![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
Reports and expands upon topics discussed at the International Conference on [title] held in Colorado Springs, Colo., June 1989. Presents recent advances in control, oscillation, and stability theories, spanning a variety of subfields and covering evolution equations, differential inclusions, functi
Linear systems can be regarded as a causal shift-invariant operator on a Hilbert space of signals, and by doing so this book presents an introduction to the common ground between operator theory and linear systems theory. The book therefore includes material on pure mathematical topics such as Hardy spaces, closed operators, the gap metric, semigroups, shift-invariant subspaces, the commutant lifting theorem and almost-periodic functions, which would be entirely suitable for a course in functional analysis; at the same time, the book includes applications to partial differential equations, to the stability and stabilization of linear systems, to power signal spaces (including some recent material not previously available in books), and to delay systems, treated from an input/output point of view. Suitable for students of analysis, this book also acts as an introduction to a mathematical approach to systems and control for graduate students in departments of applied mathematics or engineering.
Based on presentations given at the NordForsk Network Closing Conference Operator Algebra and Dynamics, held in Gjaargarour, Faroe Islands, in May 2012, this book features high quality research contributions and review articles by researchers associated with the NordForsk network and leading experts that explore the fundamental role of operatoralgebras and dynamical systems in mathematics with possible applications to physics, engineering and computer science. It covers the following topics: von Neumann algebras arising from discrete measured groupoids, purely infinite Cuntz-Krieger algebras, filteredK-theory over finite topological spaces, "C*"-algebras associated to shift spaces (or subshifts), graph"C*"-algebras, irrational extended rotationalgebras that are shown to be"C*"-alloys, free probability, renewal systems, the Grothendieck Theorem for jointly completelybounded bilinear forms on"C*"-algebras, Cuntz-Li algebrasassociatedwith the"a"-adic numbers, crossed products of injective endomorphisms (the so-called Stacey crossedproducts), the interplay between dynamical systems, operator algebras and wavelets on fractals, "C*"-completions of the Hecke algebra of a Hecke pair, semiprojective"C*-"algebras, and the topologicaldimension of type I"C*"-algebras. "Operator Algebra and Dynamics"will serve as a useful resource for a broad spectrum of researchers and students in mathematics, physics, and engineering. "
This book is written for scientists and engineers who use HHT (Hilbert-Huang Transform) to analyze data from nonlinear and non-stationary processes. It can be treated as a HHT user manual and a source of reference for HHT applications. The book contains the basic principle and method of HHT and various application examples, ranging from the correction of satellite orbit drifting to detection of failure of highway bridges.The thirteen chapters of the first edition are based on the presentations made at a mini-symposium at the Society for Industrial and Applied Mathematics in 2003. Some outstanding mathematical research problems regarding HHT development are discussed in the first three chapters. The three new chapters of the second edition reflect the latest HHT development, including ensemble empirical mode decomposition (EEMD) and modified EMD.The book also provides a platform for researchers to develop the HHT method further and to identify more applications.
The purpose of this publication is to present, in one book, various approaches to analytic problems that arise in the context of singular spaces. It is based on the workshop 'Approaches to Singular Analysis' which was held on April 8-10, 1999, at Humboldt University of Berlin. The aim of this workshop was to bring together young mathematicians interested in partial differential operators on singular con figurations. The main idea was to look at different approaches that have been proposed, and try to understand to which extent they overlap and how they differ. The workshop took place in a rather relaxed atmosphere. The participants appreciated that there was a discussion session every day, which gave a lot of room for an open exchange of ideas. This book contains articles by workshop participants and invited contributions. The former are expanded versions of talks at the workshop; they give introductions to various pseudodifferential calculi and discussions of relations between them. In addition, we invited a limited number of papers from mathematicians who have made significant contributions to this field. Unfortunately, several of these invita tions were turned down due to other commitments. For this reason, only a very small number of contributions from non-participants remain. The absence of any particular name from the list of (invited) contributors should not be interpreted as a bias of the editors against that scientist. It rather reflects our restricted choice of invitations due to lack of space."
This wide ranging but self-contained account of the spectral theory of non-self-adjoint linear operators is ideal for postgraduate students and researchers, and contains many illustrative examples and exercises. Fredholm theory, Hilbert-Schmidt and trace class operators are discussed, as are one-parameter semigroups and perturbations of their generators. Two chapters are devoted to using these tools to analyze Markov semigroups. The text also provides a thorough account of the new theory of pseudospectra, and presents the recent analysis by the author and Barry Simon of the form of the pseudospectra at the boundary of the numerical range. This was a key ingredient in the determination of properties of the zeros of certain orthogonal polynomials on the unit circle. Finally, two methods, both very recent, for obtaining bounds on the eigenvalues of non-self-adjoint Schrodinger operators are described. The text concludes with a description of the surprising spectral properties of the non-self-adjoint harmonic oscillator.
Some of the most recent and significant results on homomorphisms and derivations in Banach algebras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras and multi-normed algebras are presented in this book. A brief introduction for functional equations and their stability is provided with historical remarks. Since the homomorphisms and derivations in Banach algebras are additive and R-linear or C-linear, the stability problems for additive functional equations and additive mappings are studied in detail. The latest results are discussed and examined in stability theory for new functional equations and functional inequalities in Banach algebras and C*-algebras, non-Archimedean Banach algebras, non-Archimedean C*-algebras, multi-Banach algebras and multi-C*-algebras. Graduate students with an understanding of operator theory, functional analysis, functional equations and analytic inequalities will find this book useful for furthering their understanding and discovering the latest results in mathematical analysis. Moreover, research mathematicians, physicists and engineers will benefit from the variety of old and new results, as well as theories and methods presented in this book.
Renewed interest in vector spaces and linear algebras has spurred the search for large algebraic structures composed of mathematical objects with special properties. Bringing together research that was otherwise scattered throughout the literature, Lineability: The Search for Linearity in Mathematics collects the main results on the conditions for the existence of large algebraic substructures. It investigates lineability issues in a variety of areas, including real and complex analysis. After presenting basic concepts about the existence of linear structures, the book discusses lineability properties of families of functions defined on a subset of the real line as well as the lineability of special families of holomorphic (or analytic) functions defined on some domain of the complex plane. It next focuses on spaces of sequences and spaces of integrable functions before covering the phenomenon of universality from an algebraic point of view. The authors then describe the linear structure of the set of zeros of a polynomial defined on a real or complex Banach space and explore specialized topics, such as the lineability of various families of vectors. The book concludes with an account of general techniques for discovering lineability in its diverse degrees.
This important work provides a comprehensive overview of the properties of Banachspaces related to strict convexity and a survey of significant applications-uniting a wealthof information previously scattered throughout the mathematical literature in a well-organized,accessible format.After introducing the subject through a discussion of the basic results of linear functionalanalysis, this unique book proceeds to investigate the characteristics of strictly convexspaces and related classes, including uniformly convex spaces, and examine important applicationsregarding approximation theory and fixed point theory. Following this extensivetreatment, the book discusses complex strictly convex spaces and related spaces- alsowith applications. Complete, clearly elucidated proofs accompany results throughout thebook, and ample references are provided to aid further research of the subject.Strict Convexity and Complex Strict Convexity is essential fot mathematicians and studentsinterested in geometric theory of Banach spaces and applications to approximationtheory and fixed point theory, and is of great value to engineers working in optimizationstudies. In addition, this volume serves as an excellent text for a graduate course inGeometric Theory of Banach Spaces.
The book provides a comprehensive overview of the characterizations of real normed spaces as inner product spaces based on norm derivatives and generalizations of the most basic geometrical properties of triangles in normed spaces. Since the appearance of Jordan-von Neumann's classical theorem (The Parallelogram Law) in 1935, the field of characterizations of inner product spaces has received a significant amount of attention in various literature texts. Moreover, the techniques arising in the theory of functional equations have shown to be extremely useful in solving key problems in the characterizations of Banach spaces as Hilbert spaces.This book presents, in a clear and detailed style, state-of-the-art methods of characterizing inner product spaces by means of norm derivatives. It brings together results that have been scattered in various publications over the last two decades and includes more new material and techniques for solving functional equations in normed spaces. Thus the book can serve as an advanced undergraduate or graduate text as well as a resource book for researchers working in geometry of Banach (Hilbert) spaces or in the theory of functional equations (and their applications).
This advanced undergraduate textbook is based on a one-semester course on single variable calculus that the author has been teaching at San Diego State University for many years. The aim of this classroom-tested book is to deliver a rigorous discussion of the concepts and theorems that are dealt with informally in the first two semesters of a beginning calculus course. As such, students are expected to gain a deeper understanding of the fundamental concepts of calculus, such as limits (with an emphasis on - definitions), continuity (including an appreciation of the difference between mere pointwise and uniform continuity), the derivative (with rigorous proofs of various versions of L'Hopital's rule) and the Riemann integral (discussing improper integrals in-depth, including the comparison and Dirichlet tests). Success in this course is expected to prepare students for more advanced courses in real and complex analysis and this book will help to accomplish this. The first semester of advanced calculus can be followed by a rigorous course in multivariable calculus and an introductory real analysis course that treats the Lebesgue integral and metric spaces, with special emphasis on Banach and Hilbert spaces.
First published in 1968, An Introduction to Harmonic Analysis has firmly established itself as a classic text and a favorite for students and experts alike. Professor Katznelson starts the book with an exposition of classical Fourier series. The aim is to demonstrate the central ideas of harmonic analysis in a concrete setting, and to provide a stock of examples to foster a clear understanding of the theory. Once these ideas are established, the author goes on to show that the scope of harmonic analysis extends far beyond the setting of the circle group, and he opens the door to other contexts by considering Fourier transforms on the real line as well as a brief look at Fourier analysis on locally compact abelian groups. This new edition has been revised by the author, to include several new sections and a new appendix.
This book offers an up-to-date overview of the recently proposed theory of quantum isometry groups. Written by the founders, it is the first book to present the research on the "quantum isometry group", highlighting the interaction of noncommutative geometry and quantum groups, which is a noncommutative generalization of the notion of group of isometry of a classical Riemannian manifold. The motivation for this generalization is the importance of isometry groups in both mathematics and physics. The framework consists of Alain Connes' "noncommutative geometry" and the operator-algebraic theory of "quantum groups". The authors prove the existence of quantum isometry group for noncommutative manifolds given by spectral triples under mild conditions and discuss a number of methods for computing them. One of the most striking and profound findings is the non-existence of non-classical quantum isometry groups for arbitrary classical connected compact manifolds and, by using this, the authors explicitly describe quantum isometry groups of most of the noncommutative manifolds studied in the literature. Some physical motivations and possible applications are also discussed.
This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.
This contributed volume showcases research and survey papers devoted to a broad range of topics on functional equations, ordinary differential equations, partial differential equations, stochastic differential equations, optimization theory, network games, generalized Nash equilibria, critical point theory, calculus of variations, nonlinear functional analysis, convex analysis, variational inequalities, topology, global differential geometry, curvature flows, perturbation theory, numerical analysis, mathematical finance and a variety of applications in interdisciplinary topics. Chapters in this volume investigate compound superquadratic functions, the Hyers-Ulam Stability of functional equations, edge degenerate pseudo-hyperbolic equations, Kirchhoff wave equation, BMO norms of operators on differential forms, equilibrium points of the perturbed R3BP, complex zeros of solutions to second order differential equations, a higher-order Ginzburg-Landau-type equation, multi-symplectic numerical schemes for differential equations, the Erdos-Renyi network model, strongly m-convex functions, higher order strongly generalized convex functions, factorization and solution of second order differential equations, generalized topologically open sets in relator spaces, graphical mean curvature flow, critical point theory in infinite dimensional spaces using the Leray-Schauder index, non-radial solutions of a supercritical equation in expanding domains, the semi-discrete method for the approximation of the solution of stochastic differential equations, homotopic metric-interval L-contractions in gauge spaces, Rhoades contractions theory, network centrality measures, the Radon transform in three space dimensions via plane integration and applications in positron emission tomography boundary perturbations on medical monitoring and imaging techniques, the KdV-B equation and biomedical applications.
The asymptotic behaviour, in particular "stability" in some sense, is studied systematically for discrete and for continuous linear dynamical systems on Banach spaces. Of particular concern is convergence to an equilibrium with respect to various topologies. Parallels and differences between the discrete and the continuous situation are emphasised.
Focusing on Sobolev inequalities and their applications to analysis on manifolds and Ricci flow, Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincare Conjecture introduces the field of analysis on Riemann manifolds and uses the tools of Sobolev imbedding and heat kernel estimates to study Ricci flows, especially with surgeries. The author explains key ideas, difficult proofs, and important applications in a succinct, accessible, and unified manner. The book first discusses Sobolev inequalities in various settings, including the Euclidean case, the Riemannian case, and the Ricci flow case. It then explores several applications and ramifications, such as heat kernel estimates, Perelman's W entropies and Sobolev inequality with surgeries, and the proof of Hamilton's little loop conjecture with surgeries. Using these tools, the author presents a unified approach to the Poincare conjecture that clarifies and simplifies Perelman's original proof. Since Perelman solved the Poincare conjecture, the area of Ricci flow with surgery has attracted a great deal of attention in the mathematical research community. Along with coverage of Riemann manifolds, this book shows how to employ Sobolev imbedding and heat kernel estimates to examine Ricci flow with surgery.
Updating the original, Transforms and Applications Handbook, Third Edition solidifies its place as the complete resource on those mathematical transforms most frequently used by engineers, scientists, and mathematicians. Highlighting the use of transforms and their properties, this latest edition of the bestseller begins with a solid introduction to signals and systems, including properties of the delta function and some classical orthogonal functions. It then goes on to detail different transforms, including lapped, Mellin, wavelet, and Hartley varieties. Written by top experts, each chapter provides numerous examples and applications that clearly demonstrate the unique purpose and properties of each type. The material is presented in a way that makes it easy for readers from different backgrounds to familiarize themselves with the wide range of transform applications. Revisiting transforms previously covered, this book adds information on other important ones, including: Finite Hankel, Legendre, Jacobi, Gengenbauer, Laguerre, and Hermite Fraction Fourier Zak Continuous and discrete Chirp-Fourier Multidimensional discrete unitary Hilbert-Huang Most comparable books cover only a few of the transforms addressed here, making this text by far the most useful for anyone involved in signal processing-including electrical and communication engineers, mathematicians, and any other scientist working in this field.
This volume reflects the variety of areas where Maz'ya's results are fundamental, influential and/or pioneering. New advantages in such areas are presented by world-recognized experts and include, in particularly, Beurling's minimum principle, inverse hyperbolic problems, degenerate oblique derivative problems, the Lp-contractivity of the generated semigroups, some class of singular integral operators, general Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities, domains with rough boundaries, integral and supremum operators, finite rank Toeplitz operators, etc.
This English version of the path-breaking French book on this
subject gives the definitive treatment of the revolutionary
approach to measure theory, geometry, and mathematical physics
developed by Alain Connes. Profusely illustrated and invitingly
written, this book is ideal for anyone who wants to know what
noncommutative geometry is, what it can do, or how it can be used
in various areas of mathematics, quantization, and elementary
particles and fields.
Functional analysis is an important branch of mathematical analysis which deals with the transformations of functions and their algebraic and topological properties. Motivated by their large applicability to real life problems, applications of functional analysis have been the aim of an intensive study effort in the last decades, yielding significant progress in the theory of functions and functional spaces, differential and difference equations and boundary value problems, differential and integral operators and spectral theory, and mathematical methods in physical and engineering sciences. The present volume is devoted to these investigations. The publication of this collection of papers is based on the materials of the mini-symposium "Functional Analysis in Interdisciplinary Applications" organized in the framework of the Fourth International Conference on Analysis and Applied Mathematics (ICAAM 2018, September 6-9, 2018). Presenting a wide range of topics and results, this book will appeal to anyone working in the subject area, including researchers and students interested to learn more about different aspects and applications of functional analysis. Many articles are written by experts from around the world, strengthening international integration in the fields covered. The contributions to the volume, all peer reviewed, contain numerous new results. This volume contains four different chapters. The first chapter contains the contributed papers focusing on various aspects of the theory of functions and functional spaces. The second chapter is devoted to the research on difference and differential equations and boundary value problems. The third chapter contains the results of studies on differential and integral operators and on the spectral theory. The fourth chapter is focused on the simulation of problems arising in real-world applications of applied sciences.
This monograph develops an innovative approach that utilizes the Birman-Schwinger principle from quantum mechanics to investigate stability properties of steady state solutions in galactic dynamics. The opening chapters lay the framework for the main result through detailed treatments of nonrelativistic galactic dynamics and the Vlasov-Poisson system, the Antonov stability estimate, and the period function $T_1$. Then, as the main application, the Birman-Schwinger type principle is used to characterize in which cases the "best constant" in the Antonov stability estimate is attained. The final two chapters consider the relation to the Guo-Lin operator and invariance properties for the Vlasov-Poisson system, respectively. Several appendices are also included that cover necessary background material, such as spherically symmetric models, action-angle variables, relevant function spaces and operators, and some aspects of Kato-Rellich perturbation theory. A Birman-Schwinger Principle in Galactic Dynamics will be of interest to researchers in galactic dynamics, kinetic theory, and various aspects of quantum mechanics, as well as those in related areas of mathematical physics and applied mathematics.
Jordan theory has developed rapidly in the last three decades, but very few books describe its diverse applications. Here, the author discusses some recent advances of Jordan theory in differential geometry, complex and functional analysis, with the aid of numerous examples and concise historical notes. These include: the connection between Jordan and Lie theory via the Tits-Kantor-Koecher construction of Lie algebras; a Jordan algebraic approach to infinite dimensional symmetric manifolds including Riemannian symmetric spaces; the one-to-one correspondence between bounded symmetric domains and JB*-triples; and applications of Jordan methods in complex function theory. The basic structures and some functional analytic properties of JB*-triples are also discussed. The book is a convenient reference for experts in complex geometry or functional analysis, as well as an introduction to these areas for beginning researchers. The recent applications of Jordan theory discussed in the book should also appeal to algebraists.
This monograph presents the summability of higher dimensional Fourier series, and generalizes the concept of Lebesgue points. Focusing on Fejer and Cesaro summability, as well as theta-summation, readers will become more familiar with a wide variety of summability methods. Within the theory of higher dimensional summability of Fourier series, the book also provides a much-needed simple proof of Lebesgue's theorem, filling a gap in the literature. Recent results and real-world applications are highlighted as well, making this a timely resource. The book is structured into four chapters, prioritizing clarity throughout. Chapter One covers basic results from the one-dimensional Fourier series, and offers a clear proof of the Lebesgue theorem. In Chapter Two, convergence and boundedness results for the lq-summability are presented. The restricted and unrestricted rectangular summability are provided in Chapter Three, as well as the sufficient and necessary condition for the norm convergence of the rectangular theta-means. Chapter Four then introduces six types of Lebesgue points for higher dimensional functions. Lebesgue Points and Summability of Higher Dimensional Fourier Series will appeal to researchers working in mathematical analysis, particularly those interested in Fourier and harmonic analysis. Researchers in applied fields will also find this useful.
This book contains the contributions resulting from the 6th Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDEs, which was held in Cortona (Italy) during the week of May 20-24, 2019. This book will be of great interest for the mathematical community and in particular for researchers studying parabolic and elliptic PDEs. It covers many different fields of current research as follows: convexity of solutions to PDEs, qualitative properties of solutions to parabolic equations, overdetermined problems, inverse problems, Brunn-Minkowski inequalities, Sobolev inequalities, and isoperimetric inequalities. |
![]() ![]() You may like...
Advances in Intelligent Computing
J K Mandal, Paramartha Dutta, …
Hardcover
R3,365
Discovery Miles 33 650
Fuzzy Logic and Intelligent Systems
Hua Harry Li, Madan M. Gupta
Hardcover
R4,429
Discovery Miles 44 290
Marketing Management - A South African…
M C Cant, C. H. van Heerden
Paperback
Language Technologies for the Challenges…
Georg Rehm, Thierry Declerck
Hardcover
R1,612
Discovery Miles 16 120
|