![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
The contributions in this volume aim to deepen understanding of some of the current research problems and theories in modern topics such as calculus of variations, optimization theory, complex analysis, real analysis, differential equations, and geometry. Applications to these areas of mathematics are presented within the broad spectrum of research in Engineering Science with particular emphasis on equilibrium problems, complexity in numerical optimization, dynamical systems, non-smooth optimization, complex network analysis, statistical models and data mining, and energy systems. Additional emphasis is given to interdisciplinary research, although subjects are treated in a unified and self-contained manner. The presentation of methods, theory and applications makes this tribute an invaluable reference for teachers, researchers, and other professionals interested in pure and applied research, philosophy of mathematics, and mathematics education. Some review papers published in this volume will be particularly useful for a broader audience of readers as well as for graduate students who search for the latest information. Constantin Caratheodory's wide-ranging influence in the international mathematical community was seen during the first Fields Medals awards at the International Congress of Mathematicians, Oslo, 1936. Two medals were awarded, one to Lars V. Ahlfors and one to Jesse Douglass. It was Caratheodory who presented both their works during the opening of the International Congress. This volume contains significant papers in Science and Engineering dedicated to the memory of Constantin Caratheodory and the spirit of his mathematical influence.
This is a book on holomorphic operator functions of a single variable and their - plications,whichisfocussedontherelationsbetweenlocalandglobaltheories.Itis based on methods and technics of Complex analysis of scalar and matrix functions of several variables. The applications concern: interpolation, holomorphic families of subspaces and frames, spectral theory of polynomials with operator coe?cients, holomorphic equivalence and diagonalization, and Plemelj-Muschelishvili fact- ization. The book also contains a theory of Wiener-Hopf integral equations with operator-valued kernels and a theory of in?nite Toplitz .. matrices with operator entries. We started to work on these topics long ago when one of us was a Ph.D. s- dent of the other in Kishinev (now Cisinau) University. Then our main interests were in problems of factorization of operator-valued functions and singular in- gral operators. Working in this area, we realized from the beginning that di?erent methods and tools from Complex analysis of several variables and their modi?- tions are very useful in obtaining results on factorization for matrix and operator functions. We have in mind di?erent methods and results concerning connections between local and global properties of holomorphic functions. The ?rst period was very fruitful and during it we obtained the basic results presented in this book.
The basics of complex functions will be explained for students of Engineering Sciences, with the aim of being able to use 'complex function theory' as a tool. The goal is not rigor as mathematics, but ease of use that may suit the application. Explanations are based on concrete examples rather than abstract general theory. The book starts from very beginning of complex numbers, and extends theory of Introduction to Elliptic Function and Hypergeometric Differential Equations.
The notion of a ?xed point plays a crucial role in numerous branches of mat- maticsand its applications. Informationabout the existence of such pointsis often the crucial argument in solving a problem. In particular, topological methods of ?xed point theory have been an increasing focus of interest over the last century. These topological methods of ?xed point theory are divided, roughly speaking, into two types. The ?rst type includes such as the Banach Contraction Principle where the assumptions on the space can be very mild but a small change of the map can remove the ?xed point. The second type, on the other hand, such as the Brouwer and Lefschetz Fixed Point Theorems, give the existence of a ?xed point not only for a given map but also for any its deformations. This book is an exposition of a part of the topological ?xed and periodic point theory, of this second type, based on the notions of Lefschetz and Nielsen numbers. Since both notions are homotopyinvariants, the deformationis used as an essential method, and the assertions of theorems typically state the existence of ?xed or periodic points for every map of the whole homotopy class, we refer to them as homotopy methods of the topological ?xed and periodic point theory.
The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined. To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are described from a unified geometric perspective, showing that they actually come from statistical distance-minimization problems. Because this book contains up-to-date information from both a practical and theoretical point of view, it can be used as an advanced deep learning textbook in universities or as a reference source for researchers interested in acquiring the latest deep learning algorithms and their underlying principles. In addition, the book has been prepared for a codeshare course for both engineering and mathematics students, thus much of the content is interdisciplinary and will appeal to students from both disciplines.
This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.
This book covers the basic elements of difference equations and the tools of difference and sum calculus necessary for studying and solv ing, primarily, ordinary linear difference equations. Examples from various fields are presented clearly in the first chapter, then discussed along with their detailed solutions in Chapters 2-7. The book is in tended mainly as a text for the beginning undergraduate course in difference equations, where the "operational sum calculus" of the di rect use of the discrete Fourier transforms for solving boundary value problems associated with difference equations represents an added new feature compared to other existing books on the subject at this introductory level. This means that in addition to the familiar meth ods of solving difference equations that are covered in Chapter 3, this book emphasizes the use of discrete transforms. It is an attempt to introduce the methods and mechanics of discrete transforms for solv ing ordinary difference equations. The treatment closely parallels what many students have already learned about using the opera tional (integral) calculus of Laplace and Fourier transforms to solve differential equations. As in the continuous case, discrete operational methods may not solve problems that are intractable by other meth ods, but they can facilitate the solution of a large class of discrete initial and boundary value problems. Such operational methods, or what we shall term "operational sum calculus," may be extended eas ily to solve partial difference equations associated with initial and/or boundary value problems."
This textbook is an introduction to wavelet transforms and accessible to a larger audience with diverse backgrounds and interests in mathematics, science, and engineering. Emphasis is placed on the logical development of fundamental ideas and systematic treatment of wavelet analysis and its applications to a wide variety of problems as encountered in various interdisciplinary areas. Topics and Features: * This second edition heavily reworks the chapters on Extensions of Multiresolution Analysis and Newlands's Harmonic Wavelets and introduces a new chapter containing new applications of wavelet transforms * Uses knowledge of Fourier transforms, some elementary ideas of Hilbert spaces, and orthonormal systems to develop the theory and applications of wavelet analysis * Offers detailed and clear explanations of every concept and method, accompanied by carefully selected worked examples, with special emphasis given to those topics in which students typically experience difficulty * Includes carefully chosen end-of-chapter exercises directly associated with applications or formulated in terms of the mathematical, physical, and engineering context and provides answers to selected exercises for additional help Mathematicians, physicists, computer engineers, and electrical and mechanical engineers will find Wavelet Transforms and Their Applications an exceptionally complete and accessible text and reference. It is also suitable as a self-study or reference guide for practitioners and professionals.
Spectral methods, particularly in their multidomain version, have become firmly established as a mainstream tool for scientific and engineering computation. While retaining the tight integration between the theoretical and practical aspects of spectral methods that was the hallmark of their 1988 book, Canuto et al. now incorporate the many improvements in the algorithms and the theory of spectral methods that have been made since then. This second new treatment, Evolution to Complex Geometries and Applications to Fluid Dynamics, provides an extensive overview of the essential algorithmic and theoretical aspects of spectral methods for complex geometries, in addition to detailed discussions of spectral algorithms for fluid dynamics in simple and complex geometries. Modern strategies for constructing spectral approximations in complex domains, such as spectral elements, mortar elements, and discontinuous Galerkin methods, as well as patching collocation, are introduced, analyzed, and demonstrated by means of numerous numerical examples. Representative simulations from continuum mechanics are also shown. Efficient domain decomposition preconditioners (of both Schwarz and Schur type) that are amenable to parallel implementation are surveyed. The discussion of spectral algorithms for fluid dynamics in single domains focuses on proven algorithms for the boundary-layer equations, linear and nonlinear stability analyses, incompressible Navier-Stokes problems, and both inviscid and viscous compressible flows. An overview of the modern approach to computing incompressible flows in general geometries using high-order, spectral discretizations is also provided. The recent companion book Fundamentals in Single Domains discusses the fundamentals of the approximation of solutions to ordinary and partial differential equations on single domains by expansions in smooth, global basis functions. The essential concepts and formulas from this book are included in the current text for the reader s convenience."
This book, the result of the authors' long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hoelder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them. The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book's most distinctive features is that the majority of the statements proved here are in the form of criteria. The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematics and prospective students.
This monograph explores a dual variational formulation of solutions to nonlinear diffusion equations with general nonlinearities as null minimizers of appropriate energy functionals. The author demonstrates how this method can be utilized as a convenient tool for proving the existence of these solutions when others may fail, such as in cases of evolution equations with nonautonomous operators, with low regular data, or with singular diffusion coefficients. By reducing it to a minimization problem, the original problem is transformed into an optimal control problem with a linear state equation. This procedure simplifies the proof of the existence of minimizers and, in particular, the determination of the first-order conditions of optimality. The dual variational formulation is illustrated in the text with specific diffusion equations that have general nonlinearities provided by potentials having various stronger or weaker properties. These equations can represent mathematical models to various real-world physical processes. Inverse problems and optimal control problems are also considered, as this technique is useful in their treatment as well.
ICPT91, the International Conference on Potential Theory, was held in Amersfoort, the Netherlands, from August 18--24, 1991. The volume consists of two parts, the first of which contains papers which also appear in the special issue of POTENTIAL ANALYSIS. The second part includes a collection of contributions edited and partly produced in Utrecht. Professor Monna wrote a preface reminiscing about his experiences with potential theory, mathematics and mathematicians during the last sixty years. The final pages contain a list of participants and a compact index.
A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.
This unique book is devoted to the detailed study of the recently discovered commutative C*-algebras of Toeplitz operators on the Bergman space over the unit disk. Surprisingly, the key point to understanding their structure and classifying them lies in the hyperbolic geometry of the unit disk. The book develops a number of important problems whose successful solution was made possible and is based on the specific features of the Toeplitz operators from these commutative algebras.
This book defines and examines the counterpart of Schur functions and Schur analysis in the slice hyperholomorphic setting. It is organized into three parts: the first introduces readers to classical Schur analysis, while the second offers background material on quaternions, slice hyperholomorphic functions, and quaternionic functional analysis. The third part represents the core of the book and explores quaternionic Schur analysis and its various applications. The book includes previously unpublished results and provides the basis for new directions of research.
The present book is a self-contained text which leads the reader through all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields. One can observe an increasing interest in methods from nonarchimedean functional analysis, particularly in number theory and in the representation theory of p-adic reductive groups. The book gives a concise and clear account of this theory, it carefully lays the foundations and also develops the more advanced topics. Although the book will be a valuable reference work for experts in the field, it is mainly intended as a streamlined but detailed introduction for researchers and graduate students who wish to apply these methods in different areas.
Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
What is the true mark of inspiration? Ideally it may mean the originality, freshness and enthusiasm of a new breakthrough in mathematical thought. The reader will feel this inspiration in all four seminal papers by Duistermaat, Guillemin and H rmander presented here for the first time ever in one volume. However, as time goes by, the price researchers have to pay is to sacrifice simplicity for the sake of a higher degree of abstraction. Thus the original idea will only be a foundation on which more and more abstract theories are being built. It is the unique feature of this book to combine the basic motivations and ideas of the early sources with knowledgeable and lucid expositions on the present state of Fourier Integral Operators, thus bridging the gap between the past and present. A handy and useful introduction that will serve novices in this field and working mathematicians equally well.
A signi?cant sector of the development of spectral theory outside the classical area of Hilbert space may be found amongst at multipliers de?ned on a complex commutative Banach algebra A. Although the general theory of multipliers for abstract Banach algebras has been widely investigated by several authors, it is surprising how rarely various aspects of the spectral theory, for instance Fredholm theory and Riesz theory, of these important classes of operators have been studied. This scarce consideration is even more surprising when one observes that the various aspects of spectral t- ory mentioned above are quite similar to those of a normal operator de?ned on a complex Hilbert space. In the last ten years the knowledge of the spectral properties of multip- ers of Banach algebras has increased considerably, thanks to the researches undertaken by many people working in local spectral theory and Fredholm theory. This research activity recently culminated with the publication of the book of Laursen and Neumann [214], which collects almost every thing that is known about the spectral theory of multipliers.
A well-known and widely applied method of approximating the solutions of problems in mathematical physics is the method of difference schemes. Modern computers allow the implementation of highly accurate ones; hence, their construction and investigation for various boundary value problems in mathematical physics is generating much current interest. The present monograph is devoted to the construction of highly accurate difference schemes for parabolic boundary value problems, based on PadA(c) approximations. The investigation is based on a new notion of positivity of difference operators in Banach spaces, which allows one to deal with difference schemes of arbitrary order of accuracy. Establishing coercivity inequalities allows one to obtain sharp, that is, two-sided estimates of convergence rates. The proofs are based on results in interpolation theory of linear operators. This monograph will be of value to professional mathematicians as well as advanced students interested in the fields of functional analysis and partial differential equations.
This book is devoted primarily to topics in interpolation for scalar, matrix and operator valued functions. About half the papers are based on lectures which were delivered at a conference held at Leipzig University in August 1994 to commemorate the 80th anniversary of the birth of Vladimir Petrovich Potapov. The volume also contains the English translation of several important papers relatively unknown in the West, two expository papers written especially for this volume, and historical material based on reminiscences of former colleagues, students and associates of V.P. Potapov. Numerous examples of interpolation problems of the Nevanlinna-Pick and CarathA(c)odory-FejA(c)r type are included as well as moment problems and problems of integral representation in assorted settings. The major themes cover applications of the Potapov method of fundamental matrix inequalities, multiplicative decompositions of J-inner matrix valued functions, the abstract interpolation problem, canonical systems of differential equations and interpolation in spaces with an indefinite metric. This book should appeal to a wide range of readers: mathematicians specializing in pure and applied mathematics and engineers who work in systems theory and control. The book will be of use to graduate students and mathematicians interested in functional analysis.
In 1932 Norbert Wiener gave a series of lectures on Fourier analysis at the Univer sity of Cambridge. One result of Wiener's visit to Cambridge was his well-known text The Fourier Integral and Certain of its Applications; another was a paper by G. H. Hardy in the 1933 Journalofthe London Mathematical Society. As Hardy says in the introduction to this paper, This note originates from a remark of Prof. N. Wiener, to the effect that "a f and g [= j] cannot both be very small". ... The theo pair of transforms rems which follow give the most precise interpretation possible ofWiener's remark. Hardy's own statement of his results, lightly paraphrased, is as follows, in which f is an integrable function on the real line and f is its Fourier transform: x 2 m If f and j are both 0 (Ix1e- /2) for large x and some m, then each is a finite linear combination ofHermite functions. In particular, if f and j are x2 x 2 2 2 both O(e- / ), then f = j = Ae- / , where A is a constant; and if one x 2 2 is0(e- / ), then both are null.
Emphasizing a clear exposition for readers familiar with elementary measure theory and the fundamentals of set theory and general topology, presents the basic notions and methods of the theory of Hilbert spaces, a part of functional analysis being increasingly applied in mathematics and theoretical
This book is dedicated to the memory of Israel Gohberg (1928-2009) - one of the great mathematicians of our time - who inspired innumerable fellow mathematicians and directed many students. The volume reflects the wide spectrum of Gohberg's mathematical interests. It consists of more than 25 invited and peer-reviewed original research papers written by his former students, co-authors and friends. Included are contributions to single and multivariable operator theory, commutative and non-commutative Banach algebra theory, the theory of matrix polynomials and analytic vector-valued functions, several variable complex function theory, and the theory of structured matrices and operators. Also treated are canonical differential systems, interpolation, completion and extension problems, numerical linear algebra and mathematical systems theory.
This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. A particular emphasis is placed on the geometrical aspects of strong solvability of a convex optimization problem: it turns out that this property is equivalent to local uniform convexity of the corresponding convex function. This treatise also provides a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level. From the contents: Approximation and Polya Algorithms in Orlicz Spaces Convex Sets and Convex Functions Numerical Treatment of Non-linear Equations and Optimization Problems Stability and Two-stage Optimization Problems Orlicz Spaces, Orlicz Norm and Duality Differentiability and Convexity in Orlicz Spaces Variational Calculus |
![]() ![]() You may like...
Fuzzy Logic Techniques for Autonomous…
Dimiter Driankov, Alessandro Saffiotti
Hardcover
R4,581
Discovery Miles 45 810
UC/OS-III - The Real-Time Kernel and the…
Jean J. Labrosse, Freddy Torres
Hardcover
R1,906
Discovery Miles 19 060
Designing Embedded Processors - A Low…
Joerg Henkel, Sri Parameswaran
Hardcover
R5,196
Discovery Miles 51 960
Intelligent Control of Robotic Systems
D. Katic, M Vukobratovic
Hardcover
R4,397
Discovery Miles 43 970
8051 Microcontroller, The: A Systems…
Muhammad Mazidi, Rolin McKinlay, …
Paperback
R2,783
Discovery Miles 27 830
Exploring Zynq MPSoC - With PYNQ and…
Crockett H Louise, Northcote David, …
Hardcover
R1,999
Discovery Miles 19 990
|