![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
The space C(X) of all continuous functions on a compact space X carries the structure of a normed vector space, an algebra and a lattice. On the one hand we study the relations between these structures and the topology of X, on the other hand we discuss a number of classical results according to which an algebra or a vector lattice can be represented as a C(X). Various applications of these theorems are given.Some attention is devoted to related theorems, e.g. the Stone Theorem for Boolean algebras and the Riesz Representation Theorem.The book is functional analytic in character. It does not presuppose much knowledge of functional analysis; it contains introductions into subjects such as the weak topology, vector lattices and (some) integration theory.
The periodic orbits of the geodesic flow of compact locally symmetric spaces of negative curvature give rise to meromorphic zeta functions (generalized Selberg zeta functions, Ruelle zeta functions). The book treats various aspects of the idea to understand the analytical properties of these zeta functions on the basis of appropriate analogs of the Lefschetz fixed point formula in which the periodic orbits of the flow take the place of the fixed points. According to geometric quantization the Anosov foliations of the sphere bundle provide a natural source for the definition of the cohomological data in the Lefschetz formula. The Lefschetz formula method can be considered as a link between the automorphic approach (Selberg trace formula) and Ruelle's approach (transfer operators). It yields a uniform cohomological characterization of the zeros and poles of the zeta functions and a new understanding of the functional equations from an index theoretical point of view. The divisors of the Selberg zeta functions also admit characterizations in terms of harmonic currents on the sphere bundle which represent the cohomology classes in the Lefschetz formulas in the sense of a Hodge theory. The concept of harmonic currents to be used for that purpose is introduced here for the first time. Harmonic currents for the geodesic flow of a noncompact hyperbolic space with a compact convex core generalize the Patterson-Sullivan measure on the limit set and are responsible for the zeros and poles of the corresponding zeta function. The book describes the present state of the research in a new field on the cutting edge of global analysis, harmonic analysis and dynamical systems. It should be appealing notonly to the specialists on zeta functions which will find their object of favorite interest connected in new ways with index theory, geometric quantization methods, foliation theory and representation theory. There are many unsolved problems and the book hopefully promotes further progress along the lines indicated here.
Fixed Point Results in W-Distance Spaces is a self-contained and comprehensive reference for advanced fixed-point theory and can serve as a useful guide for related research. The book can be used as a teaching resource for advanced courses on fixed-point theory, which is a modern and important field in mathematics. It would be especially valuable for graduate and postgraduate courses and seminars. Features Written in a concise and fluent style, covers a broad range of topics and includes related topics from research. Suitable for researchers and postgraduates. Contains brand new results not published elsewhere.
Wavelets from a Statistical Perspective offers a modern, 2nd generation look on wavelets, far beyond the rigid setting of the equispaced, dyadic wavelets in the early days. With the methods of this book, based on the lifting scheme, researchers can set up a wavelet or another multiresolution analysis adapted to their data, ranging from images to scattered data or other irregularly spaced observations. Whereas classical wavelets stand a bit apart from other nonparametric methods, this book adds a multiscale touch to your spline, kernel or local polynomial smoothing procedure, thereby extending its applicability to nonlinear, nonparametric processing for piecewise smooth data. One of the chapters of the book constructs B-spline wavelets on nonequispaced knots and multiscale local polynomial transforms. In another chapter, the link between wavelets and Fourier analysis, ubiquitous in the classical approach, is explained, but without being inevitable. In further chapters the discrete wavelet transform is contrasted with the continuous version, the nondecimated (or maximal overlap) transform taking an intermediate position. An important principle in designing a wavelet analysis through the lifting scheme is finding the right balance between bias and variance. Bias and variance also play a crucial role in the nonparametric smoothing in a wavelet framework, in finding well working thresholds or other smoothing parameters. The numerous illustrations can be reproduced with the online available, accompanying software. The software and the exercises can also be used as a starting point in the further exploration of the material.
The author approaches an old classic problem - the existence of solutions of Navier-Stokes equations. The main objective is to model and derive of equation of continuity, Euler equation of fluid motion, energy flux equation, Navier-Stokes equations from the observer point of view and solve classic problem for this interpretation of fluid motion laws. If we have a piece of metal or a volume of liquid, the idea impresses itself upon us that it is divisible without limit, that any part of it, however small, would again have the same properties. But, wherever the methods of research in the physics of matter were refined sufficiently, limits to divisibility were reached that are not due to the inadequacy of our experiments but to the nature of the subject matter. Observability in mathematics were developed by the author based on denial of infinity idea. He introduces observers into arithmetic, and arithmetic becomes dependent on observers. And after that the basic mathematical parts also become dependent on observers. This approach permits to reconsider the fluid motion laws, analyze them and get solutions of classic problems. Table of Contents 1. Introduction. 2. Observability and Arithmetic. 3. Observability and Vector Algebra. 4. Observability and Mathematical Analysis (Calculus). 5. Classic Fluid Mechanics equations and Observability. 6. Observability and Thermodynamical equations. 7. Observability and equation of continuity. 8. Observability and Euler equation of motion of the fluid. 9. Observability and energy flux and moment flux equations. 10. Observability and incompressible fluids. 11. Observability and Navier-Stokes equations. 12. Observability and Relativistic Fluid Mechanics. 13. Appendix: Review of publications of the Mathematics with Observers. 14. Glossary. Bibliography Index Biography Boris Khots, DrSci, lives in Iowa, USA, Independent Researcher. Alma Mater - Moscow State Lomonosov University, Department of Mathematics and Mechanics (mech-math). Creator of Observer's Mathematics. Participant of more than 30 Mathematical international congresses, conferences. In particular, participated with presentation at International Congresses of Mathematicians on 1998 (Germany), 2002 (China), 2006 (Spain), 2010 (India), 2014 (South Korea). More than 150 mathematical books and papers.
This volume comprises the proceedings of the Conference on Operator Theory and its Applications held in Gothenburg, Sweden, April 26-29, 2011. The conference was held in honour of Professor Victor Shulman on the occasion of his 65th birthday. The papers included in the volume cover a large variety of topics, among them the theory of operator ideals, linear preservers, C*-algebras, invariant subspaces, non-commutative harmonic analysis, and quantum groups, and reflect recent developments in these areas. The book consists of both original research papers and high quality survey articles, all of which were carefully refereed.
The book systematically presents the theories of pseudo-differential operators with symbols singular in dual variables, fractional order derivatives, distributed and variable order fractional derivatives, random walk approximants, and applications of these theories to various initial and multi-point boundary value problems for pseudo-differential equations. Fractional Fokker-Planck-Kolmogorov equations associated with a large class of stochastic processes are presented. A complex version of the theory of pseudo-differential operators with meromorphic symbols based on the recently introduced complex Fourier transform is developed and applied for initial and boundary value problems for systems of complex differential and pseudo-differential equations.
The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A- I for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main focus of the present volume. For some classes of quadratic operator polynomials, inverse problems are also considered. The connection between the spectra of such quadratic operator polynomials and generalized Hermite-Biehler functions is discussed in detail. Many applications are thoroughly investigated, such as the Regge problem and damped vibrations of smooth strings, Stieltjes strings, beams, star graphs of strings and quantum graphs. Some chapters summarize advanced background material, which is supplemented with detailed proofs. With regard to the reader's background knowledge, only the basic properties of operators in Hilbert spaces and well-known results from complex analysis are assumed.
The book discusses basic concepts of functional analysis, measure and integration theory, calculus of variations and duality and its applications to variational problems of non-convex nature, such as the Ginzburg-Landau system in superconductivity, shape optimization models, dual variational formulations for micro-magnetism and others. Numerical Methods for such and similar problems, such as models in flight mechanics and the Navier-Stokes system in fluid mechanics have been developed through the generalized method of lines, including their matrix finite dimensional approximations. It concludes with a review of recent research on Riemannian geometry applied to Quantum Mechanics and Relativity. The book will be of interest to applied mathematicians and graduate students in applied mathematics. Physicists, engineers and researchers in related fields will also find the book useful in providing a mathematical background applicable to their respective professional areas.
This textbook is a concise yet precise supplement to traditional books on Signals and Systems, focusing exclusively on the continuous-time case. Students can use this guide to review material, reinforce their understanding, and see how all the parts connect together in a uniform treatment focused on mathematical clarity. Readers learn the "what", "why" and "how" about the ubiquitous Fourier and Laplace transforms encountered in the study of linear time-invariant systems in engineering: what are these transforms, why do we need them, and how do we use them? Readers will come away with an understanding of the gradual progression from time-domain analysis to frequency-domain and s-domain techniques for continuous-time linear time-invariant systems. This book reflects the author's experience in teaching this material for over 25 years in sophomore- and junior-level required engineering courses and is ideal for undergraduate classes in electrical engineering.
This book presents four survey articles on various aspects of open quantum systems, specifically addressing quantum Markovian processes, Feller semigroups and nonequilibrium dynamics. The contributions are based on lectures given by distinguished experts at a summer school in Goettingen, Germany. Starting from basic notions, the authors of these lecture notes accompany the reader on a journey up to the latest research, highlighting new challenges and addressing unsolved problems at the interface between mathematics and physics. Though the book is primarily addressed to graduate students, it will also be of interest to researchers.
This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences. Traditional methods and approaches surface in physics and in the life and engineering sciences with increasing frequency - the Schramm-Loewner evolution, Laplacian growth, and quadratic differentials are just a few typical examples. This book provides a representative overview of these processes and collects open problems in the various areas, while at the same time showing where and how each particular topic evolves. This volume is dedicated to the memory of Alexander Vasiliev.
D'oh! Fourier introduces the Fourier transform and is aimed at undergraduates in Computer Science, Mathematics, and Applied Sciences, as well as for those wishing to extend their education. Formulated around ten key points, this accessible book is light-hearted and illustrative, with many applications. The basis and deployment of the Fourier transform are covered applying real-world examples throughout inductively rather than the theoretical approach deductively.The key components of the textbook are continuous signals analysis, discrete signals analysis, image processing, applications of Fourier analysis, together with the origin and nature of the transform itself. D'oh! Fourier is reproducible via MATLAB/Octave and is supported by a comprehensive website which provides the code contained within the book.
This book, which is a continuation of Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, presents recent trends and developments upon fractional, first, and second order semilinear difference and differential equations, including degenerate ones. Various stability, uniqueness, and existence results are established using various tools from nonlinear functional analysis and operator theory (such as semigroup methods). Various applications to partial differential equations and the dynamic of populations are amply discussed. This self-contained volume is primarily intended for advanced undergraduate and graduate students, post-graduates and researchers, but may also be of interest to non-mathematicians such as physicists and theoretically oriented engineers. It can also be used as a graduate text on evolution equations and difference equations and their applications to partial differential equations and practical problems arising in population dynamics. For completeness, detailed preliminary background on Banach and Hilbert spaces, operator theory, semigroups of operators, and almost periodic functions and their spectral theory are included as well.
A superb text on the fundamentals of Lebesgue measure and integration. This book is designed to give the reader a solid understanding of Lebesgue measure and integration. It focuses on only the most fundamental concepts, namely Lebesgue measure for R and Lebesgue integration for extended real-valued functions on R. Starting with a thorough presentation of the preliminary concepts of undergraduate analysis, this book covers all the important topics, including measure theory, measurable functions, and integration. It offers an abundance of support materials, including helpful illustrations, examples, and problems. To further enhance the learning experience, the author provides a historical context that traces the struggle to define "area" and "area under a curve" that led eventually to Lebesgue measure and integration. Lebesgue Measure and Integration is the ideal text for an advanced undergraduate analysis course or for a first-year graduate course in mathematics, statistics, probability, and other applied areas. It will also serve well as a supplement to courses in advanced measure theory and integration and as an invaluable reference long after course work has been completed.
The second of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume II is organized around the theme of recent applications of harmonic analysis to function spaces, differential equations, and data science, covering topics such as: The classical Fourier transform, the non-linear Fourier transform (FBI transform), cardinal sampling series and translation invariant linear systems. Recent results concerning harmonic analysis on non-Euclidean spaces such as graphs and partially ordered sets. Applications of harmonic analysis to data science and statistics Boundary-value problems for PDE's including the Runge-Walsh theorem for the oblique derivative problem of physical geodesy.
The aim of this book is to provide a basic and self-contained introduction to the ideas underpinning fractal analysis. The book illustrates some important applications issued from real data sets, real physical and natural phenomena as well as real applications in different fields, and consequently, presents to the readers the opportunity to implement fractal analysis in their specialties according to the step-by-step guide found in the book.Besides advanced undergraduate students, graduate students and senior researchers, this book may also serve scientists and research workers from industrial settings, where fractals and multifractals are required for modeling real-world phenomena and data, such as finance, medicine, engineering, transport, images, signals, among others.For the theorists, rigorous mathematical developments are established with necessary prerequisites that make the book self-containing. For the practitioner often interested in model building and analysis, we provide the cornerstone ideas.
This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields."
Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book contains survey and expository articles by leading experts in their corresponding fields, and features fully-refereed, high-quality papers exploring new results and trends in spectral theory, mathematical physics, geometric function theory, and partial differential equations. Graduate students and researchers in analysis will find inspiration in the articles collected in this volume, which emphasize the remarkable connections between harmonic analysis and operator theory. Another shared research interest of the contributors of this volume lies in the area of applied harmonic analysis, where a new notion called chromatic derivatives has recently been introduced in communication engineering. The material for this volume is based on the 13th New Mexico Analysis Seminar held at the University of New Mexico, April 3-4, 2014 and on several special sections of the Western Spring Sectional Meeting at the University of New Mexico, April 4-6, 2014. During the event, participants honored the memory of Cora Sadosky-a great mathematician who recently passed away and who made significant contributions to the field of harmonic analysis. Cora was an exceptional mathematician and human being. She was a world expert in harmonic analysis and operator theory, publishing over fifty-five research papers and authoring a major textbook in the field. Participants of the conference include new and senior researchers, recent doctorates as well as leading experts in the area.
In several proofs from the theory of finite-dimensional Lie algebras, an essential contribution comes from the Jordan canonical structure of linear maps acting on finite-dimensional vector spaces. On the other hand, there exist classical results concerning Lie algebras which advise us to use infinite-dimensional vector spaces as well. For example, the classical Lie Theorem asserts that all finite-dimensional irreducible representations of solvable Lie algebras are one-dimensional. Hence, from this point of view, the solvable Lie algebras cannot be distinguished from one another, that is, they cannot be classified. Even this example alone urges the infinite-dimensional vector spaces to appear on the stage. But the structure of linear maps on such a space is too little understood; for these linear maps one cannot speak about something like the Jordan canonical structure of matrices. Fortunately there exists a large class of linear maps on vector spaces of arbi trary dimension, having some common features with the matrices. We mean the bounded linear operators on a complex Banach space. Certain types of bounded operators (such as the Dunford spectral, Foia decomposable, scalar generalized or Colojoara spectral generalized operators) actually even enjoy a kind of Jordan decomposition theorem. One of the aims of the present book is to expound the most important results obtained until now by using bounded operators in the study of Lie algebras."
An H(b) space is defined as a collection of analytic functions that are in the image of an operator. The theory of H(b) spaces bridges two classical subjects, complex analysis and operator theory, which makes it both appealing and demanding. Volume 1 of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators and Clark measures. Volume 2 focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics.
This book is a systematic presentation of basic notions, facts, and ideas of nonlinear functional analysis and their applications to nonlinear partial differential equations. It begins from a brief introduction to linear functional analysis, including various types of convergence and functional spaces. The main part of the book is devoted to the theory of nonlinear operators. Various methods of the study of nonlinear differential equations based on the facts of nonlinear analysis are presented in detail. This book may serve as an introductory textbook for students and undergraduates specializing in modern mathematical physics.
The second volume of the two volumes book is dedicated to various extensions and generalizations of Dyadic (Walsh) analysis and related applications. Considered are dyadic derivatives on Vilenkin groups and various other Abelian and finite non-Abelian groups. Since some important results were developed in former Soviet Union and China, we provide overviews of former work in these countries. Further, we present translations of three papers that were initially published in Chinese. The presentation continues with chapters written by experts in the area presenting discussions of applications of these results in specific tasks in the area of signal processing and system theory. Efficient computing of related differential operators on contemporary hardware, including graphics processing units, is also considered, which makes the methods and techniques of dyadic analysis and generalizations computationally feasible. The volume 2 of the book ends with a chapter presenting open problems pointed out by several experts in the area.
The last two decades have produced tremendous developments in the mathematical theory of wavelets and their great variety of applications in science and engineering. Wavelets allow complex information, such as music, speech, images, and patterns, to be decomposed into an elementary form called building blocks at different positions and scales. The information is reconstructed with high precision. In an effort to acquaint researchers in applied mathematics, physics, statistics, computer science, and engineering and to stimulate further research, a regional research conference was organized at the University of Central Florida in May 1998. Many distinguished applied mathematicians and engineering scientists participated in the conference and presented a digest of recent developments, open questions, and unsolved problems in this rapidly growing and important field. The carefully selected chapters in this new text will appeal to the reader interested in a broad perspective of wavelet analysis and time-frequency signal analysis. Wavelet Transforms and Time-Frequency Signal Analysis brings together recent developments in theory and applications of wavelet transforms that are likely to determine fruitful directions for future advanced study and research. The book is designed as a new source for modern topics dealing with wavelets, wavelet transforms, time-frequency signal analysis, and other applications for future development of this new, important, and useful subject for mathematics, science and engineering. Topics and Features: * Offers broad coverage of recent material on wavelet analysis and time-frequency signal analysis that is not covered in other recent reference books * Provides the reader with a thorough mathematical background and a wide variety of applications that are sufficient for interdisciplinary collaborative research in applied mathematics * Presents information that puts the reader at the forefront of current research Wavelet Transforms and Time-Frequency Signal Analysis will serve as a research reference or as a text for an advanced course in wavelet analysis and time-frequency signal analysis. Professionals working on modern applied mathematics, computer science, computer engineering, electrical engineering, physics, and biomedical engineering will also find this book useful.
This book provides an overview of some recent findings in the theory and applications of non-integer order systems. Discussing topics ranging from the mathematical foundations to technical applications of continuous-time and discrete-time fractional calculus, it includes 22 original research papers and is subdivided into four parts: * Mathematical Foundations * Approximation, Modeling and Simulations * Fractional Systems Analysis and Control * Applications The papers were selected from those presented at the 10th International Conference of Non-integer Order Calculus and its Applications, which was held at the Bialystok University of Technology, Poland, September 20-21, 2018. Thanks to the broad spectrum of topics covered, the book is suitable for researchers from applied mathematics and engineering. It is also a valuable resource for graduate students, as well as for scholars looking for new mathematical tools. |
You may like...
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,319
Discovery Miles 33 190
Local Fractional Integral Transforms and…
Xiaojun Yang, Dumitru Baleanu, …
Hardcover
R1,806
Discovery Miles 18 060
Bloch-type Periodic Functions: Theory…
Yong-kui Chang, Gaston Mandata N'G'Uerekata, …
Hardcover
R1,907
Discovery Miles 19 070
Geometric Methods in Physics XXXV…
Piotr Kielanowski, Anatol Odzijewicz, …
Hardcover
R2,682
Discovery Miles 26 820
Theory of Approximate Functional…
Madjid Eshaghi Gordji, Sadegh Abbaszadeh
Hardcover
R1,379
Discovery Miles 13 790
Hardy Operators On Euclidean Spaces And…
Shanzhen Lu, Zunwei Fu, …
Hardcover
R1,914
Discovery Miles 19 140
Linear Systems, Signal Processing and…
Daniel Alpay, Mihaela B. Vajiac
Hardcover
R4,274
Discovery Miles 42 740
|