![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
Over the course of his distinguished career, Vladimir Maz'ya has made a number of groundbreaking contributions to numerous areas of mathematics, including partial differential equations, function theory, and harmonic analysis. The chapters in this volume - compiled on the occasion of his 80th birthday - are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.
These notes are based on lectures given at the University of Virginia over the past twenty years. They may be viewed as a course in function theory for nonspecialists. Chapters 1-6 give the function-theoretic background to Hardy Classes and Operator Theory, Oxford Mathematical Monographs, Oxford University Press, New York, 1985. These chapters were written first, and they were origi nally intended to be a part of that book. Half-plane function theory continues to be useful for applications and is a focal point in our account (Chapters 5 and 6). The theory of Hardy and Nevanlinna classes is derived from proper ties of harmonic majorants of subharmonic functions (Chapters 3 and 4). A selfcontained treatment of harmonic and subharmonic functions is included (Chapters 1 and 2). Chapters 7-9 present concepts from the theory of univalent functions and Loewner families leading to proofs of the Bieberbach, Robertson, and Milin conjectures. Their purpose is to make the work of de Branges accessible to students of operator theory. These chapters are by the second author. There is a high degree of independence in the chapters, allowing the material to be used in a variety of ways. For example, Chapters 5-6 can be studied alone by readers familiar with function theory on the unit disk. Chapters 7-9 have been used as the basis for a one-semester topics course."
Overview For over a decade now, wavelets have been and continue to be an evolving subject of intense interest. Their allure in signal processing is due to many factors, not the least of which is that they offer an intuitively satisfying view of signals as being composed of little pieces of wa'ues. Making this concept mathematically precise has resulted in a deep and sophisticated wavelet theory that has seemingly limitless applications. This book and its supplementary hands-on electronic: component are meant to appeal to both students and professionals. Mathematics and en gineering students at the undergraduate and graduate levels will benefit greatly from the introductory treatment of the subject. Professionals and advanced students will find the overcomplete approach to signal represen tation and processing of great value. In all cases the electronic component of the proposed work greatly enhances its appeal by providing interactive numerical illustrations. A main goal is to provide a bridge between the theory and practice of wavelet-based signal processing. Intended to give the reader a balanced look at the subject, this book emphasizes both theoretical and practical issues of wavelet processing. A great deal of exposition is given in the beginning chapters and is meant to give the reader a firm understanding of the basics of the discrete and continuous wavelet transforms and their relationship. Later chapters promote the idea that overcomplete systems of wavelets are a rich and largely unexplored area that have demonstrable benefits to offer in many applications."
This book represents the first attempt at a unified picture for the pres ence of the Gibbs (or Gibbs-Wilbraham) phenomenon in applications, its analysis and the different methods of filtering it out. The analysis and filtering cover the familiar Gibbs phenomenon in Fourier series and integral representations of functions with jump discontinuities. In ad dition it will include other representations, such as general orthogonal series expansions, general integral transforms, splines approximation, and continuous as well as discrete wavelet approximations. The mate rial in this book is presented in a manner accessible to upperclassmen and graduate students in science and engineering, as well as researchers who may face the Gibbs phenomenon in the varied applications that in volve the Fourier and the other approximations of functions with jump discontinuities. Those with more advanced backgrounds in analysis will find basic material, results, and motivations from which they can begin to develop deeper and more general results. We must emphasize that the aim of this book (the first on the sUbject): to satisfy such a diverse audience, is quite difficult. In particular, our detailed derivations and their illustrations for an introductory book may very well sound repeti tive to the experts in the field who are expecting a research monograph. To answer the concern of the researchers, we can only hope that this book will prove helpful as a basic reference for their research papers."
The De Gruyter Studies in Mathematical Physics are devoted to the publication of monographs and high-level texts in mathematical physics. They cover topics and methods in fields of current interest, with an emphasis on didactical presentation. The series will enable readers to understand, apply and develop further, with sufficient rigor, mathematical methods to given problems in physics. For this reason, works with a few authors are preferred over edited volumes. The works in this series are aimed at advanced students and researchers in mathematical and theoretical physics. They can also serve as secondary reading for lectures and seminars at advanced levels.
This volume presents research and expository papers highlighting the vibrant and fascinating study of irregularities in the distribution of primes. Written by an international group of experts, contributions present a self-contained yet unified exploration of a rapidly progressing area. Emphasis is given to the research inspired by Maier's matrix method, which established a newfound understanding of the distribution of primes. Additionally, the book provides an historical overview of a large body of research in analytic number theory and approximation theory. The papers published within are intended as reference tools for graduate students and researchers in mathematics.
In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions," vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations."
The book is designed to serve as a textbook for courses offered to undergraduate and graduate students enrolled in Electrical Engineering. The first edition of this book was published in 2014. As there is a demand for the next edition, it is quite natural to take note of the several advances that have occurred in the subject over the past five years. This is the prime motivation for bringing out a revised second edition with a thorough revision of all the chapters. The book presents a clear and comprehensive introduction to signals and systems. For easier comprehension, the course contents of all the chapters are in sequential order. Analysis of continuous-time and discrete-time signals and systems are done separately for easy understanding of the subjects. The chapters contain over seven hundred numerical examples to understand various theoretical concepts. This textbook also includes numerical examples that were appeared in recent examinations and presented in a graded manner. The topics such as the representation of signals, convolution, Fourier Series and Fourier Transform, Laplace transform, Z-transform, and state-space analysis are explained with a large number of numerical examples in the book. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in electrical engineering and related courses.
Uncertainty principles for time-frequency operators.- 1. Introduction.- 2. Sampling results for time-frequency transformations.- 3. Uncertainty principles for exact Gabor and wavelet frames.- References.- Distribution of zeros of matrix-valued continuous analogues of orthogonal polynomials.- 1. Preliminary results.- 1.1. Matrix-valued Krein functions of the first and second kinds.- 1.2. Partitioned integral operators.- 2. Orthogonal operator-valued polynomials.- 2.1. Stein equations for operators.- 2.2. Zeros of orthogonal polynomials.- 2.3. On Toeplitz matrices with operator entries.- 3. Zeros of mat rix-valued Krein functions.- 3.1 On Wiener-Hopf operators.- 3.2. Proof of the main theorem.- References.- The band extension of the real line as a limit of discrete band extensions, II. The entropy principle.- 0. Introduction.- I. Preliminaries.- II. Main results.- References.- Weakly positive matrix measures, generalized Toeplitz forms, and their applications to Hankel and Hilbert transform operators.- 1. Lifting properties of generalized Toeplitz forms and weakly positive matrix measures.- 2. The GBT and the theorems of Helson-Szegoe and Nehari.- 3. GNS construction, Wold decomposition and abstract lifting theorems.- 4. Multiparameter and n-conditional lifting theorems, the A-A-K theorem and applications in several variables.- References.- Reduction of the abstract four block problem to a Nehari problem.- 0. Introduction.- 1. Main theorems.- 2. Proofs of the main theorems.- References.- The state space method for integro-differential equations of Wiener-Hopf type with rational matrix symbols.- 1. Introduction and main theorems.- 2. Preliminaries on matrix pencils.- 3. Singular differential equations on the full-line.- 4. Singular differential equations on the half-line.- 5. Preliminaries on realizations.- 6. Proof of theorem 1.1.- 7. Proofs of theorems 1.2 and 1.3.- 8. An example.- References.- Symbols and asymptotic expansions.- 0. Introduction.- I. Smooth symbols on Rn.- II. Piecewise smooth symbols on T.- III. Piecewise smooth symbols on Rn.- IV. Symbols discontinuous across a hyperplane in Rn x Rn.- References.- Program of Workshop.
Typically, undergraduates see real analysis as one of the most difficult courses that a mathematics major is required to take. The main reason for this perception is twofold: Students must comprehend new abstract concepts and learn to deal with these concepts on a level of rigor and proof not previously encountered. A key challenge for an instructor of real analysis is to find a way to bridge the gap between a student's preparation and the mathematical skills that are required to be successful in such a course. Real Analysis: With Proof Strategies provides a resolution to the "bridging-the-gap problem." The book not only presents the fundamental theorems of real analysis, but also shows the reader how to compose and produce the proofs of these theorems. The detail, rigor, and proof strategies offered in this textbook will be appreciated by all readers. Features Explicitly shows the reader how to produce and compose the proofs of the basic theorems in real analysis Suitable for junior or senior undergraduates majoring in mathematics.
These proceedings comprise a large part of the papers presented at the In ternational Conference Factorization, Singular Operators and related problems, which was held from January 28 to February 1, 2002, at the University of th Madeira, Funchal, Portugal, to mark Professor Georgii Litvinchuk's 70 birth day. Experts in a variety of fields came to this conference to pay tribute to the great achievements of Professor Georgii Litvinchuk in the development of vari ous areas of operator theory. The main themes of the conference were focussed around the theory of singular type operators and factorization problems, but other topics such as potential theory and fractional calculus, to name but a couple, were also presented. The goal of the conference was to bring together mathematicians from var ious fields within operator theory and function theory in order to highlight recent advances in problems many of which were originally studied by Profes sor Litvinchuk and his scientific school. A second aim was to stimulate in ternational collaboration even further and promote the interaction of different approaches in current research in these areas. The Proceedings will be of great interest to researchers in Operator The ory, Real and Complex Analysis, Functional and Harmonic Analysis, Potential Theory, Fractional Calculus and other areas, as well as to graduate students looking for the latest results."
This elegantly edited landmark edition of Gert Kjaergard Pedersen's C*-Algebras and their Automorphism Groups (1979) carefully and sensitively extends the classic work to reflect the wealth of relevant novel results revealed over the past forty years. Revered from publication for its writing clarity and extremely elegant presentation of a vast space within operator algebras, Pedersen's monograph is notable for reviewing partially ordered vector spaces and group automorphisms in unusual detail, and by strict intention releasing the C*-algebras from the yoke of representations as Hilbert space operators. Under the editorship of Soren Eilers and Dorte Olesen, the second edition modernizes Pedersen's work for a new generation of C*-algebraists, with voluminous new commentary, all-new indexes, annotation and terminology annexes, and a surfeit of new discussion of applications and of the author's later work.
((keine o-Punkte, sondern 2 accents aigus auf dem o in Szokefalvi, s. auch Titel )) In August 1999, an international conference was held in Szeged, Hungary, in honor of Bela Szokefalvi-Nagy, one of the founders and main contributors of modern operator theory. This volume contains some of the papers presented at the meeting, complemented by several papers of experts who were unable to attend. These 35 refereed articles report on recent and original results in various areas of operator theory and connected fields, many of them strongly related to contributions of Sz.-Nagy. The scientific part of the book is preceeded by fifty pages of biographical material, including several photos."
The 2nd edition of this book is essentially an extended version of the 1st and provides a very sound overview of the most important special functions of Fractional Calculus. It has been updated with material from many recent papers and includes several surveys of important results known before the publication of the 1st edition, but not covered there. As a result of researchers' and scientists' increasing interest in pure as well as applied mathematics in non-conventional models, particularly those using fractional calculus, Mittag-Leffler functions have caught the interest of the scientific community. Focusing on the theory of Mittag-Leffler functions, this volume offers a self-contained, comprehensive treatment, ranging from rather elementary matters to the latest research results. In addition to the theory the authors devote some sections of the work to applications, treating various situations and processes in viscoelasticity, physics, hydrodynamics, diffusion and wave phenomena, as well as stochastics. In particular, the Mittag-Leffler functions make it possible to describe phenomena in processes that progress or decay too slowly to be represented by classical functions like the exponential function and related special functions. The book is intended for a broad audience, comprising graduate students, university instructors and scientists in the field of pure and applied mathematics, as well as researchers in applied sciences like mathematical physics, theoretical chemistry, bio-mathematics, control theory and several other related areas.
An introduction to analysis with the right mix of abstract theories and concrete problems. Starting with general measure theory, the book goes on to treat Borel and Radon measures and introduces the reader to Fourier analysis in Euclidean spaces with a treatment of Sobolev spaces, distributions, and the corresponding Fourier analysis. It continues with a Hilbertian treatment of the basic laws of probability including Doob's martingale convergence theorem and finishes with Malliavin's "stochastic calculus of variations" developed in the context of Gaussian measure spaces. This invaluable contribution gives a taste of the fact that analysis is not a collection of independent theories, but can be treated as a whole.
This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets. It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hoelder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems. The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant - in the realm of stochastic differential equations, for example.
Dedicated to Tosio Kato's 100th birthday, this book contains research and survey papers on a broad spectrum of methods, theories, and problems in mathematics and mathematical physics. Survey papers and in-depth technical papers emphasize linear and nonlinear analysis, operator theory, partial differential equations, and functional analysis including nonlinear evolution equations, the Korteweg-de Vries equation, the Navier-Stokes equation, and perturbation theory of linear operators. The Kato inequality, the Kato type matrix limit theorem, the Howland-Kato commutator problem, the Kato-class of potentials, and the Trotter-Kato product formulae are discussed and analyzed. Graduate students, research mathematicians, and applied scientists will find that this book provides comprehensive insight into the significance of Tosio Kato's impact to research in analysis and operator theory.
1) Includes exemplary MATLAB codes 2) Provides a comprehensive foundation in Fourier methods, essential for a mathematical approach to engineering 3) Applies MFS to hot topics in the field: multi-domain, multi- physics, and multi-scale characteristics 4) Applies Fourier method to structural vibrations, acoustics and vibro-acoustic 5) Aids engineers in solving boundary value problems and differential equations
After an introduction to the geometry of polynomials and a discussion of refinements of the Fundamental Theorem of Algebra, the book turns to a consideration of various special polynomials. Chebyshev and Descartes systems are then introduced, and Müntz systems and rational systems are examined in detail. Subsequent chapters discuss denseness questions and the inequalities satisfied by polynomials and rational functions. Appendices on algorithms and computational concerns, on the interpolation theorem, and on orthogonality and irrationality round off the text. The book is self-contained and assumes at most a senior-undergraduate familiarity with real and complex analysis.
One service mathematics has rendered the 'Et moi, ... si Javait so comment en revenir. je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. AIl arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This volume covers the topic in functional equations in a broad sense and is written by authors who are in this field for the past 50 years. It contains the basic notions of functional equations, the methods of solving functional equations, the growth of functional equations in the last four decades and an extensive reference list on fundamental research papers that investigate the stability results of different types of functional equations and functional inequalities. This volume starts by taking the reader from the fundamental ideas to higher levels of results that appear in recent research papers. Its step-by-step expositions are easy for the reader to understand and admire the elegant results and findings on the stability of functional equations.
This volume examines current research in mechanics and its applications to various disciplines, with a particular focus on fluid-structure interaction (FSI). The topics have been chosen in commemoration of Dr. Bong Jae Chung and with respect to his wide range of research interests. This volume stands apart because of this diversity of interests, featuring an interdisciplinary and in-depth analysis of FSI that is difficult to find conveniently collected elsewhere in the literature. Contributors include mathematicians, physicists, mechanical and biomechanical engineers, and psychologists. This volume is structured into four thematic areas in order to increase its accessibility: theory, computations, experiments, and applications. Recent Advances in Mechanics and Fluid-Structure Interaction with Applications will appeal to established researchers as well as postdocs and graduate students interested in this active area of research.
Quaternion andClifford Fourier and wavelet transformations
generalize the classical theory to higher dimensions and are
becoming increasingly important in diverse areas of mathematics,
physics, computer science and engineering. This edited volume
presents the state of the art in these hypercomplex
transformations. The Clifford algebras unify Hamilton s quaternions
with Grassmann algebra. A Clifford algebra is a complete algebra of
a vector space and all its subspaces including the measurement of
volumes and dihedral angles between any pair of subspaces.
Quaternion and Clifford algebras permit the systematic
generalization of many known concepts.
This fourth volume in Vladimir Tkachuk's series on Cp-theory gives reasonably complete coverage of the theory of functional equivalencies through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory, the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research. The book presents complete and up-to-date information on the preservation of topological properties by homeomorphisms of function spaces. An exhaustive theory of t-equivalent, u-equivalent and l-equivalent spaces is developed from scratch. The reader will also find introductions to the theory of uniform spaces, the theory of locally convex spaces, as well as the theory of inverse systems and dimension theory. Moreover, the inclusion of Kolmogorov's solution of Hilbert's Problem 13 is included as it is needed for the presentation of the theory of l-equivalent spaces. This volume contains the most important classical results on functional equivalencies, in particular, Gul'ko and Khmyleva's example of non-preservation of compactness by t-equivalence, Okunev's method of constructing l-equivalent spaces and the theorem of Marciszewski and Pelant on u-invariance of absolute Borel sets.
This volume provides readers with a detailed introduction to the amenability of Banach algebras and locally compact groups. By encompassing important foundational material, contemporary research, and recent advancements, this monograph offers a state-of-the-art reference. It will appeal to anyone interested in questions of amenability, including those familiar with the author's previous volume Lectures on Amenability. Cornerstone topics are covered first: namely, the theory of amenability, its historical context, and key properties of amenable groups. This introduction leads to the amenability of Banach algebras, which is the main focus of the book. Dual Banach algebras are given an in-depth exploration, as are Banach spaces, Banach homological algebra, and more. By covering amenability's many applications, the author offers a simultaneously expansive and detailed treatment. Additionally, there are numerous exercises and notes at the end of every chapter that further elaborate on the chapter's contents. Because it covers both the basics and cutting edge research, Amenable Banach Algebras will be indispensable to both graduate students and researchers working in functional analysis, harmonic analysis, topological groups, and Banach algebras. Instructors seeking to design an advanced course around this subject will appreciate the student-friendly elements; a prerequisite of functional analysis, abstract harmonic analysis, and Banach algebra theory is assumed. |
![]() ![]() You may like...
Intelligent Computing for Big Data
Wei Wang, Ka Lok Man
Hardcover
Interdisciplinary Insights for Digital…
Douglas Atkinson, Nikoleta Yiannoutsou, …
Hardcover
R1,344
Discovery Miles 13 440
Phonological Weakness in English - From…
C. Jones, Donka Minkova
Hardcover
R2,897
Discovery Miles 28 970
Continuous Optimization and Variational…
Anurag Jayswal, Tadeusz Antczak
Hardcover
R4,500
Discovery Miles 45 000
Research Advances in Intelligent…
Anshul Verma, Pradeepika Verma, …
Hardcover
R3,274
Discovery Miles 32 740
|