain rule operator equation in Ck-spaces. By localization, these operator equations turn into specific functional equations which the authors then solve. The second derivative, Sturm-Liouville operators and the Laplacian motivate the study of certain "second-order" operator equations. Additionally, the authors determine the general solution of these operator equations under weak assumptions of non-degeneration. In their approach, operators are not required to be linear, and the authors also try to avoid continuity conditions. The Leibniz rule, the Chain rule and its extensions turn out to be stable under perturbations and relaxations of assumptions on the form of the operators. The results yield an algebraic understanding of first- and second-order differential operators. Because the authors have chosen to characterize the derivative by algebraic relations, the rich operator-type structure behind the fundamental notion of the derivative and its relatives in analysis is discovered and explored. The book does not require any specific knowledge of functional equations. All needed results are presented and proven and the book is addressed to a general mathematical audience.
This book lays the foundations for a theory on almost periodic stochastic processes and their applications to various stochastic differential equations, functional differential equations with delay, partial differential equations, and difference equations. It is in part a sequel of authors recent work on almost periodic stochastic difference and differential equations and has the particularity to be the first book that is entirely devoted to almost periodic random processes and their applications. The topics treated in it range from existence, uniqueness, and stability of solutions for abstract stochastic difference and differential equations.
Overview of Book This book evolved over a period of years as the authors taught classes in var- tional calculus and applied functional analysis to graduatestudents in engineering and mathematics. The book has likewise been in?uenced by the authors research programs that have relied on the application of functional analytic principles to problems in variational calculus, mechanics and control theory. One of the most di?cult tasks in preparing to utilize functional, convex, and set-valued analysis in practical problems in engineering and physics is the inti- dating number of de?nitions, lemmas, theorems and propositions that constitute thefoundationsoffunctionalanalysis. Itcannotbeoveremphasizedthatfunctional analysis can be a powerful tool for analyzing practical problems in mechanics and physics. However, many academicians and researchers spend their lifetime stu- ing abstract mathematics. It is a demanding ?eld that requires discipline and devotion. It is a trite analogy that mathematics can be viewed as a pyramid of knowledge, that builds layer upon layer as more mathematical structure is put in place. The di?culty lies in the fact that an engineer or scientist typically would like to start somewhere above the base of the pyramid. Engineers and scientists are not as concerned, generally speaking, with the subtleties of deriving theorems axiomatically. Rather, they are interested in gaining a working knowledge of the applicability of the theory to their ?eld of interest."
Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising connections ranging from longest common subsequences for words, permutation groups, random matrices and free probability to entropy problems and metric number theory. The book is the product of a conference that took place in August 2011 in Bielefeld, Germany to celebrate the 60th birthday of Friedrich Gotze, a noted expert in this field." |
You may like...
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R2,920
Discovery Miles 29 200
Hausdorff Calculus - Applications to…
Yingjie Liang, Wen Chen, …
Hardcover
R4,318
Discovery Miles 43 180
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R1,892
Discovery Miles 18 920
Matrix and Operator Valued Functions…
Israel Gohberg, L.A. Sakhnovich
Hardcover
R2,399
Discovery Miles 23 990
Bloch-type Periodic Functions: Theory…
Yong-kui Chang, Gaston Mandata N'G'Uerekata, …
Hardcover
R1,907
Discovery Miles 19 070
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
|