![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
Functional integration successfully entered physics as path integrals in the 1942 Ph.D. dissertation of Richard P. Feynman, but it made no sense at all as a mathematical definition. Cartier and DeWitt-Morette have created, in this book, a new approach to functional integration. The book is self-contained: mathematical ideas are introduced, developed generalised and applied. In the authors' hands, functional integration is shown to be a robust, user-friendly and multi-purpose tool that can be applied to a great variety of situations, for example: systems of indistinguishable particles; Aharanov-Bohm systems; supersymmetry; non-gaussian integrals. Problems in quantum field theory are also considered. In the final part the authors outline topics that can be profitably pursued using material already presented.
Heinz Langer and his work.- On the spectra of some class of quadratic operator pencils.- Special realizations for Schur upper triangular operators.- On the defect of noncontractive operators in Kre?nin spaces: a new formula and some applications.- Positive differential operators in the Krein space L2(M?n).- Singular values of positive pencils and applications.- Perturbations of Krein spaces preserving the nonsingularity of the critical point infinity.- An analysis of the block structure of jqq-inner functions.- Selfadjoint extensions of the orthogonal sum of symmetric relations, II.- Some interpolation problems of Nevanlinna-Pick type. The Krein-Langer method.- On the spectral representation for singular selfadjoint boundary eigenvalue problems.- Some characteristics of a linear manifold in a Kre?nn space and their applications.- Riggings and relatively form bounded perturbations of nonnegative operators in Krem spaces.- Norm bounds for Volterra integral operators and time-varying linear systems with finite horizon.- The numerical range of selfadjoint matrix polynomials.- Spectral properties of a matrix polynomial connected with a component of its numerical range.- Lyapunov stability of a multiplication operator perturbed by a Volterra operator.- Multiplicative perturbations of positive operators in Krein spaces.- On the number of negative squares of certain functions.- Factorization of elliptic pencils and the Mandelstam hypothesis.- An inductive limit procedure within the quantum harmonic oscillator.- Canonical systems with a semibounded spectrum.
In this monograph, questions of extensions and relaxations are consid ered. These questions arise in many applied problems in connection with the operation of perturbations. In some cases, the operation of "small" per turbations generates "small" deviations of basis indexes; a corresponding stability takes place. In other cases, small perturbations generate spas modic change of a result and of solutions defining this result. These cases correspond to unstable problems. The effect of an unstability can arise in extremal problems or in other related problems. In this connection, we note the known problem of constructing the attainability domain in con trol theory. Of course, extremal problems and those of attainability (in abstract control theory) are connected. We exploit this connection here (see Chapter 5). However, basic attention is paid to the problem of the attainability of elements of a topological space under vanishing perturba tions of restrictions. The stability property is frequently missing; the world of unstable problems is of interest for us. We construct regularizing proce dures. However, in many cases, it is possible to establish a certain property similar to partial stability. We call this property asymptotic nonsensitivity or roughness under the perturbation of some restrictions. The given prop erty means the following: in the corresponding problem, it is the same if constraints are weakened in some "directions" or not. On this basis, it is possible to construct a certain classification of constraints, selecting "di rections of roughness" and "precision directions.""
Building on the author's previous book in the series, Complex Analysis with Applications to Flows and Fields (CRC Press, 2010), Transcendental Representations with Applications to Solids and Fluids focuses on four infinite representations: series expansions, series of fractions for meromorphic functions, infinite products for functions with infinitely many zeros, and continued fractions as alternative representations. This book also continues the application of complex functions to more classes of fields, including incompressible rotational flows, compressible irrotational flows, unsteady flows, rotating flows, surface tension and capillarity, deflection of membranes under load, torsion of rods by torques, plane elasticity, and plane viscous flows. The two books together offer a complete treatment of complex analysis, showing how the elementary transcendental functions and other complex functions are applied to fluid and solid media and force fields mainly in two dimensions. The mathematical developments appear in odd-numbered chapters while the physical and engineering applications can be found in even-numbered chapters. The last chapter presents a set of detailed examples. Each chapter begins with an introduction and concludes with related topics. Written by one of the foremost authorities in aeronautical/aerospace engineering, this self-contained book gives the necessary mathematical background and physical principles to build models for technological and scientific purposes. It shows how to formulate problems, justify the solutions, and interpret the results.
This proceedings is a collection of articles by front-line researchers in Mathematical Analysis, giving the reader a wide perspective of the current research in several areas like Functional Analysis, Complex Analysis and Measure Theory. The works are a fundamental source for current and future developments in these research fields. The articles and surveys have been collected as well as reference results scattered in the corresponding literature and thus, are highly useful to researchers.
The theory of distributions is most often presented as L. Schwartz originally presented it: as a theory of the duality of topological vector spaces. Although this is a sound approach, it can be difficult, demanding deep prior knowledge of functional analysis. The more elementary treatments that are available often consider distributions as limits of sequences of functions, but these usually present the theoretical foundations in a form too simplified for practical applications. Distributions, Integral Transforms and Applications offers an approachable introduction to the theory of distributions and integral transforms that uses Schwartz's description of distributions as linear continous forms on topological vector spaces. The authors use the theory of the Lebesgue integral as a fundamental tool in the proofs of many theorems and develop the theory from its beginnings to the point of proving many of the deep, important theorems, such as the Schwartz kernel theorem and the Malgrange-Ehrenpreis theorem. They clearly demonstrate how the theory of distributions can be used in cases such as Fourier analysis, when the methods of classical analysis are insufficient. Accessible to anyone who has completed a course in advanced calculus, this treatment emphasizes the remarkable connections between distributional theory, classical analysis, and the theory of differential equations and leads directly to applications in various branches of mathematics.
This comprehensive introduction to the calculus of variations and its main principles also presents their real-life applications in various contexts: mathematical physics, differential geometry, and optimization in economics. Based on the authors' original work, it provides an overview of the field, with examples and exercises suitable for graduate students entering research. The method of presentation will appeal to readers with diverse backgrounds in functional analysis, differential geometry and partial differential equations. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. Since much of the material has a strong geometric flavor, the authors have supplemented the text with figures to illustrate the abstract concepts. Its extensive reference list and index also make this a valuable resource for researchers working in a variety of fields who are interested in partial differential equations and functional analysis.
In the last forty years, nonlinear analysis has been broadly and rapidly developed. Lectures presented in the International Conference on Variational Methods at the Chern Institute of Mathematics in Tianjin of May 2009 reflect this development from different angles. This volume contains articles based on lectures in the following areas of nonlinear analysis: critical point theory, Hamiltonian dynamics, partial differential equations and systems, KAM theory, bifurcation theory, symplectic geometry, geometrical analysis, and celestial mechanics. Combinations of topological, analytical (especially variational), geometrical, and algebraic methods in these researches play important roles. In this proceedings, introductory materials on new theories and surveys on traditional topics are also given. Further perspectives and open problems on hopeful research topics in related areas are described and proposed. Researchers, graduate and postgraduate students from a wide range of areas in mathematics and physics will find contents in this proceedings are helpful.
Providing a basic tool for studying nonlinear problems, Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications focuses on the principal spectral theory for general time-dependent and random parabolic equations and systems. The text contains many new results and considers existing results from a fresh perspective. Taking a clear, unified, and self-contained approach, the authors first develop the abstract general theory in the framework of weak solutions, before turning to cases of random and nonautonomous equations. They prove that time dependence and randomness do not reduce the principal spectrum and Lyapunov exponents of nonautonomous and random parabolic equations. The book also addresses classical Faber-Krahn inequalities for elliptic and time-periodic problems and extends the linear theory for scalar nonautonomous and random parabolic equations to cooperative systems. The final chapter presents applications to Kolmogorov systems of parabolic equations. By thoroughly explaining the spectral theory for nonautonomous and random linear parabolic equations, this resource reveals the importance of the theory in examining nonlinear problems.
A rather pretty little book, written in the form of a text but more likely to be read simply for pleasure, in which the author (Professor Emeritus of Mathematics at the U. of Kansas) explores the analog of the theory of functions of a complex variable which comes into being when the complexes are re
As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), There are three reasons for the study of inequalities: practical, theoretical, and aesthetic. On the aesthetic aspects, he said, As has been pointed out, beauty is in the eye of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive. The content of the Handbook focuses mainly on both old and recent developments on approximate homomorphisms, on a relation between the Hardy Hilbert and the Gabriel inequality, generalized Hardy Hilbert type inequalities on multiple weighted Orlicz spaces, half-discrete Hilbert-type inequalities, on affine mappings, on contractive operators, on multiplicative Ostrowski and trapezoid inequalities, Ostrowski type inequalities for theRiemann Stieltjes integral, means and related functional inequalities, Weighted Gini means, controlled additive relations, Szasz Mirakyan operators, extremal problems in polynomials and entire functions, applications of functional equations to Dirichlet problem for doubly connected domains, nonlinear elliptic problems depending on parameters, on strongly convex functions, as well as applications to some new algorithms for solving general equilibrium problems, inequalities for the Fisher s information measures, financial networks, mathematical models of mechanical fields in media with inclusions and holes. "
Drawing on the authors' research work from the last ten years, Mathematical Inequalities: A Perspective gives readers a different viewpoint of the field. It discusses the importance of various mathematical inequalities in contemporary mathematics and how these inequalities are used in different applications, such as scientific modeling. The authors include numerous classical and recent results that are comprehensible to both experts and general scientists. They describe key inequalities for real or complex numbers and sequences in analysis, including the Abel; the Biernacki, Pidek, and Ryll-Nardzewski; Cebysev's; the Cauchy-Bunyakovsky-Schwarz; and De Bruijn's inequalities. They also focus on the role of integral inequalities, such as Hermite-Hadamard inequalities, in modern analysis. In addition, the book covers Schwarz, Bessel, Boas-Bellman, Bombieri, Kurepa, Buzano, Precupanu, Dunkl-William, and Gruss inequalities as well as generalizations of Hermite-Hadamard inequalities for isotonic linear and sublinear functionals. For each inequality presented, results are complemented with many unique remarks that reveal rich interconnections between the inequalities. These discussions create a natural platform for further research in applications and related fields.
This book contains the latest advances in variational analysis and set / vector optimization, including uncertain optimization, optimal control and bilevel optimization. Recent developments concerning scalarization techniques, necessary and sufficient optimality conditions and duality statements are given. New numerical methods for efficiently solving set optimization problems are provided. Moreover, applications in economics, finance and risk theory are discussed. Summary The objective of this book is to present advances in different areas of variational analysis and set optimization, especially uncertain optimization, optimal control and bilevel optimization. Uncertain optimization problems will be approached from both a stochastic as well as a robust point of view. This leads to different interpretations of the solutions, which widens the choices for a decision-maker given his preferences. Recent developments regarding linear and nonlinear scalarization techniques with solid and nonsolid ordering cones for solving set optimization problems are discussed in this book. These results are useful for deriving optimality conditions for set and vector optimization problems. Consequently, necessary and sufficient optimality conditions are presented within this book, both in terms of scalarization as well as generalized derivatives. Moreover, an overview of existing duality statements and new duality assertions is given. The book also addresses the field of variable domination structures in vector and set optimization. Including variable ordering cones is especially important in applications such as medical image registration with uncertainties. This book covers a wide range of applications of set optimization. These range from finance, investment, insurance, control theory, economics to risk theory. As uncertain multi-objective optimization, especially robust approaches, lead to set optimization, one main focus of this book is uncertain optimization. Important recent developments concerning numerical methods for solving set optimization problems sufficiently fast are main features of this book. These are illustrated by various examples as well as easy-to-follow-steps in order to facilitate the decision process for users. Simple techniques aimed at practitioners working in the fields of mathematical programming, finance and portfolio selection are presented. These will help in the decision-making process, as well as give an overview of nondominated solutions to choose from.
The Radon transform represents a function on a manifold by its integrals over certain submanifolds. Integral transformations of this kind have a wide range of applications in modern analysis, integral and convex geometry, medical imaging, and many other areas. Reconstruction of functions from their Radon transforms requires tools from harmonic analysis and fractional differentiation. This comprehensive introduction contains a thorough exploration of Radon transforms and related operators when the basic manifolds are the real Euclidean space, the unit sphere, and the real hyperbolic space. Radon-like transforms are discussed not only on smooth functions but also in the general context of Lebesgue spaces. Applications, open problems, and recent results are also included. The book will be useful for researchers in integral geometry, harmonic analysis, and related branches of mathematics, including applications. The text contains many examples and detailed proofs, making it accessible to graduate students and advanced undergraduates.
This monograph provides the theoretical foundations needed for the construction of fundamental solutions and fundamental matrices of (systems of) linear partial differential equations. Many illustrative examples also show techniques for finding such solutions in terms of integrals. Particular attention is given to developing the fundamentals of distribution theory, accompanied by calculations of fundamental solutions. The main part of the book deals with existence theorems and uniqueness criteria, the method of parameter integration, the investigation of quasihyperbolic systems by means of Fourier and Laplace transforms, and the representation of fundamental solutions of homogeneous elliptic operators with the help of Abelian integrals. In addition to rigorous distributional derivations and verifications of fundamental solutions, the book also shows how to construct fundamental solutions (matrices) of many physically relevant operators (systems), in elasticity, thermoelasticity, hexagonal/cubic elastodynamics, for Maxwell's system and others. The book mainly addresses researchers and lecturers who work with partial differential equations. However, it also offers a valuable resource for students with a solid background in vector calculus, complex analysis and functional analysis.
This book is dedicated to Victor Emmanuilovich Katsnelson on the occasion of his 75th birthday and celebrates his broad mathematical interests and contributions.Victor Emmanuilovich's mathematical career has been based mainly at the Kharkov University and the Weizmann Institute. However, it also included a one-year guest professorship at Leipzig University in 1991, which led to him establishing close research contacts with the Schur analysis group in Leipzig, a collaboration that still continues today. Reflecting these three periods in Victor Emmanuilovich's career, present and former colleagues have contributed to this book with research inspired by him and presentations on their joint work. Contributions include papers in function theory (Favorov-Golinskii, Friedland-Goldman-Yomdin, Kheifets-Yuditskii) , Schur analysis, moment problems and related topics (Boiko-Dubovoy, Dyukarev, Fritzsche-Kirstein-Madler), extension of linear operators and linear relations (Dijksma-Langer, Hassi-de Snoo, Hassi -Wietsma) and non-commutative analysis (Ball-Bolotnikov, Cho-Jorgensen).
Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected special topics in approximation theory, Fourier analysis, applied harmonic analysis, functional analysis, and wavelet-based signal/image processing.
Analysis on Function Spaces of Musielak-Orlicz Type provides a state-of-the-art survey on the theory of function spaces of Musielak-Orlicz type. The book also offers readers a step-by-step introduction to the theory of Musielak-Orlicz spaces, and introduces associated function spaces, extending up to the current research on the topic Musielak-Orlicz spaces came under renewed interest when applications to electrorheological hydrodynamics forced the particular case of the variable exponent Lebesgue spaces on to center stage. Since then, research efforts have typically been oriented towards carrying over the results of classical analysis into the framework of variable exponent function spaces. In recent years it has been suggested that many of the fundamental results in the realm of variable exponent Lebesgue spaces depend only on the intrinsic structure of the Musielak-Orlicz function, thus opening the door for a unified theory which encompasses that of Lebesgue function spaces with variable exponent. Features Gives a self-contained, concise account of the basic theory, in such a way that even early-stage graduate students will find it useful Contains numerous applications Facilitates the unified treatment of seemingly different theoretical and applied problems Includes a number of open problems in the area
G. H. Hardy (1877-1947) ranks among the great mathematicians of the twentieth century. He did essential research in number theory and analysis, held professorships at Cambridge and Oxford, wrote important textbooks as well as the classic A Mathematician's Apology, and famously collaborated with J. E. Littlewood and Srinivasa Ramanujan. Hardy was a colorful character with remarkable expository skills. This book is a feast of G. H. Hardy's writing. There are selections of his mathematical papers, his book reviews, his tributes to departed colleagues. Some articles are serious, whereas others display a wry sense of humor. And there are recollections by those who knew Hardy, along with biographical and mathematical pieces written explicitly for this collection. Fans of Hardy should find much here to like. And for those unfamiliar with his work, The G. H. Hardy Reader provides an introduction to this extraordinary individual.
This volume provides a systematic survey of almost all the equivalent assertions to the functional equations - zeta symmetry - which zeta-functions satisfy, thus streamlining previously published results on zeta-functions. The equivalent relations are given in the form of modular relations in Fox H-function series, which at present include all that have been considered as candidates for ingredients of a series. The results are presented in a clear and simple manner for readers to readily apply without much knowledge of zeta-functions.This volume aims to keep a record of the 150-year-old heritage starting from Riemann on zeta-functions, which are ubiquitous in all mathematical sciences, wherever there is a notion of the norm. It provides almost all possible equivalent relations to the zeta-functions without requiring a reader's deep knowledge on their definitions. This can be an ideal reference book for those studying zeta-functions.
This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.
This book has two main objectives, the first of which is to extend the power of numerical Fourier analysis and to show by means of theoretical examples and numerous concrete applications that when computing discrete Fourier transforms of periodic and non periodic functions, the usual kernel matrix of the Fourier transform, the discrete Fourier transform (DFT), should be replaced by another kernel matrix, the eXtended Fourier transform (XFT), since the XFT matrix appears as a convergent quadrature of a more general transform, the fractional Fourier transform. In turn, the book's second goal is to present the XFT matrix as a finite-dimensional transformation that links certain discrete operators in the same way that the corresponding continuous operators are related by the Fourier transform, and to show that the XFT matrix accordingly generates sequences of matrix operators that represent continuum operators, and which allow these operators to be studied from another perspective.
A Modern Framework Based on Time-Tested MaterialA Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering presents functional analysis as a tool for understanding and treating distributed parameter systems. Drawing on his extensive research and teaching from the past 20 years, the author explains how functional analysis can be the basis of modern partial differential equation (PDE) and delay differential equation (DDE) techniques. Recent Examples of Functional Analysis in Biology, Electromagnetics, Materials, and MechanicsThrough numerous application examples, the book illustrates the role that functional analysis-a classical subject-continues to play in the rigorous formulation of modern applied areas. The text covers common examples, such as thermal diffusion, transport in tissue, and beam vibration, as well as less traditional ones, including HIV models, uncertainty in noncooperative games, structured population models, electromagnetics in materials, delay systems, and PDEs in control and inverse problems. For some applications, computational aspects are discussed since many problems necessitate a numerical approach.
This book provides theories on non-parametric shape optimization problems, systematically keeping in mind readers with an engineering background. Non-parametric shape optimization problems are defined as problems of finding the shapes of domains in which boundary value problems of partial differential equations are defined. In these problems, optimum shapes are obtained from an arbitrary form without any geometrical parameters previously assigned. In particular, problems in which the optimum shape is sought by making a hole in domain are called topology optimization problems. Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense. Software has been developed to solve these problems, and it is being used to seek practical optimum shapes. However, there are no books explaining such theories beginning with their foundations. The structure of the book is shown in the Preface. The theorems are built up using mathematical results. Therefore, a mathematical style is introduced, consisting of definitions and theorems to summarize the key points. This method of expression is advanced as provable facts are clearly shown. If something to be investigated is contained in the framework of mathematics, setting up a theory using theorems prepared by great mathematicians is thought to be an extremely effective approach. However, mathematics attempts to heighten the level of abstraction in order to understand many things in a unified fashion. This characteristic may baffle readers with an engineering background. Hence in this book, an attempt has been made to provide explanations in engineering terms, with examples from mechanics, after accurately denoting the provable facts using definitions and theorems.
This book brings together all available results about the theory of algebraic multiplicities. It first offers a classic course on finite-dimensional spectral theory and then presents the most general results available about the existence and uniqueness of algebraic multiplicities for real non-analytic operator matrices and families. Coverage next transfers these results from linear to nonlinear analysis. |
![]() ![]() You may like...
Advanced Mechanical Science and…
Ligang Yao, Shuncong Zhong, …
Hardcover
R4,426
Discovery Miles 44 260
Build The Life You Want - The Art And…
Arthur C Brooks, Oprah Winfrey
Paperback
Careers - An Organisational Perspective
Melinde Coetzee, Dries Schreuder
Paperback
|