![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
G. H. Hardy (1877-1947) ranks among the great mathematicians of the twentieth century. He did essential research in number theory and analysis, held professorships at Cambridge and Oxford, wrote important textbooks as well as the classic A Mathematician's Apology, and famously collaborated with J. E. Littlewood and Srinivasa Ramanujan. Hardy was a colorful character with remarkable expository skills. This book is a feast of G. H. Hardy's writing. There are selections of his mathematical papers, his book reviews, his tributes to departed colleagues. Some articles are serious, whereas others display a wry sense of humor. And there are recollections by those who knew Hardy, along with biographical and mathematical pieces written explicitly for this collection. Fans of Hardy should find much here to like. And for those unfamiliar with his work, The G. H. Hardy Reader provides an introduction to this extraordinary individual.
This book is dedicated to Victor Emmanuilovich Katsnelson on the occasion of his 75th birthday and celebrates his broad mathematical interests and contributions.Victor Emmanuilovich's mathematical career has been based mainly at the Kharkov University and the Weizmann Institute. However, it also included a one-year guest professorship at Leipzig University in 1991, which led to him establishing close research contacts with the Schur analysis group in Leipzig, a collaboration that still continues today. Reflecting these three periods in Victor Emmanuilovich's career, present and former colleagues have contributed to this book with research inspired by him and presentations on their joint work. Contributions include papers in function theory (Favorov-Golinskii, Friedland-Goldman-Yomdin, Kheifets-Yuditskii) , Schur analysis, moment problems and related topics (Boiko-Dubovoy, Dyukarev, Fritzsche-Kirstein-Madler), extension of linear operators and linear relations (Dijksma-Langer, Hassi-de Snoo, Hassi -Wietsma) and non-commutative analysis (Ball-Bolotnikov, Cho-Jorgensen).
Analysis on Function Spaces of Musielak-Orlicz Type provides a state-of-the-art survey on the theory of function spaces of Musielak-Orlicz type. The book also offers readers a step-by-step introduction to the theory of Musielak-Orlicz spaces, and introduces associated function spaces, extending up to the current research on the topic Musielak-Orlicz spaces came under renewed interest when applications to electrorheological hydrodynamics forced the particular case of the variable exponent Lebesgue spaces on to center stage. Since then, research efforts have typically been oriented towards carrying over the results of classical analysis into the framework of variable exponent function spaces. In recent years it has been suggested that many of the fundamental results in the realm of variable exponent Lebesgue spaces depend only on the intrinsic structure of the Musielak-Orlicz function, thus opening the door for a unified theory which encompasses that of Lebesgue function spaces with variable exponent. Features Gives a self-contained, concise account of the basic theory, in such a way that even early-stage graduate students will find it useful Contains numerous applications Facilitates the unified treatment of seemingly different theoretical and applied problems Includes a number of open problems in the area
This book brings together all available results about the theory of algebraic multiplicities. It first offers a classic course on finite-dimensional spectral theory and then presents the most general results available about the existence and uniqueness of algebraic multiplicities for real non-analytic operator matrices and families. Coverage next transfers these results from linear to nonlinear analysis.
A Modern Framework Based on Time-Tested MaterialA Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering presents functional analysis as a tool for understanding and treating distributed parameter systems. Drawing on his extensive research and teaching from the past 20 years, the author explains how functional analysis can be the basis of modern partial differential equation (PDE) and delay differential equation (DDE) techniques. Recent Examples of Functional Analysis in Biology, Electromagnetics, Materials, and MechanicsThrough numerous application examples, the book illustrates the role that functional analysis-a classical subject-continues to play in the rigorous formulation of modern applied areas. The text covers common examples, such as thermal diffusion, transport in tissue, and beam vibration, as well as less traditional ones, including HIV models, uncertainty in noncooperative games, structured population models, electromagnetics in materials, delay systems, and PDEs in control and inverse problems. For some applications, computational aspects are discussed since many problems necessitate a numerical approach.
This is the second of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self -contained and accessible to the nonspecialist. Part II concerns the theory of monotone operators. It is divided into two subvolumes, II/A and II/B, which form a unit. The present Part II/A is devoted to linear monotone operators. It serves as an elementary introduction to the modern functional analytic treatment of variational problems, integral equations, and partial differential equations of elliptic, parabolic and hyperbolic type. This book also represents an introduction to numerical functional analysis with applications to the Ritz method along with the method of finite elements, the Galerkin methods, and the difference method. Many exercises complement the text. The theory of monotone operators is closely related to Hilbert's rigorous justification of the Dirichlet principle, and to the 19th and 20th problems of Hilbert which he formulated in his famous Paris lecture in 1900, and which strongly influenced the development of analysis in the twentieth century.
This book has two main objectives, the first of which is to extend the power of numerical Fourier analysis and to show by means of theoretical examples and numerous concrete applications that when computing discrete Fourier transforms of periodic and non periodic functions, the usual kernel matrix of the Fourier transform, the discrete Fourier transform (DFT), should be replaced by another kernel matrix, the eXtended Fourier transform (XFT), since the XFT matrix appears as a convergent quadrature of a more general transform, the fractional Fourier transform. In turn, the book's second goal is to present the XFT matrix as a finite-dimensional transformation that links certain discrete operators in the same way that the corresponding continuous operators are related by the Fourier transform, and to show that the XFT matrix accordingly generates sequences of matrix operators that represent continuum operators, and which allow these operators to be studied from another perspective.
This book provides theories on non-parametric shape optimization problems, systematically keeping in mind readers with an engineering background. Non-parametric shape optimization problems are defined as problems of finding the shapes of domains in which boundary value problems of partial differential equations are defined. In these problems, optimum shapes are obtained from an arbitrary form without any geometrical parameters previously assigned. In particular, problems in which the optimum shape is sought by making a hole in domain are called topology optimization problems. Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense. Software has been developed to solve these problems, and it is being used to seek practical optimum shapes. However, there are no books explaining such theories beginning with their foundations. The structure of the book is shown in the Preface. The theorems are built up using mathematical results. Therefore, a mathematical style is introduced, consisting of definitions and theorems to summarize the key points. This method of expression is advanced as provable facts are clearly shown. If something to be investigated is contained in the framework of mathematics, setting up a theory using theorems prepared by great mathematicians is thought to be an extremely effective approach. However, mathematics attempts to heighten the level of abstraction in order to understand many things in a unified fashion. This characteristic may baffle readers with an engineering background. Hence in this book, an attempt has been made to provide explanations in engineering terms, with examples from mechanics, after accurately denoting the provable facts using definitions and theorems.
After recalling essentials of analysis -- including functional analysis, convexity, distribution theory and interpolation theory -- this book handles two topics in detail: Fourier analysis, with emphasis on positivity and also on some function spaces and multiplier theorems; and one-parameter operator semigroups with emphasis on Feller semigroups and Lp-sub-Markovian semigroups. In addition, Dirichlet forms are treated. The book is self-contained and offers new material originated by the author and his students.
This is the second of a two-volume series on sampling theory. The mathematical foundations were laid in the first volume, and this book surveys the many applications of sampling theory both within mathematics and in other areas of science. Many of the topics covered here are not found in other books, and all are given an up to date treatment bringing the reader's knowledge up to research level. This book consists of ten chapters, written by ten different teams of authors, and the contents range over a wide variety of topics including combinatorial analysis, number theory, neural networks, derivative sampling, wavelets, stochastic signals, random fields, and abstract harmonic analysis. There is a comprehensive, up to date bibliography.
Applied Functional Analysis, Third Edition provides a solid mathematical foundation for the subject. It motivates students to study functional analysis by providing many contemporary applications and examples drawn from mechanics and science. This well-received textbook starts with a thorough introduction to modern mathematics before continuing with detailed coverage of linear algebra, Lebesque measure and integration theory, plus topology with metric spaces. The final two chapters provides readers with an in-depth look at the theory of Banach and Hilbert spaces before concluding with a brief introduction to Spectral Theory. The Third Edition is more accessible and promotes interest and motivation among students to prepare them for studying the mathematical aspects of numerical analysis and the mathematical theory of finite elements.
A Concrete Introduction to Analysis, Second Edition offers a major reorganization of the previous edition with the goal of making it a much more comprehensive and accessible for students. The standard, austere approach to teaching modern mathematics with its emphasis on formal proofs can be challenging and discouraging for many students. To remedy this situation, the new edition is more rewarding and inviting. Students benefit from the text by gaining a solid foundational knowledge of analysis, which they can use in their fields of study and chosen professions. The new edition capitalizes on the trend to combine topics from a traditional transition to proofs course with a first course on analysis. Like the first edition, the text is appropriate for a one- or two-semester introductory analysis or real analysis course. The choice of topics and level of coverage is suitable for mathematics majors, future teachers, and students studying engineering or other fields requiring a solid, working knowledge of undergraduate mathematics. Key highlights: Offers integration of transition topics to assist with the necessary background for analysis Can be used for either a one- or a two-semester course Explores how ideas of analysis appear in a broader context Provides as major reorganization of the first edition Includes solutions at the end of the book
Introduction to Analysis is an ideal text for a one semester course on analysis. The book covers standard material on the real numbers, sequences, continuity, differentiation, and series, and includes an introduction to proof. The author has endeavored to write this book entirely from the student's perspective: there is enough rigor to challenge even the best students in the class, but also enough explanation and detail to meet the needs of a struggling student. From the Author to the student: "I vividly recall sitting in an Analysis class and asking myself, 'What is all of this for?' or 'I don't have any idea what's going on.' This book is designed to help the student who finds themselves asking the same sorts of questions, but will also challenge the brightest students." Chapter 1 is a basic introduction to logic and proofs. Informal summaries of the idea of proof provided before each result, and before a solution to a practice problem. Every chapter begins with a short summary, followed by a brief abstract of each section. Each section ends with a concise and referenced summary of the material which is designed to give the student a "big picture" idea of each section. There is a brief and non-technical summary of the goals of a proof or solution for each of the results and practice problems in this book, which are clearly marked as "Idea of proof," or as "Methodology", followed by a clearly marked formal proof or solution. Many references to previous definitions and results. A "Troubleshooting Guide" appears at the end of each chapter that answers common questions.
Exploring the Infinite addresses the trend toward a combined transition course and introduction to analysis course. It guides the reader through the processes of abstraction and log- ical argumentation, to make the transition from student of mathematics to practitioner of mathematics. This requires more than knowledge of the definitions of mathematical structures, elementary logic, and standard proof techniques. The student focused on only these will develop little more than the ability to identify a number of proof templates and to apply them in predictable ways to standard problems. This book aims to do something more; it aims to help readers learn to explore mathematical situations, to make conjectures, and only then to apply methods of proof. Practitioners of mathematics must do all of these things. The chapters of this text are divided into two parts. Part I serves as an introduction to proof and abstract mathematics and aims to prepare the reader for advanced course work in all areas of mathematics. It thus includes all the standard material from a transition to proof" course. Part II constitutes an introduction to the basic concepts of analysis, including limits of sequences of real numbers and of functions, infinite series, the structure of the real line, and continuous functions. Features Two part text for the combined transition and analysis course New approach focuses on exploration and creative thought Emphasizes the limit and sequences Introduces programming skills to explore concepts in analysis Emphasis in on developing mathematical thought Exploration problems expand more traditional exercise sets
This book helps students explore Fourier analysis and its related topics, helping them appreciate why it pervades many fields of mathematics, science, and engineering. This introductory textbook was written with mathematics, science, and engineering students with a background in calculus and basic linear algebra in mind. It can be used as a textbook for undergraduate courses in Fourier analysis or applied mathematics, which cover Fourier series, orthogonal functions, Fourier and Laplace transforms, and an introduction to complex variables. These topics are tied together by the application of the spectral analysis of analog and discrete signals, and provide an introduction to the discrete Fourier transform. A number of examples and exercises are provided including implementations of Maple, MATLAB, and Python for computing series expansions and transforms. After reading this book, students will be familiar with: * Convergence and summation of infinite series * Representation of functions by infinite series * Trigonometric and Generalized Fourier series * Legendre, Bessel, gamma, and delta functions * Complex numbers and functions * Analytic functions and integration in the complex plane * Fourier and Laplace transforms. * The relationship between analog and digital signals Dr. Russell L. Herman is a professor of Mathematics and Professor of Physics at the University of North Carolina Wilmington. A recipient of several teaching awards, he has taught introductory through graduate courses in several areas including applied mathematics, partial differential equations, mathematical physics, quantum theory, optics, cosmology, and general relativity. His research interests include topics in nonlinear wave equations, soliton perturbation theory, fluid dynamics, relativity, chaos and dynamical systems.
This self-contained textbook discusses all major topics in functional analysis. Combining classical materials with new methods, it supplies numerous relevant solved examples and problems and discusses the applications of functional analysis in diverse fields. The book is unique in its scope, and a variety of applications of functional analysis and operator-theoretic methods are devoted to each area of application. Each chapter includes a set of problems, some of which are routine and elementary, and some of which are more advanced. The book is primarily intended as a textbook for graduate and advanced undergraduate students in applied mathematics and engineering. It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization. It introduces emerging topics like wavelets, Gabor system, inverse problems and application to signal and image processing.
Hilbert functions and resolutions are both central objects in commutative algebra and fruitful tools in the fields of algebraic geometry, combinatorics, commutative algebra, and computational algebra. Spurred by recent research in this area, Syzygies and Hilbert Functions explores fresh developments in the field as well as fundamental concepts. Written by international mathematics authorities, the book first examines the invariant of Castelnuovo-Mumford regularity, blowup algebras, and bigraded rings. It then outlines the current status of two challenging conjectures: the lex-plus-power (LPP) conjecture and the multiplicity conjecture. After reviewing results of the geometry of Hilbert functions, the book considers minimal free resolutions of integral subschemes and of equidimensional Cohen-Macaulay subschemes of small degree. It also discusses relations to subspace arrangements and the properties of the infinite graded minimal free resolution of the ground field over a projective toric ring. The volume closes with an introduction to multigraded Hilbert functions, mixed multiplicities, and joint reductions. By surveying exciting topics of vibrant current research, Syzygies and Hilbert Functions stimulates further study in this hot area of mathematical activity.
The volume is dedicated to Lev Sakhnovich, who made fundamental contributions in operator theory and related topics. Besides bibliographic material, it includes a number of selected papers related to Lev Sakhnovich's research interests. The papers are related to operator identities, moment problems, random matrices and linear stochastic systems.
This is a short course on Banach space theory with special emphasis on certain aspects of the classical theory. In particular, the course focuses on three major topics: the elementary theory of Schauder bases, an introduction to Lp spaces, and an introduction to C(K) spaces. While these topics can be traced back to Banach himself, our primary interest is in the postwar renaissance of Banach space theory brought about by James, Lindenstrauss, Mazur, Namioka, Pelczynski, and others. Their elegant and insightful results are useful in many contemporary research endeavors and deserve greater publicity. By way of prerequisites, the reader will need an elementary understanding of functional analysis and at least a passing familiarity with abstract measure theory. An introductory course in topology would also be helpful; however, the text includes a brief appendix on the topology needed for the course.
This book is based on lectures given at "Mekhmat", the Department of Mechanics and Mathematics at Moscow State University, one of the top mathematical departments worldwide, with a rich tradition of teaching functional analysis. Featuring an advanced course on real and functional analysis, the book presents not only core material traditionally included in university courses of different levels, but also a survey of the most important results of a more subtle nature, which cannot be considered basic but which are useful for applications. Further, it includes several hundred exercises of varying difficulty with tips and references. The book is intended for graduate and PhD students studying real and functional analysis as well as mathematicians and physicists whose research is related to functional analysis.
This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The first two chapters introduce to the field and enable the reader to get acquainted with the main ideas by studying simple model problems, respectively of elliptic and parabolic type. The subsequent three chapters are devoted to problems with more complex structure; namely, elliptic and parabolic systems, equations with gradient depending nonlinearities, and nonlocal equations. They include many developments which reflect several aspects of current research. Although the techniques introduced in the first two chapters provide efficient tools to attack some aspects of these problems, they often display new phenomena and specifically different behaviors, whose study requires new ideas. Many open problems are mentioned and commented. The book is self-contained and up-to-date, it has a high didactic quality. It is devoted to problems that are intensively studied but have not been treated so far in depth in the book literature. The intended audience includes graduate and postgraduate students and researchers working in the field of partial differential equations and applied mathematics. The first edition of this book has become one of the standard references in the field. This second edition provides a revised text and contains a number of updates reflecting significant recent advances that have appeared in this growing field since the first edition.
Series of scalars, vectors, or functions are among the fundamental objects of mathematical analysis. When the arrangement of the terms is fixed, investigating a series amounts to investigating the sequence of its partial sums. In this case the theory of series is a part of the theory of sequences, which deals with their convergence, asymptotic behavior, etc. The specific character of the theory of series manifests itself when one considers rearrangements (permutations) of the terms of a series, which brings combinatorial considerations into the problems studied. The phenomenon that a numerical series can change its sum when the order of its terms is changed is one of the most impressive facts encountered in a university analysis course. The present book is devoted precisely to this aspect of the theory of series whose terms are elements of Banach (as well as other topological linear) spaces. The exposition focuses on two complementary problems. The first is to char acterize those series in a given space that remain convergent (and have the same sum) for any rearrangement of their terms; such series are usually called uncon ditionally convergent. The second problem is, when a series converges only for certain rearrangements of its terms (in other words, converges conditionally), to describe its sum range, i.e., the set of sums of all its convergent rearrangements."
This volume contains techniques of integration which are not found in standard calculus and advanced calculus books. It can be considered as a map to explore many classical approaches to evaluate integrals. It is intended for students and professionals who need to solve integrals or like to solve integrals and yearn to learn more about the various methods they could apply. Undergraduate and graduate students whose studies include mathematical analysis or mathematical physics will strongly benefit from this material. Mathematicians involved in research and teaching in areas related to calculus, advanced calculus and real analysis will find it invaluable.The volume contains numerous solved examples and problems for the reader. These examples can be used in classwork or for home assignments, as well as a supplement to student projects and student research.
This is a very successful textbook for undergraduate students of pure mathematics. Students often find the subject of complex analysis very difficult. Here the authors, who are experienced and well-known expositors, avoid many of such difficulties by using two principles: (1) generalising concepts familiar from real analysis; (2) adopting an approach which exhibits and makes use of the rich geometrical structure of the subject. An opening chapter provides a brief history of complex analysis which sets it in context and provides motivation.
With much material not previously found in book form, this book fills a gap by discussing the equivalence of signal functions with their sets of values taken at discreet points comprehensively and on a firm mathematical ground. The wide variety of topics begins with an introduction to the main ideas and background material on Fourier analysis and Hilbert spaces and their bases. Other chapters discuss sampling of Bernstein and Paley-Wiener spaces; Kramer's Lemma and its application to eigenvalue problems; contour integral methods including a proof of the equivalence of the sampling theory; the Poisson summation formula and Cauchy's integral formula; optimal regular, irregular, multi-channel, multi-band and multi-dimensional sampling; and Campbell's generalized sampling theorem. Mathematicians, physicists, and communications engineers will welcome the scope of information found here. |
![]() ![]() You may like...
The Hacker's Guide to OS X - Exploiting…
Robert Bathurst, Russ Rogers, …
Paperback
Vibration Engineering and Technology of…
Jose-Manoel Balthazar
Hardcover
R5,658
Discovery Miles 56 580
Build Location Apps on iOS with Swift…
Jeffrey Linwood
Paperback
Advanced In-Flight Measurement…
Fritz Boden, Nicholas Lawson, …
Hardcover
Develop Intelligent iOS Apps with Swift…
OEzgur Sahin
Paperback
Professor I. I. Glass: A Tribute and…
Kazuyoshi Takayama, Ozer Igra
Paperback
R3,418
Discovery Miles 34 180
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R3,675
Discovery Miles 36 750
Serverless Swift - Apache OpenWhisk for…
Marek Sadowski, Lennart Frantzell
Paperback
|