![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
The main topic of this work is the study of general complexes of differential operators between sections of vector bundles. Although the global situation and the local one are often similar in content, the invariant language permits the simplification of the notation and more clearly reveals the algebraic structure of some questions. Recent developments in the theory of complexes of differential operators are dealt with to some degree: formal theory; existence theory; global solvability problem; overdetermined boundary problems; generalized Lefschetz theory of fixed points; and qualitative theory of solutions of overdetermined systems. Considerable attention is paid to the theory of functions of several complex variables. Examples and exercises are included.
Wavelets from a Statistical Perspective offers a modern, 2nd generation look on wavelets, far beyond the rigid setting of the equispaced, dyadic wavelets in the early days. With the methods of this book, based on the lifting scheme, researchers can set up a wavelet or another multiresolution analysis adapted to their data, ranging from images to scattered data or other irregularly spaced observations. Whereas classical wavelets stand a bit apart from other nonparametric methods, this book adds a multiscale touch to your spline, kernel or local polynomial smoothing procedure, thereby extending its applicability to nonlinear, nonparametric processing for piecewise smooth data. One of the chapters of the book constructs B-spline wavelets on nonequispaced knots and multiscale local polynomial transforms. In another chapter, the link between wavelets and Fourier analysis, ubiquitous in the classical approach, is explained, but without being inevitable. In further chapters the discrete wavelet transform is contrasted with the continuous version, the nondecimated (or maximal overlap) transform taking an intermediate position. An important principle in designing a wavelet analysis through the lifting scheme is finding the right balance between bias and variance. Bias and variance also play a crucial role in the nonparametric smoothing in a wavelet framework, in finding well working thresholds or other smoothing parameters. The numerous illustrations can be reproduced with the online available, accompanying software. The software and the exercises can also be used as a starting point in the further exploration of the material.
This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Cebysv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.
Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms.
The space C(X) of all continuous functions on a compact space X carries the structure of a normed vector space, an algebra and a lattice. On the one hand we study the relations between these structures and the topology of X, on the other hand we discuss a number of classical results according to which an algebra or a vector lattice can be represented as a C(X). Various applications of these theorems are given.Some attention is devoted to related theorems, e.g. the Stone Theorem for Boolean algebras and the Riesz Representation Theorem.The book is functional analytic in character. It does not presuppose much knowledge of functional analysis; it contains introductions into subjects such as the weak topology, vector lattices and (some) integration theory.
This book presents basic elements of the theory of Hilbert spaces and operators on Hilbert spaces, culminating in a proof of the spectral theorem for compact, self-adjoint operators on separable Hilbert spaces. It exhibits a construction of the space of pth power Lebesgue integrable functions by a completion procedure with respect to a suitable norm in a space of continuous functions, including proofs of the basic inequalities of Hoelder and Minkowski. The Lp-spaces thereby emerges in direct analogy with a construction of the real numbers from the rational numbers. This allows grasping the main ideas more rapidly. Other important Banach spaces arising from function spaces and sequence spaces are also treated.In this second edition, I have expanded the material on normed vector spaces and their operators presented in Chapter 1 to include proofs of the Open Mapping Theorem, the Closed Graph Theorem and the Hahn-Banach Theorem. The material on operators between normed vector spaces is further expanded in a new Chapter 6, which presents the basic elements of the theory of Fredholm operators on general Banach spaces, not only on Hilbert spaces. This requires that we develop the theory of dual operators between Banach spaces to replace the use of adjoint operators between Hilbert spaces.With the addition of the new material on normed vector spaces and their operators, the book can serve as a general introduction to functional analysis viewed as a theory of infinite dimensional linear spaces and linear operators acting on them.
In 1909 Alfred Haar introduced into analysis a remarkable system which bears his name. The Haar system is a complete orthonormal system on [0,1] and the Fourier-Haar series for arbitrary continuous function converges uniformly to this function. This volume is devoted to the investigation of the Haar system from the operator theory point of view. The main subjects treated are: classical results on unconditional convergence of the Haar series in modern presentation; Fourier-Haar coefficients; reproducibility; martingales; monotone bases in rearrangement invariant spaces; rearrangements and multipliers with respect to the Haar system; subspaces generated by subsequences of the Haar system; the criterion of equivalence of the Haar and Franklin systems. Audience: This book will be of interest to graduate students and researchers whose work involves functional analysis and operator theory.
This book presents four survey articles on various aspects of open quantum systems, specifically addressing quantum Markovian processes, Feller semigroups and nonequilibrium dynamics. The contributions are based on lectures given by distinguished experts at a summer school in Goettingen, Germany. Starting from basic notions, the authors of these lecture notes accompany the reader on a journey up to the latest research, highlighting new challenges and addressing unsolved problems at the interface between mathematics and physics. Though the book is primarily addressed to graduate students, it will also be of interest to researchers.
The book presents a theory of abstract duality pairs which arises by replacing the scalar field by an Abelian topological group in the theory of dual pair of vector spaces. Examples of abstract duality pairs are vector valued series, spaces of vector valued measures, spaces of vector valued integrable functions, spaces of linear operators and vector valued sequence spaces. These examples give rise to numerous applications such as abstract versions of the Orlicz-Pettis Theorem on subseries convergent series, the Uniform Boundedness Principle, the Banach-Steinhaus Theorem, the Nikodym Convergence theorems and the Vitali-Hahn-Saks Theorem from measure theory and the Hahn-Schur Theorem from summability. There are no books on the current market which cover the material in this book. Readers will find interesting functional analysis and the many applications to various topics in real analysis.
The periodic orbits of the geodesic flow of compact locally symmetric spaces of negative curvature give rise to meromorphic zeta functions (generalized Selberg zeta functions, Ruelle zeta functions). The book treats various aspects of the idea to understand the analytical properties of these zeta functions on the basis of appropriate analogs of the Lefschetz fixed point formula in which the periodic orbits of the flow take the place of the fixed points. According to geometric quantization the Anosov foliations of the sphere bundle provide a natural source for the definition of the cohomological data in the Lefschetz formula. The Lefschetz formula method can be considered as a link between the automorphic approach (Selberg trace formula) and Ruelle's approach (transfer operators). It yields a uniform cohomological characterization of the zeros and poles of the zeta functions and a new understanding of the functional equations from an index theoretical point of view. The divisors of the Selberg zeta functions also admit characterizations in terms of harmonic currents on the sphere bundle which represent the cohomology classes in the Lefschetz formulas in the sense of a Hodge theory. The concept of harmonic currents to be used for that purpose is introduced here for the first time. Harmonic currents for the geodesic flow of a noncompact hyperbolic space with a compact convex core generalize the Patterson-Sullivan measure on the limit set and are responsible for the zeros and poles of the corresponding zeta function. The book describes the present state of the research in a new field on the cutting edge of global analysis, harmonic analysis and dynamical systems. It should be appealing notonly to the specialists on zeta functions which will find their object of favorite interest connected in new ways with index theory, geometric quantization methods, foliation theory and representation theory. There are many unsolved problems and the book hopefully promotes further progress along the lines indicated here.
The book systematically presents the theories of pseudo-differential operators with symbols singular in dual variables, fractional order derivatives, distributed and variable order fractional derivatives, random walk approximants, and applications of these theories to various initial and multi-point boundary value problems for pseudo-differential equations. Fractional Fokker-Planck-Kolmogorov equations associated with a large class of stochastic processes are presented. A complex version of the theory of pseudo-differential operators with meromorphic symbols based on the recently introduced complex Fourier transform is developed and applied for initial and boundary value problems for systems of complex differential and pseudo-differential equations.
This book introduces the reader to quantum groups, focusing on the simplest ones, namely the closed subgroups of the free unitary group. Although such quantum groups are quite easy to understand mathematically, interesting examples abound, including all classical Lie groups, their free versions, half-liberations, other intermediate liberations, anticommutation twists, the duals of finitely generated discrete groups, quantum permutation groups, quantum reflection groups, quantum symmetry groups of finite graphs, and more. The book is written in textbook style, with its contents roughly covering a one-year graduate course. Besides exercises, the author has included many remarks, comments and pieces of advice with the lone reader in mind. The prerequisites are basic algebra, analysis and probability, and a certain familiarity with complex analysis and measure theory. Organized in four parts, the book begins with the foundations of the theory, due to Woronowicz, comprising axioms, Haar measure, Peter-Weyl theory, Tannakian duality and basic Brauer theorems. The core of the book, its second and third parts, focus on the main examples, first in the continuous case, and then in the discrete case. The fourth and last part is an introduction to selected research topics, such as toral subgroups, homogeneous spaces and matrix models. Introduction to Quantum Groups offers a compelling introduction to quantum groups, from the simplest examples to research level topics.
Fixed Point Results in W-Distance Spaces is a self-contained and comprehensive reference for advanced fixed-point theory and can serve as a useful guide for related research. The book can be used as a teaching resource for advanced courses on fixed-point theory, which is a modern and important field in mathematics. It would be especially valuable for graduate and postgraduate courses and seminars. Features Written in a concise and fluent style, covers a broad range of topics and includes related topics from research. Suitable for researchers and postgraduates. Contains brand new results not published elsewhere.
The author approaches an old classic problem - the existence of solutions of Navier-Stokes equations. The main objective is to model and derive of equation of continuity, Euler equation of fluid motion, energy flux equation, Navier-Stokes equations from the observer point of view and solve classic problem for this interpretation of fluid motion laws. If we have a piece of metal or a volume of liquid, the idea impresses itself upon us that it is divisible without limit, that any part of it, however small, would again have the same properties. But, wherever the methods of research in the physics of matter were refined sufficiently, limits to divisibility were reached that are not due to the inadequacy of our experiments but to the nature of the subject matter. Observability in mathematics were developed by the author based on denial of infinity idea. He introduces observers into arithmetic, and arithmetic becomes dependent on observers. And after that the basic mathematical parts also become dependent on observers. This approach permits to reconsider the fluid motion laws, analyze them and get solutions of classic problems. Table of Contents 1. Introduction. 2. Observability and Arithmetic. 3. Observability and Vector Algebra. 4. Observability and Mathematical Analysis (Calculus). 5. Classic Fluid Mechanics equations and Observability. 6. Observability and Thermodynamical equations. 7. Observability and equation of continuity. 8. Observability and Euler equation of motion of the fluid. 9. Observability and energy flux and moment flux equations. 10. Observability and incompressible fluids. 11. Observability and Navier-Stokes equations. 12. Observability and Relativistic Fluid Mechanics. 13. Appendix: Review of publications of the Mathematics with Observers. 14. Glossary. Bibliography Index Biography Boris Khots, DrSci, lives in Iowa, USA, Independent Researcher. Alma Mater - Moscow State Lomonosov University, Department of Mathematics and Mechanics (mech-math). Creator of Observer's Mathematics. Participant of more than 30 Mathematical international congresses, conferences. In particular, participated with presentation at International Congresses of Mathematicians on 1998 (Germany), 2002 (China), 2006 (Spain), 2010 (India), 2014 (South Korea). More than 150 mathematical books and papers.
This volume comprises the proceedings of the Conference on Operator Theory and its Applications held in Gothenburg, Sweden, April 26-29, 2011. The conference was held in honour of Professor Victor Shulman on the occasion of his 65th birthday. The papers included in the volume cover a large variety of topics, among them the theory of operator ideals, linear preservers, C*-algebras, invariant subspaces, non-commutative harmonic analysis, and quantum groups, and reflect recent developments in these areas. The book consists of both original research papers and high quality survey articles, all of which were carefully refereed.
The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A- I for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main focus of the present volume. For some classes of quadratic operator polynomials, inverse problems are also considered. The connection between the spectra of such quadratic operator polynomials and generalized Hermite-Biehler functions is discussed in detail. Many applications are thoroughly investigated, such as the Regge problem and damped vibrations of smooth strings, Stieltjes strings, beams, star graphs of strings and quantum graphs. Some chapters summarize advanced background material, which is supplemented with detailed proofs. With regard to the reader's background knowledge, only the basic properties of operators in Hilbert spaces and well-known results from complex analysis are assumed.
This book provides an overview of some recent findings in the theory and applications of non-integer order systems. Discussing topics ranging from the mathematical foundations to technical applications of continuous-time and discrete-time fractional calculus, it includes 22 original research papers and is subdivided into four parts: * Mathematical Foundations * Approximation, Modeling and Simulations * Fractional Systems Analysis and Control * Applications The papers were selected from those presented at the 10th International Conference of Non-integer Order Calculus and its Applications, which was held at the Bialystok University of Technology, Poland, September 20-21, 2018. Thanks to the broad spectrum of topics covered, the book is suitable for researchers from applied mathematics and engineering. It is also a valuable resource for graduate students, as well as for scholars looking for new mathematical tools.
This monograph is devoted to developing a theory of combined measure and shift invariance of time scales with the related applications to shift functions and dynamic equations. The study of shift closeness of time scales is significant to investigate the shift functions such as the periodic functions, the almost periodic functions, the almost automorphic functions, and their generalizations with many relevant applications in dynamic equations on arbitrary time scales. First proposed by S. Hilger, the time scale theory-a unified view of continuous and discrete analysis-has been widely used to study various classes of dynamic equations and models in real-world applications. Measure theory based on time scales, in its turn, is of great power in analyzing functions on time scales or hybrid domains. As a new and exciting type of mathematics-and more comprehensive and versatile than the traditional theories of differential and difference equations-, the time scale theory can precisely depict the continuous-discrete hybrid processes and is an optimal way forward for accurate mathematical modeling in applied sciences such as physics, chemical technology, population dynamics, biotechnology, and economics and social sciences. Graduate students and researchers specializing in general dynamic equations on time scales can benefit from this work, fostering interest and further research in the field. It can also serve as reference material for undergraduates interested in dynamic equations on time scales. Prerequisites include familiarity with functional analysis, measure theory, and ordinary differential equations.
A superb text on the fundamentals of Lebesgue measure and integration. This book is designed to give the reader a solid understanding of Lebesgue measure and integration. It focuses on only the most fundamental concepts, namely Lebesgue measure for R and Lebesgue integration for extended real-valued functions on R. Starting with a thorough presentation of the preliminary concepts of undergraduate analysis, this book covers all the important topics, including measure theory, measurable functions, and integration. It offers an abundance of support materials, including helpful illustrations, examples, and problems. To further enhance the learning experience, the author provides a historical context that traces the struggle to define "area" and "area under a curve" that led eventually to Lebesgue measure and integration. Lebesgue Measure and Integration is the ideal text for an advanced undergraduate analysis course or for a first-year graduate course in mathematics, statistics, probability, and other applied areas. It will also serve well as a supplement to courses in advanced measure theory and integration and as an invaluable reference long after course work has been completed.
This book publishes original research chapters on the theory of approximation by positive linear operators as well as theory of sequence spaces and illustrates their applications. Chapters are original and contributed by active researchers in the field of approximation theory and sequence spaces. Each chapter describes the problem of current importance and summarizes ways of their solution and possible applications which improve the current understanding pertaining to sequence spaces and approximation theory. The presentation of the articles is clear and self-contained throughout the book.
Presents Sequence Spaces, their properties and Summability methods, which provides the foundation of every course in analysis Provides different points of view in one volume, e.g. their topological properties, geometry and summability, fuzzy valued study and more Aimed at both experts and non-experts with an interest in getting acquainted with sequence space, matrix transformations and their applications Consists of several new results which are part of the recent research on these topics Covers Fuzzy Valued sequences, which is an important topic and exhibits the study of sequence spaces in fuzzy settings
In several proofs from the theory of finite-dimensional Lie algebras, an essential contribution comes from the Jordan canonical structure of linear maps acting on finite-dimensional vector spaces. On the other hand, there exist classical results concerning Lie algebras which advise us to use infinite-dimensional vector spaces as well. For example, the classical Lie Theorem asserts that all finite-dimensional irreducible representations of solvable Lie algebras are one-dimensional. Hence, from this point of view, the solvable Lie algebras cannot be distinguished from one another, that is, they cannot be classified. Even this example alone urges the infinite-dimensional vector spaces to appear on the stage. But the structure of linear maps on such a space is too little understood; for these linear maps one cannot speak about something like the Jordan canonical structure of matrices. Fortunately there exists a large class of linear maps on vector spaces of arbi trary dimension, having some common features with the matrices. We mean the bounded linear operators on a complex Banach space. Certain types of bounded operators (such as the Dunford spectral, Foia decomposable, scalar generalized or Colojoara spectral generalized operators) actually even enjoy a kind of Jordan decomposition theorem. One of the aims of the present book is to expound the most important results obtained until now by using bounded operators in the study of Lie algebras."
The last two decades have produced tremendous developments in the mathematical theory of wavelets and their great variety of applications in science and engineering. Wavelets allow complex information, such as music, speech, images, and patterns, to be decomposed into an elementary form called building blocks at different positions and scales. The information is reconstructed with high precision. In an effort to acquaint researchers in applied mathematics, physics, statistics, computer science, and engineering and to stimulate further research, a regional research conference was organized at the University of Central Florida in May 1998. Many distinguished applied mathematicians and engineering scientists participated in the conference and presented a digest of recent developments, open questions, and unsolved problems in this rapidly growing and important field. The carefully selected chapters in this new text will appeal to the reader interested in a broad perspective of wavelet analysis and time-frequency signal analysis. Wavelet Transforms and Time-Frequency Signal Analysis brings together recent developments in theory and applications of wavelet transforms that are likely to determine fruitful directions for future advanced study and research. The book is designed as a new source for modern topics dealing with wavelets, wavelet transforms, time-frequency signal analysis, and other applications for future development of this new, important, and useful subject for mathematics, science and engineering. Topics and Features: * Offers broad coverage of recent material on wavelet analysis and time-frequency signal analysis that is not covered in other recent reference books * Provides the reader with a thorough mathematical background and a wide variety of applications that are sufficient for interdisciplinary collaborative research in applied mathematics * Presents information that puts the reader at the forefront of current research Wavelet Transforms and Time-Frequency Signal Analysis will serve as a research reference or as a text for an advanced course in wavelet analysis and time-frequency signal analysis. Professionals working on modern applied mathematics, computer science, computer engineering, electrical engineering, physics, and biomedical engineering will also find this book useful.
Analysis in spaces with no a priori smooth structure has progressed to include concepts from the first order calculus. In particular, there have been important advances in understanding the infinitesimal versus global behavior of Lipschitz functions and quasiconformal mappings in rather general settings; abstract Sobolev space theories have been instrumental in this development. The purpose of this book is to communicate some of the recent work in the area while preparing the reader to study more substantial, related articles. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is relatively recent and appears for the first time in book format. There are plenty of exercises. The book is well suited for self-study, or as a text in a graduate course or seminar. The material is relevant to anyone who is interested in analysis and geometry in nonsmooth settings.
This book contains both expository articles and original research in the areas of function theory and operator theory. The contributions include extended versions of some of the lectures by invited speakers at the conference in honor of the memory of Serguei Shimorin at the Mittag-Leffler Institute in the summer of 2018. The book is intended for all researchers in the fields of function theory, operator theory and complex analysis in one or several variables. The expository articles reflecting the current status of several well-established and very dynamical areas of research will be accessible and useful to advanced graduate students and young researchers in pure and applied mathematics, and also to engineers and physicists using complex analysis methods in their investigations. |
![]() ![]() You may like...
Recent Developments in Nonlinear…
Gilles Dufrenot, Valerie Mignon
Hardcover
R3,063
Discovery Miles 30 630
A Toolbox for Economic Design
D. Diamantaras, E. Cardamone, …
Hardcover
R3,668
Discovery Miles 36 680
Mathematics for Computer Science
Eric Lehman, F.Thomson Leighton, …
Hardcover
R1,660
Discovery Miles 16 600
|