![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This volume is dedicated to Bill Helton on the occasion of his sixty fifth birthday. It contains biographical material, a list of Bill's publications, a detailed survey of Bill's contributions to operator theory, optimization and control and 19 technical articles. Most of the technical articles are expository and should serve as useful introductions to many of the areas which Bill's highly original contributions have helped to shape over the last forty odd years. These include interpolation, Szegoe limit theorems, Nehari problems, trace formulas, systems and control theory, convexity, matrix completion problems, linear matrix inequalities and optimization. The book should be useful to graduate students in mathematics and engineering, as well as to faculty and individuals seeking entry level introductions and references to the indicated topics. It can also serve as a supplementary text to numerous courses in pure and applied mathematics and engineering, as well as a source book for seminars.
The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.
Preface to the English Edition The present monograph is a revised and enlarged alternative of the author's monograph 19] which was devoted to the development of a unified approach to studying differential inclusions, whose values of the right hand sides are compact, not necessarily convex subsets of a Banach space. This approach relies on ideas and methods of modem functional analysis, general topology, the theory of multi-valued mappings and continuous selectors. Although the basic content of the previous monograph has been remained the same this monograph has been partly re-organized and the author's recent results have been added. The contents of the present book are divided into five Chapters and an Appendix. The first Chapter of the J>ook has been left without changes and deals with multi-valued differential equations generated by a differential inclusion. The second Chapter has been significantly revised and extended. Here the au thor's recent results concerning extreme continuous selectors of multi-functions with decomposable values, multi-valued selectors ofmulti-functions generated by a differential inclusion, the existence of solutions of a differential inclusion, whose right hand side has different properties of semicontinuity at different points, have been included. Some of these results made it possible to simplify schemes for proofs concerning the existence of solutions of differential inclu sions with semicontinuous right hand side a.nd to obtain new results. In this Chapter the existence of solutions of different types are considered."
This volume contains the Proceedings of the International Workshop "Variational Methods For Discontinuous Structures," held at Villa Erba Antica (Cernobbio) on the Lago di Como, July 4-6, 2001. The workshop was jointly organized by the Dipartimento di Matematica Francesco Brioschi of Milano Politecnico and the International School for Advanced Studies (SISSA) of Trieste. In past years the calculus of variations faced mainly the study of continuous structures, particularly problems with smooth solutions. One of the deepest and more delicate problems was the regularity of weak solutions. More recently, new sophisticated tools have been introduced in order to study discontinuities. In many variational problems solutions develop singularities, and sometimes the most interesting part of a solution is the singularity itself. The conference intended to focus on recent developments in this direction. Some of the talks were devoted to differential or variational modelling of image segmentation, occlusion and textures synthesizing in image analysis, variational description of micro-magnetic materials, dimension reduction and structured deformations in elasticity and plasticity, phase transitions, irrigation and drainage, evolution of crystalline shapes. In most cases theoretical and numerical analysis of these models were provided. Other talks were dedicated to specific problems of the calculus of variations: variational theory of weak or lower-dimensional structures, optimal transport problems with free Dirichlet regions, higher order variational problems, symmetrization in the BV framework. This volume contains contributions by 12 of the 16 speakers invited to deliver lectures in the workshop. Most of the contributions present original results in fields which are rapidly evolving at present.
Inner functions form an important subclass of bounded analytic functions. Since they have unimodular boundary values, they appear in many extremal problems of complex analysis. They have been extensively studied since early last century, and the literature on this topic is vast. Therefore, this book is devoted to a concise study of derivatives of these objects, and confined to treating the integral means of derivatives and presenting a comprehensive list of results on Hardy and Bergman means. The goal is to provide rapid access to the frontiers of research in this field. This monograph will allow researchers to get acquainted with essentials on inner functions, and it is self-contained, which makes it accessible to graduate students."
It is generally acknowledged that deterministic formulations of dy namical phenomena in the social sciences need to be treated differently from similar formulations in the natural sciences. Social science phe nomena typically defy precise measurements or data collection that are comparable in accuracy and detail to those in the natural sciences. Con sequently, a deterministic model is rarely expected to yield a precise description of the actual phenomenon being modelled. Nevertheless, as may be inferred from a study of the models discussed in this book, the qualitative analysis of deterministic models has an important role to play in understanding the fundamental mechanisms behind social sci ence phenomena. The reach of such analysis extends far beyond tech nical clarifications of classical theories that were generally expressed in imprecise literary prose. The inherent lack of precise knowledge in the social sciences is a fun damental trait that must be distinguished from "uncertainty. " For in stance, in mathematically modelling the stock market, uncertainty is a prime and indispensable component of a model. Indeed, in the stock market, the rules are specifically designed to make prediction impossible or at least very difficult. On the other hand, understanding concepts such as the "business cycle" involves economic and social mechanisms that are very different from the rules of the stock market. Here, far from seeking unpredictability, the intention of the modeller is a scientific one, i. e."
This volume contains 16 refereed research articles on function spaces, interpolation theory and related fields. Topics covered: theory of function spaces, Hankel-type and related operators, analysis on bounded symmetric domains, partial differential equations, Green functions, special functions, homogenization theory, Sobolev embeddings, Coxeter groups, spectral theory and wavelets. The book will be of interest to both researchers and graduate students working in interpolation theory, function spaces and operators, partial differential equations and analysis on bounded symmetric domains.
In this volume we will present some applications of special functions in computer science. This largely consists of adaptations of articles that have appeared in the literature . Here they are presented in a format made accessible for the non-expert by providing some context. The material on group representations and Young tableaux is introductory in nature. However, the algebraic approach of Chapter 2 is original to the authors and has not appeared previously . Similarly, the material and approach based on Appell states, so formulated, is presented here for the first time . As in all volumes of this series, this one is suitable for self-study by researchers . It is as well appropriate as a text for a course or advanced seminar . The solutions are tackled with the help of various analytical techniques, such as g- erating functions, and probabilistic methods/insights appear regularly . An interesting feature is that, as has been the case in classical applications to physics, special functions arise- here in complexity analysis. And, as in physics, their appearance indicates an underlying Lie structure. Our primary audience is applied mathematicians and theoretical computer scientists . We are quite sure that pure mathematicians will find this volume interesting and useful as well .
This book discusses the theory of wavelets on local fields of positive characteristic. The discussion starts with a thorough introduction to topological groups and local fields. It then provides a proof of the existence and uniqueness of Haar measures on locally compact groups. It later gives several examples of locally compact groups and describes their Haar measures. The book focuses on multiresolution analysis and wavelets on a local field of positive characteristic. It provides characterizations of various functions associated with wavelet analysis such as scaling functions, wavelets, MRA-wavelets and low-pass filters. Many other concepts which are discussed in details are biorthogonal wavelets, wavelet packets, affine and quasi-affine frames, MSF multiwavelets, multiwavelet sets, generalized scaling sets, scaling sets, unconditional basis properties of wavelets and shift invariant spaces.
This book contains contributions from the participants of the research group hosted by the ZiF - Center for Interdisciplinary Research at the University of Bielefeld during the period 2013-2017 as well as from the conclusive conference organized at Bielefeld in December 2017. The contributions consist of original research papers: they mirror the scientific developments fostered by this research program or the state-of-the-art results presented during the conclusive conference. The volume covers current research in the areas of operator theory and dynamical systems on networks and their applications, indicating possible future directions. The book will be interesting to researchers focusing on the mathematical theory of networks; it is unique as, for the first time, continuous network models - a subject that has been blooming in the last twenty years - are studied alongside more classical and discrete ones. Thus, instead of two different worlds often growing independently without much intercommunication, a new path is set, breaking with the tradition. The fruitful and beneficial exchange of ideas and results of both communities is reflected in this book.
The Fourier transform and the Laplace transform of a positive measure share, together with its moment sequence, a positive definiteness property which under certain regularity assumptions is characteristic for such expressions. This is formulated in exact terms in the famous theorems of Bochner, Bernstein-Widder and Hamburger. All three theorems can be viewed as special cases of a general theorem about functions qJ on abelian semigroups with involution (S, +, *) which are positive definite in the sense that the matrix (qJ(sJ + Sk" is positive definite for all finite choices of elements St, . . . , Sn from S. The three basic results mentioned above correspond to (~, +, x* = -x), ([0, 00[, +, x* = x) and (No, +, n* = n). The purpose of this book is to provide a treatment of these positive definite functions on abelian semigroups with involution. In doing so we also discuss related topics such as negative definite functions, completely mono tone functions and Hoeffding-type inequalities. We view these subjects as important ingredients of harmonic analysis on semigroups. It has been our aim, simultaneously, to write a book which can serve as a textbook for an advanced graduate course, because we feel that the notion of positive definiteness is an important and basic notion which occurs in mathematics as often as the notion of a Hilbert space.
This monograph explores applications of Carleman estimates in the study of stabilization and controllability properties of partial differential equations, including the stabilization property of the damped wave equation and the null-controllability of the heat equation. All analysis is performed in the case of open sets in the Euclidean space; a second volume will extend this treatment to Riemannian manifolds. The first three chapters illustrate the derivation of Carleman estimates using pseudo-differential calculus with a large parameter. Continuation issues are then addressed, followed by a proof of the logarithmic stabilization of the damped wave equation by means of two alternative proofs of the resolvent estimate for the generator of a damped wave semigroup. The authors then discuss null-controllability of the heat equation, its equivalence with observability, and how the spectral inequality allows one to either construct a control function or prove the observability inequality. The final part of the book is devoted to the exposition of some necessary background material: the theory of distributions, invariance under change of variables, elliptic operators with Dirichlet data and associated semigroup, and some elements from functional analysis and semigroup theory.
This monograph develops an innovative approach that utilizes the Birman-Schwinger principle from quantum mechanics to investigate stability properties of steady state solutions in galactic dynamics. The opening chapters lay the framework for the main result through detailed treatments of nonrelativistic galactic dynamics and the Vlasov-Poisson system, the Antonov stability estimate, and the period function $T_1$. Then, as the main application, the Birman-Schwinger type principle is used to characterize in which cases the "best constant" in the Antonov stability estimate is attained. The final two chapters consider the relation to the Guo-Lin operator and invariance properties for the Vlasov-Poisson system, respectively. Several appendices are also included that cover necessary background material, such as spherically symmetric models, action-angle variables, relevant function spaces and operators, and some aspects of Kato-Rellich perturbation theory. A Birman-Schwinger Principle in Galactic Dynamics will be of interest to researchers in galactic dynamics, kinetic theory, and various aspects of quantum mechanics, as well as those in related areas of mathematical physics and applied mathematics.
Relative entropy has played a significant role in various fields of mathematics and physics as the quantum version of the Kullback-Leibler divergence in classical theory. Many variations of relative entropy have been introduced so far with applications to quantum information and related subjects. Typical examples are three different classes, called the standard, the maximal, and the measured f-divergences, all of which are defined in terms of (operator) convex functions f on (0, ) and have respective mathematical and information theoretical backgrounds. The -Renyi relative entropy and its new version called the sandwiched -Renyi relative entropy have also been useful in recent developments of quantum information. In the first half of this monograph, the different types of quantum f-divergences and the Renyi-type divergences mentioned above in the general von Neumann algebra setting are presented for study. While quantum information has been developing mostly in the finite-dimensional setting, it is widely believed that von Neumann algebras provide the most suitable framework in studying quantum information and related subjects. Thus, the advance of quantum divergences in von Neumann algebras will be beneficial for further development of quantum information. Quantum divergences are functions of two states (or more generally, two positive linear functionals) on a quantum system and measure the difference between the two states. They are often utilized to address such problems as state discrimination, error correction, and reversibility of quantum operations. In the second half of the monograph, the reversibility/sufficiency theory for quantum operations (quantum channels) between von Neumann algebras via quantum f-divergences is explained, thus extending and strengthening Petz' previous work. For the convenience of the reader, an appendix including concise accounts of von Neumann algebras is provided.
This book discusses, develops and applies the theory of Vilenkin-Fourier series connected to modern harmonic analysis. The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. Such waves have already been used frequently in the theory of signal transmission, multiplexing, filtering, image enhancement, code theory, digital signal processing and pattern recognition. The development of the theory of Vilenkin-Fourier series has been strongly influenced by the classical theory of trigonometric series. Because of this it is inevitable to compare results of Vilenkin-Fourier series to those on trigonometric series. There are many similarities between these theories, but there exist differences also. Much of these can be explained by modern abstract harmonic analysis, which studies orthonormal systems from the point of view of the structure of a topological group. The first part of the book can be used as an introduction to the subject, and the following chapters summarize the most recent research in this fascinating area and can be read independently. Each chapter concludes with historical remarks and open questions. The book will appeal to researchers working in Fourier and more broad harmonic analysis and will inspire them for their own and their students' research. Moreover, researchers in applied fields will appreciate it as a sourcebook far beyond the traditional mathematical domains.
This text addresses systems with persistent memory that are common mathematical models used in the study of viscoelasticity and thermodynamics with memory. In particular, this class of systems is used to model non-Fickian diffusion in the presence of complex molecular structures. Hence, it has wide applications in biology. The book focuses on the properties and controllability of the archetypal heat and wave equations with memory and introduces the dynamic approach to identification problems and the basic techniques used in the study of stability. The book presents several approaches currently used to study systems with persistent memory: Volterra equation in Hilbert spaces, Laplace transform techniques and semigroup methods. The text is intended for a diverse audience in applied mathematics and engineering and it can be used in PhD courses. Readers are recommended to have a background in the elements of functional analysis. Topics of functional analysis which younger readers may need to familiarize with are presented in the book.
This monograph explores applications of Carleman estimates in the study of stabilization and controllability properties of partial differential equations, including quantified unique continuation, logarithmic stabilization of the wave equation, and null-controllability of the heat equation. Where the first volume derived these estimates in regular open sets in Euclidean space and Dirichlet boundary conditions, here they are extended to Riemannian manifolds and more general boundary conditions. The book begins with the study of Lopatinskii-Sapiro boundary conditions for the Laplace-Beltrami operator, followed by derivation of Carleman estimates for this operator on Riemannian manifolds. Applications of Carleman estimates are explored next: quantified unique continuation issues, a proof of the logarithmic stabilization of the boundary-damped wave equation, and a spectral inequality with general boundary conditions to derive the null-controllability result for the heat equation. Two additional chapters consider some more advanced results on Carleman estimates. The final part of the book is devoted to exposition of some necessary background material: elements of differential and Riemannian geometry, and Sobolev spaces and Laplace problems on Riemannian manifolds.
This book presents novel results by participants of the conference "Control theory of infinite-dimensional systems" that took place in January 2018 at the FernUniversitat in Hagen. Topics include well-posedness, controllability, optimal control problems as well as stability of linear and nonlinear systems, and are covered by world-leading experts in these areas. A distinguishing feature of the contributions in this volume is the particular combination of researchers from different fields in mathematics working in an interdisciplinary fashion on joint projects in mathematical system theory. More explicitly, the fields of partial differential equations, semigroup theory, mathematical physics, graph and network theory as well as numerical analysis are all well-represented.
The appearance of weakly wandering (ww) sets and sequences for ergodic transformations over half a century ago was an unexpected and surprising event. In time it was shown that ww and related sequences reflected significant and deep properties of ergodic transformations that preserve an infinite measure. This monograph studies in a systematic way the role of ww and related sequences in the classification of ergodic transformations preserving an infinite measure. Connections of these sequences to additive number theory and tilings of the integers are also discussed. The material presented is self-contained and accessible to graduate students. A basic knowledge of measure theory is adequate for the reader.
Over the course of a scientific career spanning more than fifty years, Alex Grossmann (1930-2019) made many important contributions to a wide range of areas including, among others, mathematics, numerical analysis, physics, genetics, and biology. His lasting influence can be seen not only in his research and numerous publications, but also through the relationships he cultivated with his collaborators and students. This edited volume features chapters written by some of these colleagues, as well as researchers whom Grossmann’s work and way of thinking has impacted in a decisive way. Reflecting the diversity of his interests and their interdisciplinary nature, these chapters explore a variety of current topics in quantum mechanics, elementary particles, and theoretical physics; wavelets and mathematical analysis; and genomics and biology. A scientific biography of Grossmann, along with a more personal biography written by his son, serve as an introduction. Also included are the introduction to his PhD thesis and an unpublished paper coauthored by him. Researchers working in any of the fields listed above will find this volume to be an insightful and informative work.
Nonlinear functional analysis is an important branch of contemporary mathematics. It's related to topology, ordinary differential equations, partial differential equations, groups, dynamical systems, differential geometry, measure theory, and more. In this book, the author presents some new and interesting results on fundamental methods in nonlinear functional analysis, namely variational, topological and partial order methods, which have been used extensively to solve existence of solutions for elliptic equations, wave equations, Schrodinger equations, Hamiltonian systems etc., and are also used to study the existence of multiple solutions and properties of solutions. This book is useful for researchers and graduate students in the field of nonlinear functional analysis."
The present volume contains the Proceedings of the Seventh Iberoamerican Workshop in Orthogonal Polynomials and Applications (EIBPOA, which stands for Encuentros Iberoamericanos de Polinomios Ortogonales y Aplicaciones, in Spanish), held at the Universidad Carlos III de Madrid, Leganes, Spain, from July 3 to July 6, 2018.These meetings were mainly focused to encourage research in the fields of approximation theory, special functions, orthogonal polynomials and their applications among graduate students as well as young researchers from Latin America, Spain and Portugal. The presentation of the state of the art as well as some recent trends constitute the aim of the lectures delivered in the EIBPOA by worldwide recognized researchers in the above fields.In this volume, several topics on the theory of polynomials orthogonal with respect to different inner products are analyzed, both from an introductory point of view for a wide spectrum of readers without an expertise in the area, as well as the emphasis on their applications in topics as integrable systems, random matrices, numerical methods in differential and partial differential equations, coding theory, and signal theory, among others.
This volume presents selected contributions from experts gathered at Chapman University for a conference held in November 2019 on new directions in function theory. The papers, written by leading researchers in the field, relate to hypercomplex analysis, Schur analysis and de Branges spaces, new aspects of classical function theory, and infinite dimensional analysis. Signal processing constitutes a strong presence in several of the papers.A second volume in this series of conferences, this book will appeal to mathematicians interested in learning about new fields of development in function theory. |
You may like...
The Realism-Antirealism Debate in the…
Shahid Rahman, Giuseppe Primiero, …
Hardcover
R4,058
Discovery Miles 40 580
Donald Davidson's Truth-Theoretic…
Ernest LePore, Kirk Ludwig
Hardcover
R3,034
Discovery Miles 30 340
Competing Knowledges - Wissen im…
Anna-Margaretha Horatschek
Hardcover
R1,829
Discovery Miles 18 290
|