![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.
This volume highlights the main results of the research performed within the network "Harmonic and Complex Analysis and its Applications" (HCAA), which was a five-year (2007-2012) European Science Foundation Programme intended to explore and to strengthen the bridge between two scientific communities: analysts with broad backgrounds in complex and harmonic analysis and mathematical physics, and specialists in physics and applied sciences. It coordinated actions for advancing harmonic and complex analysis and for expanding its application to challenging scientific problems. Particular topics considered by this Programme included conformal and quasiconformal mappings, potential theory, Banach spaces of analytic functions and their applications to the problems of fluid mechanics, conformal field theory, Hamiltonian and Lagrangian mechanics, and signal processing. This book is a collection of surveys written as a result of activities of the Programme and will be interesting and useful for professionals and novices in analysis and mathematical physics, as well as for graduate students. Browsing the volume, the reader will undoubtedly notice that, as the scope of the Programme is rather broad, there are many interrelations between the various contributions, which can be regarded as different facets of a common theme.
In the present book the conditions are studied for the semi-boundedness of partial differential operators which is interpreted in different ways. Nowadays one knows rather much about L2-semibounded differential and pseudo-differential operators, although their complete characterization in analytic terms causes difficulties even for rather simple operators. Until recently almost nothing was known about analytic characterizations of semi-boundedness for differential operators in other Hilbert function spaces and in Banach function spaces. The goal of the present book is to partially fill this gap. Various types of semi-boundedness are considered and some relevant conditions which are either necessary and sufficient or best possible in a certain sense are given. Most of the results reported in this book are due to the authors.
This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.
The Radon transform represents a function on a manifold by its integrals over certain submanifolds. Integral transformations of this kind have a wide range of applications in modern analysis, integral and convex geometry, medical imaging, and many other areas. Reconstruction of functions from their Radon transforms requires tools from harmonic analysis and fractional differentiation. This comprehensive introduction contains a thorough exploration of Radon transforms and related operators when the basic manifolds are the real Euclidean space, the unit sphere, and the real hyperbolic space. Radon-like transforms are discussed not only on smooth functions but also in the general context of Lebesgue spaces. Applications, open problems, and recent results are also included. The book will be useful for researchers in integral geometry, harmonic analysis, and related branches of mathematics, including applications. The text contains many examples and detailed proofs, making it accessible to graduate students and advanced undergraduates.
Providing an introduction to current research topics in functional analysis and its applications to quantum physics, this book presents three lectures surveying recent progress and open problems. A special focus is given to the role of symmetry in non-commutative probability, in the theory of quantum groups, and in quantum physics. The first lecture presents the close connection between distributional symmetries and independence properties. The second introduces many structures (graphs, C*-algebras, discrete groups) whose quantum symmetries are much richer than their classical symmetry groups, and describes the associated quantum symmetry groups. The last lecture shows how functional analytic and geometric ideas can be used to detect and to quantify entanglement in high dimensions. The book will allow graduate students and young researchers to gain a better understanding of free probability, the theory of compact quantum groups, and applications of the theory of Banach spaces to quantum information. The latter applications will also be of interest to theoretical and mathematical physicists working in quantum theory.
The purpose of this monograph is two-fold: it introduces a conceptual language for the geometrical objects underlying Painleve equations, and it offers new results on a particular Painleve III equation of type PIII (D6), called PIII (0, 0, 4, 4), describing its relation to isomonodromic families of vector bundles on P1 with meromorphic connections. This equation is equivalent to the radial sine (or sinh) Gordon equation and, as such, it appears widely in geometry and physics. It is used here as a very concrete and classical illustration of the modern theory of vector bundles with meromorphic connections. Complex multi-valued solutions on C* are the natural context for most of the monograph, but in the last four chapters real solutions on R>0 (with or without singularities) are addressed. These provide examples of variations of TERP structures, which are related to tt geometry and harmonic bundles. As an application, a new global picture o0 is given.
This book is the first one that brings together recent results on the harmonic analysis of exponential solvable Lie groups. There still are many interesting open problems, and the book contributes to the future progress of this research field. As well, various related topics are presented to motivate young researchers. The orbit method invented by Kirillov is applied to study basic problems in the analysis on exponential solvable Lie groups. This method tells us that the unitary dual of these groups is realized as the space of their coadjoint orbits. This fact is established using the Mackey theory for induced representations, and that mechanism is explained first. One of the fundamental problems in the representation theory is the irreducible decomposition of induced or restricted representations. Therefore, these decompositions are studied in detail before proceeding to various related problems: the multiplicity formula, Plancherel formulas, intertwining operators, Frobenius reciprocity, and associated algebras of invariant differential operators. The main reasoning in the proof of the assertions made here is induction, and for this there are not many tools available. Thus a detailed analysis of the objects listed above is difficult even for exponential solvable Lie groups, and it is often assumed that G is nilpotent. To make the situation clearer and future development possible, many concrete examples are provided. Various topics presented in the nilpotent case still have to be studied for solvable Lie groups that are not nilpotent. They all present interesting and important but difficult problems, however, which should be addressed in the near future. Beyond the exponential case, holomorphically induced representations introduced by Auslander and Kostant are needed, and for that reason they are included in this book.
This book contains the proceedings of the 23rd International Workshop on Operator Theory and its Applications (IWOTA 2012), which was held at the University of New South Wales (Sydney, Australia) from 16 July to 20 July 2012. It includes twelve articles presenting both surveys of current research in operator theory and original results.
The book includes lectures given by the plenary and key speakers at the 9th International ISAAC Congress held 2013 in Krakow, Poland. The contributions treat recent developments in analysis and surrounding areas, concerning topics from the theory of partial differential equations, function spaces, scattering, probability theory, and others, as well as applications to biomathematics, queueing models, fractured porous media and geomechanics.
The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincare, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
The fascinating correspondence between Paul Levy and Maurice Frechet spans an extremely active period in French mathematics during the twentieth century. The letters of these two Frenchmen show their vicissitudes of research and passionate enthusiasm for the emerging field of modern probability theory. The letters cover various topics of mathematical importance including academic careers and professional travels, issues concerning students and committees, and the difficulties both mathematicians met to be elected to the Paris Academy of Sciences. The technical questions that occupied Levy and Frechet on almost a daily basis are the primary focus of these letters, which are charged with elation, frustration and humour. Their mathematical victories and setbacks unfolded against the dramatic backdrop of the two World Wars and the occupation of France, during which Levy was obliged to go into hiding. The clear and persistent desire of these mathematicians to continue their work whatever the circumstance testifies to the enlightened spirit of their discipline which was persistent against all odds. The book contains a detailed and comprehensive introduction to the central topics of the correspondence. The original text of the letters is also annotated by numerous footnotes for helpful guidance. Paul Levy and Maurice Frechet will be useful to anybody interested in the history of mathematics in the twentieth century and, in particular, the birth of modern probab ility theory.
During the past two decades there has been active interplay between geometric measure theory and Fourier analysis. This book describes part of that development, concentrating on the relationship between the Fourier transform and Hausdorff dimension. The main topics concern applications of the Fourier transform to geometric problems involving Hausdorff dimension, such as Marstrand type projection theorems and Falconer's distance set problem, and the role of Hausdorff dimension in modern Fourier analysis, especially in Kakeya methods and Fourier restriction phenomena. The discussion includes both classical results and recent developments in the area. The author emphasises partial results of important open problems, for example, Falconer's distance set conjecture, the Kakeya conjecture and the Fourier restriction conjecture. Essentially self-contained, this book is suitable for graduate students and researchers in mathematics.
This monograph contains a detailed exposition of the up-to-date theory of separably injective spaces: new and old results are put into perspective with concrete examples (such as l /c0 and C(K) spaces, where K is a finite height compact space or an F-space, ultrapowers of L spaces and spaces of universal disposition). It is no exaggeration to say that the theory of separably injective Banach spaces is strikingly different from that of injective spaces. For instance, separably injective Banach spaces are not necessarily isometric to, or complemented subspaces of, spaces of continuous functions on a compact space. Moreover, in contrast to the scarcity of examples and general results concerning injective spaces, we know of many different types of separably injective spaces and there is a rich theory around them. The monograph is completed with a preparatory chapter on injective spaces, a chapter on higher cardinal versions of separable injectivity and a lively discussion of open problems and further lines of research.
The chapters in this volume highlight the state-of-the-art of compressed sensing and are based on talks given at the third international MATHEON conference on the same topic, held from December 4-8, 2017 at the Technical University in Berlin. In addition to methods in compressed sensing, chapters provide insights into cutting edge applications of deep learning in data science, highlighting the overlapping ideas and methods that connect the fields of compressed sensing and deep learning. Specific topics covered include: Quantized compressed sensing Classification Machine learning Oracle inequalities Non-convex optimization Image reconstruction Statistical learning theory This volume will be a valuable resource for graduate students and researchers in the areas of mathematics, computer science, and engineering, as well as other applied scientists exploring potential applications of compressed sensing.
This book offers a systematic treatment of a classic topic in Analysis. It fills a gap in the existing literature by presenting in detail the classic -Hoelder condition and introducing the notion of locally Hoelder-continuous function in an open set in Rn. Further, it provides the essential notions of multidimensional geometry applied to analysis. Written in an accessible style and with proofs given as clearly as possible, it is a valuable resource for graduate students in Mathematical Analysis and researchers dealing with Hoelder-continuous functions and their applications.
This book is devoted to the study of nonlinear evolution and difference equations of first and second order governed by a maximal monotone operator. This class of abstract evolution equations contains not only a class of ordinary differential equations, but also unify some important partial differential equations, such as the heat equation, wave equation, Schrodinger equation, etc. In addition to their applications in ordinary and partial differential equations, this class of evolution equations and their discrete version of difference equations have found many applications in optimization. In recent years, extensive studies have been conducted in the existence and asymptotic behaviour of solutions to this class of evolution and difference equations, including some of the authors works. This book contains a collection of such works, and its applications. Key selling features: Discusses in detail the study of non-linear evolution and difference equations governed by maximal monotone operator Information is provided in a clear and simple manner, making it accessible to graduate students and scientists with little or no background in the subject material Includes a vast collection of the authors' own work in the field and their applications, as well as research from other experts in this area of study
Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincare inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincare inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincare inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincare inequalities.
This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the degenerate one. An introductory chapter presents the basic properties of the Heisenberg group, making the coverage self-contained. The setting is the first Heisenberg group, helping to keep the notation simple and allow the reader to focus on the core of the theory and techniques in the field. Further, detailed proofs make the work accessible to students at the graduate level.
The main purpose of this book is to give a detailed and complete survey of recent progress related to the real-variable theory of Musielak-Orlicz Hardy-type function spaces, and to lay the foundations for further applications. The real-variable theory of function spaces has always been at the core of harmonic analysis. Recently, motivated by certain questions in analysis, some more general Musielak-Orlicz Hardy-type function spaces were introduced. These spaces are defined via growth functions which may vary in both the spatial variable and the growth variable. By selecting special growth functions, the resulting spaces may have subtler and finer structures, which are necessary in order to solve various endpoint or sharp problems. This book is written for graduate students and researchers interested in function spaces and, in particular, Hardy-type spaces.
The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A- I for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main focus of the present volume. For some classes of quadratic operator polynomials, inverse problems are also considered. The connection between the spectra of such quadratic operator polynomials and generalized Hermite-Biehler functions is discussed in detail. Many applications are thoroughly investigated, such as the Regge problem and damped vibrations of smooth strings, Stieltjes strings, beams, star graphs of strings and quantum graphs. Some chapters summarize advanced background material, which is supplemented with detailed proofs. With regard to the reader's background knowledge, only the basic properties of operators in Hilbert spaces and well-known results from complex analysis are assumed.
From the Preface:"...Magnus has had such a profound influence on combinatorial group theory because many of his ideas, startingly and strikingly simple, have provided not only deep insights into a very difficult subject but also powerful methods for dealing with these difficulties...His ideas have also found application in topology, K-theory, the theory of Lie and associative algebras, computational complexity, and also in logic.The expert in group theory, however, will be astonished to find that this reprinting of Magnus' papers contains a very large amount of very important work on diffraction problems and related topics in analysis. Indeed Magnus is one of the very few mathematicians who has done significant work in two completely different fields. There is a large number of mathematicians who know Magnus for his work in analysis but are totally unaware of his work in group theory...His books, his teaching...his many doctoral students, his effect on the thinking of his colleagues both in private conversation and in seminars have also helped to establish him as a mathematician of the first rank and enriched the mathematical community."
Neural field theory has a long-standing tradition in the mathematical and computational neurosciences. Beginning almost 50 years ago with seminal work by Griffiths and culminating in the 1970ties with the models of Wilson and Cowan, Nunez and Amari, this important research area experienced a renaissance during the 1990ties by the groups of Ermentrout, Robinson, Bressloff, Wright and Haken. Since then, much progress has been made in both, the development of mathematical and numerical techniques and in physiological refinement und understanding. In contrast to large-scale neural network models described by huge connectivity matrices that are computationally expensive in numerical simulations, neural field models described by connectivity kernels allow for analytical treatment by means of methods from functional analysis. Thus, a number of rigorous results on the existence of bump and wave solutions or on inverse kernel construction problems are nowadays available. Moreover, neural fields provide an important interface for the coupling of neural activity to experimentally observable data, such as the electroencephalogram (EEG) or functional magnetic resonance imaging (fMRI). And finally, neural fields over rather abstract feature spaces, also called dynamic fields, found successful applications in the cognitive sciences and in robotics. Up to now, research results in neural field theory have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. There is no comprehensive collection of results or reviews available yet. With our proposed book Neural Field Theory, we aim at filling this gap in the market. We received consent from some of the leading scientists in the field, who are willing to write contributions for the book, among them are two of the founding-fathers of neural field theory: Shun-ichi Amari and Jack Cowan.
The equations of mathematical physics are the mathematical models of the large class of phenomenon of physics, chemistry, biology, economics, etc. In Sequential Models of Mathematical Physics, the author considers the justification of the process of constructing mathematical models. The book seeks to determine the classic, generalized and sequential solutions, the relationship between these solutions, its direct physical sense, the methods of its practical finding, and its existence. Features Describes a sequential method based on the construction of space completion, as well as its applications in number theory, the theory of distributions, the theory of extremum, and mathematical physics Presentation of the material is carried out on the simplest example of a one-dimensional stationary heat transfer process; all necessary concepts and constructions are introduced and illustrated with elementary examples, which makes the material accessible to a wide area of readers The solution of a specific mathematical problem is obtained as a result of the joint application of methods and concepts from completely different mathematical directions
And God said, Let there be light; and there was light. Genesis 1,3 Light is not only the basis of our biological existence, but also an essential source of our knowledge about the physical laws of nature, ranging from the seventeenth century geometrical optics up to the twentieth century theory of general relativity and quantum electrodynamics. Folklore Don't give us numbers: give us insight! A contemporary natural scientist to a mathematician The present book is the second volume of a comprehensive introduction to themathematicalandphysicalaspectsofmodernquantum?eldtheorywhich comprehends the following six volumes: Volume I: Basics in Mathematics and Physics Volume II: Quantum Electrodynamics Volume III: Gauge Theory Volume IV: Quantum Mathematics Volume V: The Physics of the Standard Model Volume VI: Quantum Gravitation and String Theory. It is our goal to build a bridge between mathematicians and physicists based on the challenging question about the fundamental forces in * macrocosmos (the universe) and * microcosmos (the world of elementary particles). The six volumes address a broad audience of readers, including both und- graduate and graduate students, as well as experienced scientists who want to become familiar with quantum ?eld theory, which is a fascinating topic in modern mathematics and physics. |
You may like...
Theory of Approximate Functional…
Madjid Eshaghi Gordji, Sadegh Abbaszadeh
Hardcover
R1,379
Discovery Miles 13 790
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,319
Discovery Miles 33 190
Local Fractional Integral Transforms and…
Xiaojun Yang, Dumitru Baleanu, …
Hardcover
R1,806
Discovery Miles 18 060
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
Approximation with Positive Linear…
Vijay Gupta, Gancho Tachev
Hardcover
R3,294
Discovery Miles 32 940
Functional Analysis and its…
Vladimir Kadets, Wieslaw Tadeusz Zelazko
Hardcover
R4,745
Discovery Miles 47 450
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R1,892
Discovery Miles 18 920
|