![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This book presents an extensive collection of state-of-the-art results and references in nonlinear functional analysis demonstrating how the generic approach proves to be very useful in solving many interesting and important problems. Nonlinear analysis plays an ever-increasing role in theoretical and applied mathematics, as well as in many other areas of science such as engineering, statistics, computer science, economics, finance, and medicine. The text may be used as supplementary material for graduate courses in nonlinear functional analysis, optimization theory and approximation theory, and is a treasure trove for instructors, researchers, and practitioners in mathematics and in the mathematical sciences. Each chapter is self-contained; proofs are solid and carefully communicated. "Genericity in Nonlinear Analysis" is the first book to systematically present the generic approach to nonlinear analysis. Topics presented include convergence analysis of powers and infinite products via the Baire Category Theorem, fixed point theory of both single- and set-valued mappings, best approximation problems, discrete and continuous descent methods for minimization in a general Banach space, and the structure of minimal energy configurations with rational numbers in the Aubry Mather theory."
Presenting the most important results of a new branch of functional analysis - subdifferential calculus and its applications - this monograph details new tools and techniques of convex and non-smooth analysis, such as Kantorovich spaces, vector duality, Boolean-valued and infinitesimal versions of non-standard analysis, covering a wide range of topics. The book aims to fill the gap between the theoretical core of modern functional analysis and its applicable sections, such as optimization, optimal control, mathematical programming, economics and related subjects. The material is intended for theoretical mathematicians looking for possible new applications, and applied mathematicians seeking powerful contemporary theoretical methods.
This monograph consists of three parts: - the abstract theory of Hilbert spaces, leading up to the spectral theory of unbounded self-adjoined operators; - the application to linear Hamiltonian systems, giving the details of the spectral resolution; - further applications such as to orthogonal polynomials and Sobolev differential operators. Written in textbook style this up-to-date volume is geared towards graduate and postgraduate students and researchers interested in boundary value problems of linear differential equations or in orthogonal polynomials.
On November 12-14, 1997 a workshop was held at the Vrije Universiteit Amsterdam on the occasion of the sixtieth birthday ofM. A. Kaashoek. The present volume contains the proceedings of this workshop. The workshop was attended by 44 participants from all over the world: partici pants came from Austria, Belgium, Canada, Germany, Ireland, Israel, Italy, The Netherlands, South Africa, Switzerland, Ukraine and the USA. The atmosphere at the workshop was very warm and friendly. There where 21 plenary lectures, and each lecture was followed by a lively discussion. The workshop was supported by: the Vakgroep Wiskunde of the Vrije Univer siteit, the department of Mathematics and Computer Science of the Vrije Univer siteit, the Stichting VU Computer Science & Mathematics Research Centre, the Thomas Stieltjes Institute for Mathematics, and the department of Economics of the Erasmus University Rotterdam. The organizers would like to take this opportunity to express their gratitude for the support. Without it the workshop would not have been so successful as it was. Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Photograph of M. A. Kaashoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Curriculum Vitae of M. A. Kaashoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv List of Publications of M. A. Kaashoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix l. Gohberg Opening Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxi H. Bart, A. C. M. Ran and H. I. Woerdeman Personal Reminiscences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxv V. Adamyan and R. Mennicken On the Separation of Certain Spectral Components of Selfadjoint Operator Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Conditions for the Separation of Spectral Components . . . . . . . 4 3. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This book originates from the session "Harmonic Analysis and Partial Differential Equations" held at the 12th ISAAC Congress in Aveiro, and provides a quick overview over recent advances in partial differential equations with a particular focus on the interplay between tools from harmonic analysis, functional inequalities and variational characterisations of solutions to particular non-linear PDEs. It can serve as a useful source of information to mathematicians, scientists and engineers. The volume contains contributions of authors from a variety of countries on a wide range of active research areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area.
This book presents basic elements of the theory of Hilbert spaces and operators on Hilbert spaces, culminating in a proof of the spectral theorem for compact, self-adjoint operators on separable Hilbert spaces. It exhibits a construction of the space of pth power Lebesgue integrable functions by a completion procedure with respect to a suitable norm in a space of continuous functions, including proofs of the basic inequalities of Hoelder and Minkowski. The Lp-spaces thereby emerges in direct analogy with a construction of the real numbers from the rational numbers. This allows grasping the main ideas more rapidly. Other important Banach spaces arising from function spaces and sequence spaces are also treated.In this second edition, I have expanded the material on normed vector spaces and their operators presented in Chapter 1 to include proofs of the Open Mapping Theorem, the Closed Graph Theorem and the Hahn-Banach Theorem. The material on operators between normed vector spaces is further expanded in a new Chapter 6, which presents the basic elements of the theory of Fredholm operators on general Banach spaces, not only on Hilbert spaces. This requires that we develop the theory of dual operators between Banach spaces to replace the use of adjoint operators between Hilbert spaces.With the addition of the new material on normed vector spaces and their operators, the book can serve as a general introduction to functional analysis viewed as a theory of infinite dimensional linear spaces and linear operators acting on them.
This book is not a text devoted to a pedagogical presentation of a specialized topic nor is it a monograph focused on the author's area of research. It accomplishes both these things while providing a rationale for why the reader ought to be interested in learning about fractional calculus. This book is for researchers who has heard about many of these scientifically exotic activities, but could not see how they fit into their own scientific interests, or how they could be made compatible with the way they understand science. It is also for beginners who have not yet decided where their scientific talents could be most productively applied. The book provides insight into the long-term direction of science and show how to develop the skills necessary to successfully do research in the twenty-first century.
The text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equation and its applications, which is an important area in representation theory and quantum groups. The book, which contains many detailed proofs and explicit calculations, will be accessible to graduate students of mathematics, who are familiar with the basics of representation theory of semi-simple Lie algebras.
This book provides an introduction to functional analysis for non-experts in mathematics. As such, it is distinct from most other books on the subject that are intended for mathematicians. Concepts are explained concisely with visual materials, making it accessible for those unfamiliar with graduate-level mathematics. Topics include topology, vector spaces, tensor spaces, Lebesgue integrals, and operators, to name a few. Each chapter explains, concisely, the purpose of the specific topic and the benefit of understanding it. Researchers and graduate students in physics, mechanical engineering, and information science will benefit from this view of functional analysis.
One service mathematic;., has Jcndcml the 'Et moi, .. si j'avait su comment CD revcnir, human race. It has put COIDDlOJI SCIISC back je n'y scrais point allC.' whc: rc it belongs, on the topmost shell next Jules Verne to the dusty canister labc1lcd 'dilcardcd nOD- The series is divergent; tbcre(on: we may be sense'. Eric T. Bcll able to do something with it o. Hcavisidc Mathematics is a tool for thought. A highly necessary tooll in a world where both feedbaclt and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other paJts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This is the first textbook-type presentation of tropical value distribution theory. It provides a detailed introduction of the tropical version of the Nevanlinna theory, describing growth and value distribution analysis of continuous, piecewise linear functions on the real axis. The book also includes applications of this theory to ultra-discrete equations. Three appendices are given to compare the contents of the theory with the classical counterparts in complex analysis.Detailed presentation of the proofs makes the book accessible for lecture courses and independent studies at the graduate and post-doctoral level.
Dimensional analysis is an essential scientific method and a powerful tool for solving problems in physics and engineering. This book starts by introducing the Pi Theorem, which is the theoretical foundation of dimensional analysis. It also provides ample and detailed examples of how dimensional analysis is applied to solving problems in various branches of mechanics. The book covers the extensive findings on explosion mechanics and impact dynamics contributed by the author 's research group over the past forty years at the Chinese Academy of Sciences. The book is intended for research scientists and engineers working in the fields of physics and engineering, as well as graduate students and advanced undergraduates of the related fields. Qing-Ming Tan is a former Professor at the Institute of Mechanics, the Chinese Academy of Sciences, China. Qing-Ming Tan is a former Professor at the Institute of Mechanics, the Chinese Academy of Sciences, China.
This monograph presents necessary and sufficient conditions for completeness of the linear span of eigenvectors and generalized eigenvectors of operators that admit a characteristic matrix function in a Banach space setting. Classical conditions for completeness based on the theory of entire functions are further developed for this specific class of operators. The classes of bounded operators that are investigated include trace class and Hilbert-Schmidt operators, finite rank perturbations of Volterra operators, infinite Leslie operators, discrete semi-separable operators, integral operators with semi-separable kernels, and period maps corresponding to delay differential equations. The classes of unbounded operators that are investigated appear in a natural way in the study of infinite dimensional dynamical systems such as mixed type functional differential equations, age-dependent population dynamics, and in the analysis of the Markov semigroup connected to the recently introduced zig-zag process.
This volume provides a systematic survey of almost all the equivalent assertions to the functional equations - zeta symmetry - which zeta-functions satisfy, thus streamlining previously published results on zeta-functions. The equivalent relations are given in the form of modular relations in Fox H-function series, which at present include all that have been considered as candidates for ingredients of a series. The results are presented in a clear and simple manner for readers to readily apply without much knowledge of zeta-functions.This volume aims to keep a record of the 150-year-old heritage starting from Riemann on zeta-functions, which are ubiquitous in all mathematical sciences, wherever there is a notion of the norm. It provides almost all possible equivalent relations to the zeta-functions without requiring a reader's deep knowledge on their definitions. This can be an ideal reference book for those studying zeta-functions.
This volume contains an important progress on the theory of subnormal operators in the past thirty years, which was developed by the author and his collaborators. It serves as a guide and basis to students and researchers on understanding and exploring further this new direction in operator theory. The volume expounds lucidly on analytic model theory, mosaics, trace formulas of the subnormal operators, and subnormal tuples of operators on the Hilbert spaces.
The book offers a direct and up-to-date introduction to the theory of one-parameter semigroups of linear operators on Banach spaces. It contains the fundamental results of the theory such as the Hille-Yoshida generation theorem, the bounded perturbation theorem, and the Trotter-Kato approximation theorem. It also treats the spectral theory of semigroups and its consequences for the qualitative behavior. The book is intended for students and researchers who want to become acquainted with the concept of semigroups in order to work with it in fields like partial and functional differential equations. Exercises are provided at the end of the chapters.
This open access book presents a comprehensive survey of modern operator techniques for boundary value problems and spectral theory, employing abstract boundary mappings and Weyl functions. It includes self-contained treatments of the extension theory of symmetric operators and relations, spectral characterizations of selfadjoint operators in terms of the analytic properties of Weyl functions, form methods for semibounded operators, and functional analytic models for reproducing kernel Hilbert spaces. Further, it illustrates these abstract methods for various applications, including Sturm-Liouville operators, canonical systems of differential equations, and multidimensional Schroedinger operators, where the abstract Weyl function appears as either the classical Titchmarsh-Weyl coefficient or the Dirichlet-to-Neumann map. The book is a valuable reference text for researchers in the areas of differential equations, functional analysis, mathematical physics, and system theory. Moreover, thanks to its detailed exposition of the theory, it is also accessible and useful for advanced students and researchers in other branches of natural sciences and engineering.
The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of their intrinsic mathematical importance as natural, interesting examples of non-rearrangement-invariant function spaces but also in view of their applications, which include the mathematical modeling of electrorheological fluids and image restoration.The main focus of this book is to provide a solid functional-analytic background for the study of differential operators on spaces with variable integrability. It includes some novel stability phenomena which the authors have recently discovered.At the present time, this is the only book which focuses systematically on differential operators on spaces with variable integrability. The authors present a concise, natural introduction to the basic material and steadily move toward differential operators on these spaces, leading the reader quickly to current research topics.
This book is written for scientists and engineers who use HHT (Hilbert-Huang Transform) to analyze data from nonlinear and non-stationary processes. It can be treated as a HHT user manual and a source of reference for HHT applications. The book contains the basic principle and method of HHT and various application examples, ranging from the correction of satellite orbit drifting to detection of failure of highway bridges.The thirteen chapters of the first edition are based on the presentations made at a mini-symposium at the Society for Industrial and Applied Mathematics in 2003. Some outstanding mathematical research problems regarding HHT development are discussed in the first three chapters. The three new chapters of the second edition reflect the latest HHT development, including ensemble empirical mode decomposition (EEMD) and modified EMD.The book also provides a platform for researchers to develop the HHT method further and to identify more applications.
This volume consists of the proofs of 391 problems in Real Analysis: Theory of Measure and Integration (3rd Edition).Most of the problems in Real Analysis are not mere applications of theorems proved in the book but rather extensions of the proven theorems or related theorems. Proving these problems tests the depth of understanding of the theorems in the main text.This volume will be especially helpful to those who read Real Analysis in self-study and have no easy access to an instructor or an advisor.
native settlement, in 1950 he graduated - as an extramural studen- from Groznyi Teachers College and in 1957 from Rostov University. He taught mathematics in Novocherkask Polytechnic Institute and its branch in the town of Shachty. That was when his mathematical talent blossomed and he obtained the main results given in the present monograph. In 1969 N. V. Govorov received the degree of Doctor of Mathematics and the aca demic rank of a Professor. From 1970 until his tragic death on 24 April 1981, N. V. Govorov worked as Head of the Department of Mathematical Anal ysis of Kuban' University actively engaged in preparing new courses and teaching young mathematicians. His original mathematical talent, vivid reactions, kindness bordering on self-sacrifice made him highly respected by everybody who knew him. In preparing this book for publication I was given substantial assistance by E. D. Fainberg and A. I. Heifiz, while V. M. Govorova took a significant part of the technical work with the manuscript. Professor C. Prather con tributed substantial assistance in preparing the English translation of the book. I. V. Ostrovskii. PREFACE The classic statement of the Riemann boundary problem consists in finding a function (z) which is analytic and bounded in two domains D+ and D-, with a common boundary - a smooth closed contour L admitting a continuous extension onto L both from D+ and D- and satisfying on L the boundary condition +(t) = G(t)-(t) + g(t).
The present volume develops the theory of integration in Banach spaces, martingales and UMD spaces, and culminates in a treatment of the Hilbert transform, Littlewood-Paley theory and the vector-valued Mihlin multiplier theorem. Over the past fifteen years, motivated by regularity problems in evolution equations, there has been tremendous progress in the analysis of Banach space-valued functions and processes. The contents of this extensive and powerful toolbox have been mostly scattered around in research papers and lecture notes. Collecting this diverse body of material into a unified and accessible presentation fills a gap in the existing literature. The principal audience that we have in mind consists of researchers who need and use Analysis in Banach Spaces as a tool for studying problems in partial differential equations, harmonic analysis, and stochastic analysis. Self-contained and offering complete proofs, this work is accessible to graduate students and researchers with a background in functional analysis or related areas.
Fractional equations and models play an essential part in the description of anomalous dynamics in complex systems. Recent developments in the modeling of various physical, chemical and biological systems have clearly shown that fractional calculus is not just an exotic mathematical theory, as it might have once seemed. The present book seeks to demonstrate this using various examples of equations and models with fractional and generalized operators. Intended for students and researchers in mathematics, physics, chemistry, biology and engineering, it systematically offers a wealth of useful tools for fractional calculus.
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y se.rais point aile.' human race. It has put common sense back Jules Verne where it belongs, on be topmost shelf next to the dusty canister labelled 'disc: arded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series." |
You may like...
The Griekwastad Murders - The Crime That…
Jacques Steenkamp
Paperback
Inside Police Custody: An Empirical…
Taru Spronken, Ed Cape, …
Paperback
R2,877
Discovery Miles 28 770
Police Psychology Into the 21st Century
Martin I. Kurke, Ellen M. Scrivner
Hardcover
R4,259
Discovery Miles 42 590
Rogue - The Inside Story Of SARS's Elite…
Johann van Loggerenberg, Adrian Lackay
Paperback
(2)R347 Discovery Miles 3 470
Profiling in Policy and Practice
David Canter, Laurence Alison
Paperback
R1,586
Discovery Miles 15 860
|