![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
The theory of distributions is most often presented as L. Schwartz originally presented it: as a theory of the duality of topological vector spaces. Although this is a sound approach, it can be difficult, demanding deep prior knowledge of functional analysis. The more elementary treatments that are available often consider distributions as limits of sequences of functions, but these usually present the theoretical foundations in a form too simplified for practical applications. Distributions, Integral Transforms and Applications offers an approachable introduction to the theory of distributions and integral transforms that uses Schwartz's description of distributions as linear continous forms on topological vector spaces. The authors use the theory of the Lebesgue integral as a fundamental tool in the proofs of many theorems and develop the theory from its beginnings to the point of proving many of the deep, important theorems, such as the Schwartz kernel theorem and the Malgrange-Ehrenpreis theorem. They clearly demonstrate how the theory of distributions can be used in cases such as Fourier analysis, when the methods of classical analysis are insufficient. Accessible to anyone who has completed a course in advanced calculus, this treatment emphasizes the remarkable connections between distributional theory, classical analysis, and the theory of differential equations and leads directly to applications in various branches of mathematics.
This book provides the rigorous mathematical foundations of Quantum Physics, from the operational meaning of the measuring process to the most recent theories for the quantum scale of space-time geometry. Topics like relativistic invariance, quantum systems with finite and infinitely many degrees of freedom, second quantisation, scattering theory, are all presented through the formalism of Operator Algebras for a precise mathematical justification. The book is targeted to graduate students and researchers in the area of theoretical/mathematical physics who want to learn about the mathematical foundations of quantum physics, as well as the mathematics students and researchers in the area of operator algebras/functional analysis who want to dive into some of the applications of the theory to physics.
Dirac operators play an important role in several domains of mathematics and physics, for example: index theory, elliptic pseudodifferential operators, electromagnetism, particle physics, and the representation theory of Lie groups. In this essentially self-contained work, the basic ideas underlying the concept of Dirac operators are explored. Starting with Clifford algebras and the fundamentals of differential geometry, the text focuses on two main properties, namely, conformal invariance, which determines the local behavior of the operator, and the unique continuation property dominating its global behavior. Spin groups and spinor bundles are covered, as well as the relations with their classical counterparts, orthogonal groups and Clifford bundles. The chapters on Clifford algebras and the fundamentals of differential geometry can be used as an introduction to the above topics, and are suitable for senior undergraduate and graduate students. The other chapters are also accessible at this level so that this text requires very little previous knowledge of the domains covered. The reader will benefit, however, from some knowledge of complex analysis, which gives the simplest example of a Dirac operator. More advanced readers---mathematical physicists, physicists and mathematicians from diverse areas---will appreciate the fresh approach to the theory as well as the new results on boundary value theory.
This monograph provides the theoretical foundations needed for the construction of fundamental solutions and fundamental matrices of (systems of) linear partial differential equations. Many illustrative examples also show techniques for finding such solutions in terms of integrals. Particular attention is given to developing the fundamentals of distribution theory, accompanied by calculations of fundamental solutions. The main part of the book deals with existence theorems and uniqueness criteria, the method of parameter integration, the investigation of quasihyperbolic systems by means of Fourier and Laplace transforms, and the representation of fundamental solutions of homogeneous elliptic operators with the help of Abelian integrals. In addition to rigorous distributional derivations and verifications of fundamental solutions, the book also shows how to construct fundamental solutions (matrices) of many physically relevant operators (systems), in elasticity, thermoelasticity, hexagonal/cubic elastodynamics, for Maxwell's system and others. The book mainly addresses researchers and lecturers who work with partial differential equations. However, it also offers a valuable resource for students with a solid background in vector calculus, complex analysis and functional analysis.
G. H. Hardy (1877-1947) ranks among the great mathematicians of the twentieth century. He did essential research in number theory and analysis, held professorships at Cambridge and Oxford, wrote important textbooks as well as the classic A Mathematician's Apology, and famously collaborated with J. E. Littlewood and Srinivasa Ramanujan. Hardy was a colorful character with remarkable expository skills. This book is a feast of G. H. Hardy's writing. There are selections of his mathematical papers, his book reviews, his tributes to departed colleagues. Some articles are serious, whereas others display a wry sense of humor. And there are recollections by those who knew Hardy, along with biographical and mathematical pieces written explicitly for this collection. Fans of Hardy should find much here to like. And for those unfamiliar with his work, The G. H. Hardy Reader provides an introduction to this extraordinary individual.
This book contains the latest advances in variational analysis and set / vector optimization, including uncertain optimization, optimal control and bilevel optimization. Recent developments concerning scalarization techniques, necessary and sufficient optimality conditions and duality statements are given. New numerical methods for efficiently solving set optimization problems are provided. Moreover, applications in economics, finance and risk theory are discussed. Summary The objective of this book is to present advances in different areas of variational analysis and set optimization, especially uncertain optimization, optimal control and bilevel optimization. Uncertain optimization problems will be approached from both a stochastic as well as a robust point of view. This leads to different interpretations of the solutions, which widens the choices for a decision-maker given his preferences. Recent developments regarding linear and nonlinear scalarization techniques with solid and nonsolid ordering cones for solving set optimization problems are discussed in this book. These results are useful for deriving optimality conditions for set and vector optimization problems. Consequently, necessary and sufficient optimality conditions are presented within this book, both in terms of scalarization as well as generalized derivatives. Moreover, an overview of existing duality statements and new duality assertions is given. The book also addresses the field of variable domination structures in vector and set optimization. Including variable ordering cones is especially important in applications such as medical image registration with uncertainties. This book covers a wide range of applications of set optimization. These range from finance, investment, insurance, control theory, economics to risk theory. As uncertain multi-objective optimization, especially robust approaches, lead to set optimization, one main focus of this book is uncertain optimization. Important recent developments concerning numerical methods for solving set optimization problems sufficiently fast are main features of this book. These are illustrated by various examples as well as easy-to-follow-steps in order to facilitate the decision process for users. Simple techniques aimed at practitioners working in the fields of mathematical programming, finance and portfolio selection are presented. These will help in the decision-making process, as well as give an overview of nondominated solutions to choose from.
This book brings together all available results about the theory of algebraic multiplicities. It first offers a classic course on finite-dimensional spectral theory and then presents the most general results available about the existence and uniqueness of algebraic multiplicities for real non-analytic operator matrices and families. Coverage next transfers these results from linear to nonlinear analysis.
This specialized and authoritative book contains an overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. These approximation schemes form a basis for implementable numerical algorithms for the stable solution of operator equations arising in contemporary mathematical modeling, and in particular when solving inverse problems of mathematical physics. The book presents in detail stable solution methods for ill-posed problems using the methodology of iterative regularization of classical iterative schemes and the techniques of finite dimensional and finite difference approximations of the problems under study. Special attention is paid to ill-posed Cauchy problems for linear operator differential equations and to ill-posed variational inequalities and optimization problems. The readers are expected to have basic knowledge in functional analysis and differential equations. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems, and also to advanced students in these fields. Contents Introduction Regularization Methods For Linear Equations Finite Difference Methods Iterative Regularization Methods Finite-Dimensional Iterative Processes Variational Inequalities and Optimization Problems
This seminal text on Fourier-Mukai Transforms in Algebraic Geometry by a leading researcher and expositor is based on a course given at the Institut de Mathematiques de Jussieu in 2004 and 2005. Aimed at postgraduate students with a basic knowledge of algebraic geometry, the key aspect of this book is the derived category of coherent sheaves on a smooth projective variety. Including notions from other areas, e.g. singular cohomology, Hodge theory, abelian varieties, K3 surfaces; full proofs are given and exercises aid the reader throughout.
This is the second of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self -contained and accessible to the nonspecialist. Part II concerns the theory of monotone operators. It is divided into two subvolumes, II/A and II/B, which form a unit. The present Part II/A is devoted to linear monotone operators. It serves as an elementary introduction to the modern functional analytic treatment of variational problems, integral equations, and partial differential equations of elliptic, parabolic and hyperbolic type. This book also represents an introduction to numerical functional analysis with applications to the Ritz method along with the method of finite elements, the Galerkin methods, and the difference method. Many exercises complement the text. The theory of monotone operators is closely related to Hilbert's rigorous justification of the Dirichlet principle, and to the 19th and 20th problems of Hilbert which he formulated in his famous Paris lecture in 1900, and which strongly influenced the development of analysis in the twentieth century.
Analysis on Function Spaces of Musielak-Orlicz Type provides a state-of-the-art survey on the theory of function spaces of Musielak-Orlicz type. The book also offers readers a step-by-step introduction to the theory of Musielak-Orlicz spaces, and introduces associated function spaces, extending up to the current research on the topic Musielak-Orlicz spaces came under renewed interest when applications to electrorheological hydrodynamics forced the particular case of the variable exponent Lebesgue spaces on to center stage. Since then, research efforts have typically been oriented towards carrying over the results of classical analysis into the framework of variable exponent function spaces. In recent years it has been suggested that many of the fundamental results in the realm of variable exponent Lebesgue spaces depend only on the intrinsic structure of the Musielak-Orlicz function, thus opening the door for a unified theory which encompasses that of Lebesgue function spaces with variable exponent. Features Gives a self-contained, concise account of the basic theory, in such a way that even early-stage graduate students will find it useful Contains numerous applications Facilitates the unified treatment of seemingly different theoretical and applied problems Includes a number of open problems in the area
Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected special topics in approximation theory, Fourier analysis, applied harmonic analysis, functional analysis, and wavelet-based signal/image processing.
This book provides the reader with a comprehensive introduction to functional analysis. Topics include normed linear and Hilbert spaces, the Hahn-Banach Theorem, the Closed Graph Theorem, the Open Mapping Theorem, linear operator theory, the spectral theory, and a brief introduction to the Lebesgue measure. The book explains the motivation for the development of these theories, and applications that illustrate the theories in action. Applications in optimal control theory, variational problems, wavelet analysis, and dynamical systems are also highlighted. 'A First Course in Functional Analysis' will serve as a ready reference to students not only of mathematics, but also of allied subjects in applied mathematics, physics, statistics and engineering.
This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.
This book studies the 20th century evolution of essential ideas in mathematical analysis, a field that since the times of Newton and Leibnitz has been one of the most important and prestigious in mathematics. Each chapter features a comprehensive first part on developments during the period 1900-1950, and then provides outlooks on representative achievements during the later part of the century. The book will be an interesting and useful reference for graduate students and lecturers in mathematics, professional mathematicians and historians of science, as well as the interested layperson.
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems. It is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important for practitioners and researchers. The goal of the books is to give the reader, specialist and non-specialist, useable and modern mathematical tools in their research and analysis. Volume 2: Linear and Nonlinear Dynamics of Continuous Media continues the multivolume project which endeavors to show how the theory of distributions, also called the theory of generalized functions, can be used by graduate students and researchers in applied mathematics, physical sciences, and engineering. It contains an analysis of the three basic types of linear partial differential equations--elliptic, parabolic, and hyperbolic--as well as chapters on first-order nonlinear partial differential equations and conservation laws, and generalized solutions of first-order nonlinear PDEs. Nonlinear wave, growing interface, and Burger's equations, KdV equations, and the equations of gas dynamics and porous media are also covered. The careful explanations, accessible writing style, many illustrations/examples and solutions also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. Features * Application oriented exposition of distributional (Dirac delta) methods in the theory of partial differential equations. Abstract formalism is keep to a minimum. * Careful and rich selection of examples and problems arising in real-life situations. Complete solutions to all exercises appear at the end of the book. * Clear explanations, motivations, and illustration of all necessary mathematical concepts.
A Modern Framework Based on Time-Tested MaterialA Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering presents functional analysis as a tool for understanding and treating distributed parameter systems. Drawing on his extensive research and teaching from the past 20 years, the author explains how functional analysis can be the basis of modern partial differential equation (PDE) and delay differential equation (DDE) techniques. Recent Examples of Functional Analysis in Biology, Electromagnetics, Materials, and MechanicsThrough numerous application examples, the book illustrates the role that functional analysis-a classical subject-continues to play in the rigorous formulation of modern applied areas. The text covers common examples, such as thermal diffusion, transport in tissue, and beam vibration, as well as less traditional ones, including HIV models, uncertainty in noncooperative games, structured population models, electromagnetics in materials, delay systems, and PDEs in control and inverse problems. For some applications, computational aspects are discussed since many problems necessitate a numerical approach.
Applied Functional Analysis, Third Edition provides a solid mathematical foundation for the subject. It motivates students to study functional analysis by providing many contemporary applications and examples drawn from mechanics and science. This well-received textbook starts with a thorough introduction to modern mathematics before continuing with detailed coverage of linear algebra, Lebesque measure and integration theory, plus topology with metric spaces. The final two chapters provides readers with an in-depth look at the theory of Banach and Hilbert spaces before concluding with a brief introduction to Spectral Theory. The Third Edition is more accessible and promotes interest and motivation among students to prepare them for studying the mathematical aspects of numerical analysis and the mathematical theory of finite elements.
A Concrete Introduction to Analysis, Second Edition offers a major reorganization of the previous edition with the goal of making it a much more comprehensive and accessible for students. The standard, austere approach to teaching modern mathematics with its emphasis on formal proofs can be challenging and discouraging for many students. To remedy this situation, the new edition is more rewarding and inviting. Students benefit from the text by gaining a solid foundational knowledge of analysis, which they can use in their fields of study and chosen professions. The new edition capitalizes on the trend to combine topics from a traditional transition to proofs course with a first course on analysis. Like the first edition, the text is appropriate for a one- or two-semester introductory analysis or real analysis course. The choice of topics and level of coverage is suitable for mathematics majors, future teachers, and students studying engineering or other fields requiring a solid, working knowledge of undergraduate mathematics. Key highlights: Offers integration of transition topics to assist with the necessary background for analysis Can be used for either a one- or a two-semester course Explores how ideas of analysis appear in a broader context Provides as major reorganization of the first edition Includes solutions at the end of the book
Introduction to Analysis is an ideal text for a one semester course on analysis. The book covers standard material on the real numbers, sequences, continuity, differentiation, and series, and includes an introduction to proof. The author has endeavored to write this book entirely from the student's perspective: there is enough rigor to challenge even the best students in the class, but also enough explanation and detail to meet the needs of a struggling student. From the Author to the student: "I vividly recall sitting in an Analysis class and asking myself, 'What is all of this for?' or 'I don't have any idea what's going on.' This book is designed to help the student who finds themselves asking the same sorts of questions, but will also challenge the brightest students." Chapter 1 is a basic introduction to logic and proofs. Informal summaries of the idea of proof provided before each result, and before a solution to a practice problem. Every chapter begins with a short summary, followed by a brief abstract of each section. Each section ends with a concise and referenced summary of the material which is designed to give the student a "big picture" idea of each section. There is a brief and non-technical summary of the goals of a proof or solution for each of the results and practice problems in this book, which are clearly marked as "Idea of proof," or as "Methodology", followed by a clearly marked formal proof or solution. Many references to previous definitions and results. A "Troubleshooting Guide" appears at the end of each chapter that answers common questions.
Exploring the Infinite addresses the trend toward a combined transition course and introduction to analysis course. It guides the reader through the processes of abstraction and log- ical argumentation, to make the transition from student of mathematics to practitioner of mathematics. This requires more than knowledge of the definitions of mathematical structures, elementary logic, and standard proof techniques. The student focused on only these will develop little more than the ability to identify a number of proof templates and to apply them in predictable ways to standard problems. This book aims to do something more; it aims to help readers learn to explore mathematical situations, to make conjectures, and only then to apply methods of proof. Practitioners of mathematics must do all of these things. The chapters of this text are divided into two parts. Part I serves as an introduction to proof and abstract mathematics and aims to prepare the reader for advanced course work in all areas of mathematics. It thus includes all the standard material from a transition to proof" course. Part II constitutes an introduction to the basic concepts of analysis, including limits of sequences of real numbers and of functions, infinite series, the structure of the real line, and continuous functions. Features Two part text for the combined transition and analysis course New approach focuses on exploration and creative thought Emphasizes the limit and sequences Introduces programming skills to explore concepts in analysis Emphasis in on developing mathematical thought Exploration problems expand more traditional exercise sets
This monograph gives a systematic presentation of classical and recent results obtained in the last couple of years. It comprehensively describes the methods concerning the topological structure of fixed point sets and solution sets for differential equations and inclusions. Many of the basic techniques and results recently developed about this theory are presented, as well as the literature that is disseminated and scattered in several papers of pioneering researchers who developed the functional analytic framework of this field over the past few decades. Several examples of applications relating to initial and boundary value problems are discussed in detail. The book is intended to advanced graduate researchers and instructors active in research areas with interests in topological properties of fixed point mappings and applications; it also aims to provide students with the necessary understanding of the subject with no deep background material needed. This monograph fills the vacuum in the literature regarding the topological structure of fixed point sets and its applications.
An updated and revised edition of the 1986 title Convexity and Optimization in Banach Spaces, this book provides a self-contained presentation of basic results of the theory of convex sets and functions in infinite-dimensional spaces. The main emphasis is on applications to convex optimization and convex optimal control problems in Banach spaces. A distinctive feature is a strong emphasis on the connection between theory and application. This edition has been updated to include new results pertaining to advanced concepts of subdifferential for convex functions and new duality results in convex programming. The last chapter, concerned with convex control problems, has been rewritten and completed with new research concerning boundary control systems, the dynamic programming equations in optimal control theory and periodic optimal control problems. Finally, the structure of the book has been modified to highlight the most recent progression in the field including fundamental results on the theory of infinite-dimensional convex analysis and includes helpful bibliographical notes at the end of each chapter.
This book aims to present some analytic inequalities and their applications in partial differential equations. These inequalities include integral inequalities, differential inequalities and difference inequalities which play a crucial role in establishing (uniform) bounds, global existence, large-time behavior, decay rates and blow-up of solutions to various classes of evolutionary differential equations. The material summarizes a vast literature such as published papers, preprints and books in which inequalities are categorized in terms ofdifferent properties which are consequences of those inequalities such as (uniform)bounds, global existence, large-time behavior, decay rates and blow-up of solutions for some partial differential equations.
Some problems in mathematical analysis (e.g., in theory of function spaces, in approximation theory or in interpolation theory) lead to the investigation of weighted inequalities on certain classes of quasiconcave functions on the interval I=(a,b) R. In this book we analyse the class Q (I) of -quasiconcave functions in a complete generality in order to establish results needed for a comprehensive study of weighted inequalities on the class Q (I). We illustrate our results on weighted inequalities of Hardy type, on weighted inequalities of Hardy type involving supremum, and on reverse forms of these inequalities. |
You may like...
Bloch-type Periodic Functions: Theory…
Yong-kui Chang, Gaston Mandata N'G'Uerekata, …
Hardcover
R1,907
Discovery Miles 19 070
Hardy Operators On Euclidean Spaces And…
Shanzhen Lu, Zunwei Fu, …
Hardcover
R1,914
Discovery Miles 19 140
Linear Systems, Signal Processing and…
Daniel Alpay, Mihaela B. Vajiac
Hardcover
R4,274
Discovery Miles 42 740
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R1,892
Discovery Miles 18 920
Theory of Approximate Functional…
Madjid Eshaghi Gordji, Sadegh Abbaszadeh
Hardcover
R1,379
Discovery Miles 13 790
Local Fractional Integral Transforms and…
Xiaojun Yang, Dumitru Baleanu, …
Hardcover
R1,806
Discovery Miles 18 060
|