![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This third edition is addressed to the mathematician or graduate student of mathematics - or even the well-prepared undergraduate - who would like, with a minimum of background and preparation, to understand some of the beautiful results at the heart of nonlinear analysis. Based on carefully-expounded ideas from several branches of topology, and illustrated by a wealth of figures that attest to the geometric nature of the exposition, the book will be of immense help in providing its readers with an understanding of the mathematics of the nonlinear phenomena that characterize our real world. Included in this new edition are several new chapters that present the fixed point index and its applications. The exposition and mathematical content is improved throughout. This book is ideal for self-study for mathematicians and students interested in such areas of geometric and algebraic topology, functional analysis, differential equations, and applied mathematics. It is a sharply focused and highly readable view of nonlinear analysis by a practicing topologist who has seen a clear path to understanding. "For the topology-minded reader, the book indeed has a lot to offer: written in a very personal, eloquent and instructive style it makes one of the highlights of nonlinear analysis accessible to a wide audience."-Monatshefte fur Mathematik (2006)
Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincare-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online.
This book is related to the theory of functions of a-bounded type in the ha- plane of the complex plane. I constructed this theory by application of the Li- ville integro-differentiation. To some extent, it is similar to M.M.Djrbashian's factorization theory of the classes Na of functions of a-bounded type in the disc, as much as the well known results on different classes and spaces of regular functions in the half-plane are similar to those in the disc. Besides, the book contains improvements of several results such as the Phragmen-Lindelof Principle and Nevanlinna Factorization in the Half-Plane and offers a new, equivalent definition of the classical Hardy spaces in the half-plane. The last chapter of the book presents author's united work with G.M. Gubreev (Odessa). It gives an application of both a-theories in the disc and in the half-plane in the spectral theory of linear operators. This is a solution of a problem repeatedly stated by M.G.Krein and being of special interest for a long time. The book is proposed for a wide range of readers. Some of its parts are comprehensible for graduate students, while the book in the whole is intended for young researchers and qualified specialists in the field.
Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior.
This volume presents self-contained survey articles on modern research areas written by experts in their fields. The topics are located at the interface of spectral theory, theory of partial differential operators, stochastic analysis, and mathematical physics. The articles are accessible to graduate students and researches from other fields of mathematics or physics while also being of value to experts, as they report on the state of the art in the respective fields.
To date, the theoretical development of q-calculus has rested on a non-uniform basis. Generally, the bulky Gasper-Rahman notation was used, but the published works on q-calculus looked different depending on where and by whom they were written. This confusion of tongues not only complicated the theoretical development but also contributed to q-calculus remaining a neglected mathematical field. This book overcomes these problems by introducing a new and interesting notation for q-calculus based on logarithms.For instance, q-hypergeometric functions are now visually clear and easy to trace back to their hypergeometric parents. With this new notation it is also easy to see the connection between q-hypergeometric functions and the q-gamma function, something that until now has been overlooked. The book covers many topics on q-calculus, including special functions, combinatorics, and q-difference equations. Apart from a thorough review of the historical development of q-calculus, this book also presents the domains of modern physics for which q-calculus is applicable, such as particle physics and supersymmetry, to name just a few.
Dimensional analysis is an essential scientific method and a powerful tool for solving problems in physics and engineering. This book starts by introducing the Pi Theorem, which is the theoretical foundation of dimensional analysis. It also provides ample and detailed examples of how dimensional analysis is applied to solving problems in various branches of mechanics. The book covers the extensive findings on explosion mechanics and impact dynamics contributed by the author's research group over the past forty years at the Chinese Academy of Sciences. The book is intended for research scientists and engineers working in the fields of physics and engineering, as well as graduate students and advanced undergraduates of the related fields. Qing-Ming Tan is a former Professor at the Institute of Mechanics, the Chinese Academy of Sciences, China.
This book lays the foundations for a theory on almost periodic stochastic processes and their applications to various stochastic differential equations, functional differential equations with delay, partial differential equations, and difference equations. It is in part a sequel of authors recent work on almost periodic stochastic difference and differential equations and has the particularity to be the first book that is entirely devoted to almost periodic random processes and their applications. The topics treated in it range from existence, uniqueness, and stability of solutions for abstract stochastic difference and differential equations.
Srinivasa Ramanujan was a mathematician brilliant beyond comparison who inspired many great mathematicians. There is extensive literature available on the work of Ramanujan. But what is missing in the literature is an analysis that would place his mathematics in context and interpret it in terms of modern developments. The 12 lectures by Hardy, delivered in 1936, served this purpose at the time they were given. This book presents Ramanujan's essential mathematical contributions and gives an informal account of some of the major developments that emanated from his work in the 20th and 21st centuries. It contends that his work still has an impact on many different fields of mathematical research. This book examines some of these themes in the landscape of 21st-century mathematics. These essays, based on the lectures given by the authors focus on a subset of Ramanujan's significant papers and show how these papers shaped the course of modern mathematics.
Evolution equations of hyperbolic or more general p-evolution type form an active field of current research. This volume aims to collect some recent advances in the area in order to allow a quick overview of ongoing research. The contributors are first rate mathematicians. This collection of research papers is centred around parametrix constructions and microlocal analysis; asymptotic constructions of solutions; energy and dispersive estimates; and associated spectral transforms. Applications concerning elasticity and general relativity complement the volume. The book gives an overview of a variety of ongoing current research in the field and, therefore, allows researchers as well as students to grasp new aspects and broaden their understanding of the area.
Periodic differential operators have a rich mathematical theory as well as important physical applications. They have been the subject of intensive development for over a century and remain a fertile research area. This book lays out the theoretical foundations and then moves on to give a coherent account of more recent results, relating in particular to the eigenvalue and spectral theory of the Hill and Dirac equations. The book will be valuable to advanced students and academics both for general reference and as an introduction to active research topics.
TheH-function or popularly known in the literature as Fox'sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction-diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.
This book is devoted to the topological fixed point theory of multivalued mappings including applications to differential inclusions and mathematical economy. It is the first monograph dealing with the fixed point theory of multivalued mappings in metric ANR spaces. Although the theoretical material was tendentiously selected with respect to applications, the text is self-contained. Current results are presented.
The annual Operator Theory conferences in Timigoara are conceived as a means to promote cooperation and exchange of in formation between specialists in all areas of Operator Theory. The present volume consist of papers contributed by the partici pants of the 1981 Conference. Since many of these papers contain results on the invariant subspace problem or are related to the role of invariant subspaces in the study of operators or operator systems, we thought it appropiate to mention this in the title of the volume, though the "other topics" have a wide range. As in past years, special sessions concerning other fields of Functio nal Analysis were organized at the 1981 Conference, but contri butions to these sessions are not included in the present volume. The research contracts of the Department of Mathematics of INCREST with the National Council for Sciences and Technology of Romaliia provided the means for developping the research activity in Functional Analysis; these contracts constitute the generous framework for these meetings. We want also to acknowledge the support of INCREST and the excelent organizing job done by our host - University of Timigoa ra-. Professor Dumitru Gagpar and Professor Mircea Reghig are among those people in Timigoara who contributed in an essential way to the success of the meeting.
Every mathematician working in Banaeh spaee geometry or Approximation theory knows, from his own experienee, that most "natural" geometrie properties may faH to hold in a generalnormed spaee unless the spaee is an inner produet spaee. To reeall the weIl known definitions, this means IIx 11 = *, where is an inner (or: scalar) product on E, Le. a function from ExE to the underlying (real or eomplex) field satisfying: (i) O for x ~ o. (ii) is linear in x. (iii) = (intherealease,thisisjust =
One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , " " Z/ are the given zeros with given multiplicates nl, " " n / and Wb" " W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n.
This paper is a largely expository account of the theory of p x p matrix polyno mials associated with Hermitian block Toeplitz matrices and some related problems of interpolation and extension. Perhaps the main novelty is the use of reproducing kernel Pontryagin spaces to develop parts of the theory in what hopefully the reader will regard as a reasonably lucid way. The topics under discussion are presented in a series of short sections, the headings of which give a pretty good idea of the overall contents of the paper. The theory is a rich one and the present paper in spite of its length is far from complete. The author hopes to fill in some of the gaps in future publications. The story begins with a given sequence h_n" ... , hn of p x p matrices with h-i = hj for j = 0, ... , n. We let k = O, ... ,n, (1.1) denote the Hermitian block Toeplitz matrix based on ho, ... , hk and shall denote its 1 inverse H k by (k)] k [ r = .. k = O, ... ,n, (1.2) k II} . '-0 ' I- whenever Hk is invertible.
The Eleventh International Transport Theory Conference and Symposium in honor of the sixty-fifth birthday of Kenneth Case and the sixtieth birthday of Paul Zweifel was held in Blacksburg, Virginia, during May 22-26, 1989, on the campus of Virginia Polytechnic Institute and State University (Virginia Tech). This volume consists of a selection of the invited papers delivered at the Conference, and represents a cross section of the research currently being carried out in the field of transport theory. The volume is divided into two sections. The Symposium lectures are intended each to summarize an important aspect of transport theory, as well as to present timely new results of the author's research interest. The Conference lectures are contributions of each author on his current research. As has been the custom in this series of conferences, each lecturer was invited to participate by the organizing committee of the Conference: W. Greenberg, Virginia Tech, chairman; V. Boffi, Universita di Firenze; N. Corngold, California Institute of Technology; B. Ganapol, University of Arizona; N. McCormick, University of Washington; P. Nelson, Texas Tech; G. Pomraning, University of California, Los Angeles. The Eleventh International Transport Theory Conference was funded by generous con tributions from Science Applications International Corporation, R. Beyster, president, and from Virginia Polytechnic Institute and State University. Conference participants, and, we believe, researchers in this and related areas, are indebted to these organizations. We would like to thank Lamberto Rondoni, in the graduate program at Virginia Tech, for proofreading manuscripts of all the Italian contributors.
A few years aga the authors started a project of a book on the theory of systems of one-dimensional singular integral equa tions which was planned as a continuation of the monograph by one of the authors and N. Ya. Krupnik ~~ concerning scalar equa tions. This set of notes was initiated as a chapter dealing with problems of factorization of matrix functions vis-a-vis appli cations to systems of singular integral equations. Working systematically onthischapter and adding along the way new points of view, new proofs and results, we finally saw that the material connected with factorizations is of independent interest and we decided to publish this chapter as aseparate volume. In fact, because of recent activity, the amount of material was quite large and we quickly learned that we cannot cover all of the results in complete detail. We have tried to include a represen tative variety of all kinds of methods, techniques,results and applications. Apart of the current work exposes results from the Russian literature which have never appeared in English translation. We have also decided to reflect some of the recent results which make interesting connections between factorization of matrix functions and systems theory. The field remains very active and many results and connec tions are still not weIl understood. These notes should be viewed as a stepping stone to further development. The authors hope that sometime they will return to complete their original plan.
This volume is dedicated to Bill Helton on the occasion of his sixty fifth birthday. It contains biographical material, a list of Bill's publications, a detailed survey of Bill's contributions to operator theory, optimization and control and 19 technical articles. Most of the technical articles are expository and should serve as useful introductions to many of the areas which Bill's highly original contributions have helped to shape over the last forty odd years. These include interpolation, Szegoe limit theorems, Nehari problems, trace formulas, systems and control theory, convexity, matrix completion problems, linear matrix inequalities and optimization. The book should be useful to graduate students in mathematics and engineering, as well as to faculty and individuals seeking entry level introductions and references to the indicated topics. It can also serve as a supplementary text to numerous courses in pure and applied mathematics and engineering, as well as a source book for seminars.
This monograph is a presentation of a unified approach to a certain class of semimartingale inequalities, which can be regarded as probabilistic extensions of classical estimates for conjugate harmonic functions on the unit disc. The approach, which has its roots in the seminal works of Burkholder in the 80s, enables to deduce a given inequality for semimartingales from the existence of a certain special function with some convex-type properties. Remarkably, an appropriate application of the method leads to the sharp version of the estimate under investigation, which is particularly important for applications. These include the theory of quasiregular mappings (with deep implications to the geometric function theory); the boundedness of two-dimensional Hilbert transform and a more general class of Fourier multipliers; the theory of rank-one convex and quasiconvex functions; and more. The book is divided into a few separate parts. In the introductory chapter we present motivation for the results and relate them to some classical problems in harmonic analysis. The next part contains a general description of the method, which is applied in subsequent chapters to the study of sharp estimates for discrete-time martingales; discrete-time sub- and supermartingales; continuous time processes; the square and maximal functions. Each chapter contains additional bibliographical notes included for reference.
The book is a graduate text on unbounded self-adjoint operators on Hilbert space and their spectral theory with the emphasis on applications in mathematical physics (especially, Schroedinger operators) and analysis (Dirichlet and Neumann Laplacians, Sturm-Liouville operators, Hamburger moment problem) . Among others, a number of advanced special topics are treated on a text book level accompanied by numerous illustrating examples and exercises. The main themes of the book are the following: - Spectral integrals and spectral decompositions of self-adjoint and normal operators - Perturbations of self-adjointness and of spectra of self-adjoint operators - Forms and operators - Self-adjoint extension theory :boundary triplets, Krein-Birman-Vishik theory of positive self-adjoint extension
This book is a survey of the theory of formal deformation quantization of Poisson manifolds, in the formalism developed by Kontsevich. It is intended as an educational introduction for mathematical physicists who are dealing with the subject for the first time. The main topics covered are the theory of Poisson manifolds, star products and their classification, deformations of associative algebras and the formality theorem. Readers will also be familiarized with the relevant physical motivations underlying the purely mathematical construction.
This work covers two bases, both performance optimization strategies and a complete introduction to mathematical procedures required for a successful circuit design. It starts from the basics of mathematical procedures and circuit analysis before moving on to the more advanced topics of system optimization and synthesis, along with the complete mathematical apparatus required. The authors have been at pains to make the material accessible by limiting the mathematics to the necessary minimum. |
![]() ![]() You may like...
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,669
Discovery Miles 36 690
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R2,080
Discovery Miles 20 800
Bloch-type Periodic Functions: Theory…
Yong-kui Chang, Gaston Mandata N'G'Uerekata, …
Hardcover
R2,096
Discovery Miles 20 960
Hardy Operators On Euclidean Spaces And…
Shanzhen Lu, Zunwei Fu, …
Hardcover
R2,104
Discovery Miles 21 040
A Mathematical Journey to Quantum…
Salvatore Capozziello, Wladimir-Georges Boskoff
Hardcover
R2,462
Discovery Miles 24 620
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Vladislav V. Kravchenko, …
Hardcover
R6,581
Discovery Miles 65 810
|