![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the "classical aspects "of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles." "This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle "force equals curvature: " Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. "Quantum Field Theory" builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos). "
This two-volume book is a modern introduction to the theory of numbers, emphasizing its connections with other branches of mathematics. Part A is accessible to first-year undergraduates and deals with elementary number theory. Part B is more advanced and gives the reader an idea of the scope of mathematics today. The connecting theme is the theory of numbers. By exploring its many connections with other branches a broad picture is obtained. The book contains a treasury of proofs, several of which are gems seldom seen in number theory books.
The topics covered in this volume include Sobolev 's fundamental works on equations of mathematical physics, computational mathematics, and cubature formulas. Some of the articles are generally unknown to mathematicians because they were published in journals that are difficult to access. This is the first appearance in English of many works by this important Russian mathematician.
In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated "Ramanujan's lost notebook." The "lost notebook" contains considerable material on mock theta functions and so undoubtedly emanates from the last year of Ramanujan's life. It should be emphasized that the material on mock theta functions is perhaps Ramanujan's deepest work.
This monograph is devoted to a comprehensive treatment of iterative methods for solving nonlinear equations with particular emphasis on semi-local convergence analysis. Theoretical results are applied to engineering, dynamic economic systems, input-output systems, nonlinear and linear differential equations, and optimization problems. Accompanied by many exercises, some with solutions, the book may be used as a supplementary text in the classroom for an advanced course on numerical functional analysis.
In this book the author presents the Opial, Poincare, Sobolev, Hilbert, and Ostrowski fractional differentiation inequalities. Results for the above are derived using three different types of fractional derivatives, namely by Canavati, Riemann-Liouville and Caputo. The univariate and multivariate cases are both examined. Each chapter is self-contained. The theory is presented systematically along with the applications. The application to information theory is also examined. This monograph is suitable for researchers and graduate students in pure mathematics. Applied mathematicians, engineers, and other applied scientists will also find this book useful."
This book presents some of the latest research in critical point theory, describing methods and presenting the newest applications. Coverage includes extrema, even valued functionals, weak and double linking, sign changing solutions, Morse inequalities, and cohomology groups. Applications described include Hamiltonian systems, Schrodinger equations and systems, jumping nonlinearities, elliptic equations and systems, superlinear problems and beam equations. "
This monograph is intended to be a complete treatment of the metrical the ory of the (regular) continued fraction expansion and related representations of real numbers. We have attempted to give the best possible results known so far, with proofs which are the simplest and most direct. The book has had a long gestation period because we first decided to write it in March 1994. This gave us the possibility of essentially improving the initial versions of many parts of it. Even if the two authors are different in style and approach, every effort has been made to hide the differences. Let 0 denote the set of irrationals in I = [0,1]. Define the (reg ular) continued fraction transformation T by T (w) = fractional part of n 1/w, w E O. Write T for the nth iterate of T, n E N = {O, 1, ... }, n 1 with TO = identity map. The positive integers an(w) = al(T - (W)), n E N+ = {1,2*** }, where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),*** , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),***], w E O.
This book is concerned with topological and differential properties of multivalued mappings and marginal functions. Beside this applica- tions to the sensitivity analysis of optimization problems, in particular nonlinear programming problems with perturbations, are studied. The elaborated methods are primarily obtained by theories and concepts of two former Soviet Union researchers, Demyanov and Rubinov. Con- sequently, a significant part of the presented results have never been published in English before. Based on the use of directional derivatives as a key tool in studying nonsmooth functions and multifunctions, these results can be considered as a further development of quasidifferential calculus created by Demyanov and Rubinov. In contrast to other research in this field, especially the recent publica- tion by Bonnans and Shapiro, this book analyses properties of marginal functions associated with optimization problems under quite general con- straints defined by means of multivalued mappings. A unified approach to directional differentiability of functions and multifunctions forms the base of the volume.
In this monograph, questions of extensions and relaxations are consid ered. These questions arise in many applied problems in connection with the operation of perturbations. In some cases, the operation of "small" per turbations generates "small" deviations of basis indexes; a corresponding stability takes place. In other cases, small perturbations generate spas modic change of a result and of solutions defining this result. These cases correspond to unstable problems. The effect of an unstability can arise in extremal problems or in other related problems. In this connection, we note the known problem of constructing the attainability domain in con trol theory. Of course, extremal problems and those of attainability (in abstract control theory) are connected. We exploit this connection here (see Chapter 5). However, basic attention is paid to the problem of the attainability of elements of a topological space under vanishing perturba tions of restrictions. The stability property is frequently missing; the world of unstable problems is of interest for us. We construct regularizing proce dures. However, in many cases, it is possible to establish a certain property similar to partial stability. We call this property asymptotic nonsensitivity or roughness under the perturbation of some restrictions. The given prop erty means the following: in the corresponding problem, it is the same if constraints are weakened in some "directions" or not. On this basis, it is possible to construct a certain classification of constraints, selecting "di rections of roughness" and "precision directions.""
Preface Constructing nonlinear parameter-dependent mathematical models is essential in modeling in many scientific research fields. The investigation of branching (bifurcating) solutions of such equations is one of the most important aspects in the analysis of such models. The foundations of the theory of bifurca- tions for the functional equations were laid in the well known publications by AM. Lyapunov (1906) [1, vol. 4] (on equilibrium forms of rotating liq- uids) and E. Schmidt (1908) [1]. The approach proposed by them has been throughly developed and is presently known as the Lyapunov-Schmidt method (see M.M. Vainberg and V.A Trenogin [1, 2]). A valuable part in the founda- tions of the bifurcation theory belongs to A. Poincares ideas [1]. Later, to the end of proving the theorems on existence of bifurcation points, infinite-dimensional generalizations of topological and variational methods were proposed by M.A Krasnoselsky [1], M.M. Vainberg [1] and others. A great contribution to the development and applications of the bifurcation theory has been made by a number of famous 20th century pure and applied mathe- maticians (for example, see the bibliography in E. Zeidler [1]).
The present monograph is devoted to the theory of the solvability in generalized functions of general boundary value problems of mathematieal physies. It is the eontinuation of the author's book [Rl], where elliptic boundary value problems have been studied in eomplete seales of spaees of generalized funetions. From the early sixties, in the works of Lions and Magenes [LiM] and Yu. Berezanskii, S. Krein and Va. Roitberg [BKR] the theorems on eomplete eolleetion of isomorphisms have been established. These theorems, roughly speaking, mean that the operator generated by an elliptie boundary value problem establishes an isomorphism between spaees of functions which 'have s derivatives' and spaees functions whieh 'have s - r derivatives' (here s is an arbitrary real number, r is the order of the elliptic problem). The dose results were also obtained by Seheehter [Sehe]. These results and some of their applieations are eontained in the book of Lions and Magenes [LiM2] (see also the survey of Magenes [MagD and Yu. Berezanskii [Ber]. Further progress in the theory under eonsideration was eonneeted, first, with the completion of the dass of elliptie problems for whieh the theorems on eomplete eolleetion of isomorphisms hold, and, henee, with the development of new methods of proving of these theorems, and, second, with the inerease of a number of applieations of the isomorphism theorems. In the author's monograph [RI] the last years' investigations on the isomorphism theorems and some of their applieations have been presented.
In this book a general topological construction of extension is proposed for problems of attainability in topological spaces under perturbation of a system of constraints. This construction is realized in a special class of generalized elements defined as finitely additive measures. A version of the method of programmed iterations is constructed. This version realizes multi-valued control quasistrategies, which guarantees the solution of the control problem that consists in guidance to a given set under observation of phase constraints. Audience: The book will be of interest to researchers, and graduate students in the field of optimal control, mathematical systems theory, measure and integration, functional analysis, and general topology.
This volume will be of great appeal to both advanced students and researchers. For the former, it serves as an effective introduction to three interrelated subjects of analysis: semigroups, Markov processes and elliptic boundary value problems. For the latter, it provides a new method for the analysis of Markov processes, a powerful method clearly capable of extensive further development.
To summarize briefly, this book is devoted to an exposition of the foundations of pseudo differential equations theory in non-smooth domains. The elements of such a theory already exist in the literature and can be found in such papers and monographs as [90,95,96,109,115,131,132,134,135,136,146, 163,165,169,170,182,184,214-218]. In this book, we will employ a theory that is based on quite different principles than those used previously. However, precisely one of the standard principles is left without change, the "freezing of coefficients" principle. The first main difference in our exposition begins at the point when the "model problem" appears. Such a model problem for differential equations and differential boundary conditions was first studied in a fundamental paper of V. A. Kondrat'ev [134]. Here also the second main difference appears, in that we consider an already given boundary value problem. In some transformations this boundary value problem was reduced to a boundary value problem with a parameter . -\ in a domain with smooth boundary, followed by application of the earlier results of M. S. Agranovich and M. I. Vishik. In this context some operator-function R('-\) appears, and its poles prevent invertibility; iffor differential operators the function is a polynomial on A, then for pseudo differential operators this dependence on . -\ cannot be defined. Ongoing investigations of different model problems are being carried out with approximately this plan, both for differential and pseudodifferential boundary value problems.
Beginning with the works of N.N.Krasovskii [81, 82, 83], which clari fied the functional nature of systems with delays, the functional approach provides a foundation for a complete theory of differential equations with delays. Based on the functional approach, different aspects of time-delay system theory have been developed with almost the same completeness as the corresponding field of ODE (ordinary differential equations) the ory. The term functional differential equations (FDE) is used as a syn onym for systems with delays 1. The systematic presentation of these re sults and further references can be found in a number of excellent books [2, 15, 22, 32, 34, 38, 41, 45, 50, 52, 77, 78, 81, 93, 102, 128]. In this monograph we present basic facts of i-smooth calculus ~ a new differential calculus of nonlinear functionals, based on the notion of the invariant derivative, and some of its applications to the qualitative theory of functional differential equations. Utilization of the new calculus is the main distinction of this book from other books devoted to FDE theory. Two other distinguishing features of the volume are the following: - the central concept that we use is the separation of finite dimensional and infinite dimensional components in the structures of FDE and functionals; - we use the conditional representation of functional differential equa tions, which is convenient for application of methods and constructions of i~smooth calculus to FDE theory.
We begin our applications of fixed point methods with existence of solutions to certain first order initial initial value problems. This problem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y'. = I(t, y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = 0, b]. We shall seek solutions that are de fined either locally or globally on I, according to the assumptions imposed on I. Notice that (1. 1) is a system of first order equations because I takes its values in Rn. In section 3. 2 we will first establish some basic existence theorems which guarantee that a solution to (1. 1) exists for t > 0 and near zero. Familiar examples show that the interval of existence can be arbi trarily short, depending on the initial value r and the nonlinear behaviour of I. As a result we will also examine in section 3. 2 the dependence of the interval of existence on I and r. We mention in passing that, in the results which follow, the interval I can be replaced by any bounded interval and the initial value can be specified at any point in I. The reasoning needed to cover this slightly more general situation requires minor modifications on the arguments given here."
In the past decade, there has been a sudden and vigorous development in a number of research areas in mathematics and mathematical physics, such as theory of operator algebras, knot theory, theory of manifolds, infinite dimensional Lie algebras and quantum groups (as a new topics), etc. on the side of mathematics, quantum field theory and statistical mechanics on the side of mathematical physics. The new development is characterized by very strong relations and interactions between different research areas which were hitherto considered as remotely related. Focussing on these new developments in mathematical physics and theory of operator algebras, the International Oji Seminar on Quantum Analysis was held at the Kansai Seminar House, Kyoto, JAPAN during June 25-29, 1992 by a generous sponsorship of the Japan Society for the Promotion of Science and the Fujihara Foundation of Science, as a workshop of relatively small number of (about 50) invited participants. This was followed by an open Symposium at RIMS, described below by its organizer, A. Kishimoto. The Oji Seminar began with two key-note addresses, one by V.F.R. Jones on Spin Models in Knot Theory and von Neumann Algebras and by A. Jaffe on Where Quantum Field Theory Has Led. Subsequently topics such as Subfactors and Sector Theory, Solvable Models of Statistical Mechanics, Quantum Field Theory, Quantum Groups, and Renormalization Group Ap proach, are discussed. Towards the end, a panel discussion on Where Should Quantum Analysis Go? was held."
One service mathematics has rendered the 'Et moi, ..., si j'avait Sil comment en revenir, je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences_ Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science .. :; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Stochastic Processes: General Theory starts with the fundamental existence theorem of Kolmogorov, together with several of its extensions to stochastic processes. It treats the function theoretical aspects of processes and includes an extended account of martingales and their generalizations. Various compositions of (quasi- or semi-)martingales and their integrals are given. Here the Bochner boundedness principle plays a unifying role: a unique feature of the book. Applications to higher order stochastic differential equations and their special features are presented in detail. Stochastic processes in a manifold and multiparameter stochastic analysis are also discussed. Each of the seven chapters includes complements, exercises and extensive references: many avenues of research are suggested. The book is a completely revised and enlarged version of the author's Stochastic Processes and Integration (Noordhoff, 1979). The new title reflects the content and generality of the extensive amount of new material. Audience: Suitable as a text/reference for second year graduate classes and seminars. A knowledge of real analysis, including Lebesgue integration, is a prerequisite.
The aim of this volume is to make available to a large audience recent material in nonlinear functional analysis that has not been covered in book format before. Here, several topics of current and growing interest are systematically presented, such as fixed point theory, best approximation, the KKM-map principle, and results related to optimization theory, variational inequalities and complementarity problems. Illustrations of suitable applications are given, the links between results in various fields of research are highlighted, and an up-to-date bibliography is included to assist readers in further studies. Audience: This book will be of interest to graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations and expansions, convex sets and related geometric topics and game theory.
Many questions dealing with solvability, stability and solution methods for va- ational inequalities or equilibrium, optimization and complementarity problems lead to the analysis of certain (perturbed) equations. This often requires a - formulation of the initial model being under consideration. Due to the specific of the original problem, the resulting equation is usually either not differ- tiable (even if the data of the original model are smooth), or it does not satisfy the assumptions of the classical implicit function theorem. This phenomenon is the main reason why a considerable analytical inst- ment dealing with generalized equations (i.e., with finding zeros of multivalued mappings) and nonsmooth equations (i.e., the defining functions are not c- tinuously differentiable) has been developed during the last 20 years, and that under very different viewpoints and assumptions. In this theory, the classical hypotheses of convex analysis, in particular, monotonicity and convexity, have been weakened or dropped, and the scope of possible applications seems to be quite large. Briefly, this discipline is often called nonsmooth analysis, sometimes also variational analysis. Our book fits into this discipline, however, our main intention is to develop the analytical theory in close connection with the needs of applications in optimization and related subjects. Main Topics of the Book 1. Extended analysis of Lipschitz functions and their generalized derivatives, including "Newton maps" and regularity of multivalued mappings. 2. Principle of successive approximation under metric regularity and its - plication to implicit functions.
The notion of a dominated or rnajorized operator rests on a simple idea that goes as far back as the Cauchy method of majorants. Loosely speaking, the idea can be expressed as follows. If an operator (equation) under study is dominated by another operator (equation), called a dominant or majorant, then the properties of the latter have a substantial influence on the properties of the former . Thus, operators or equations that have "nice" dominants must possess "nice" properties. In other words, an operator with a somehow qualified dominant must be qualified itself. Mathematical tools, putting the idea of domination into a natural and complete form, were suggested by L. V. Kantorovich in 1935-36. He introduced the funda mental notion of a vector space normed by elements of a vector lattice and that of a linear operator between such spaces which is dominated by a positive linear or monotone sublinear operator. He also applied these notions to solving functional equations. In the succeedingyears many authors studied various particular cases of lattice normed spaces and different classes of dominated operators. However, research was performed within and in the spirit of the theory of vector and normed lattices. So, it is not an exaggeration to say that dominated operators, as independent objects of investigation, were beyond the reach of specialists for half a century. As a consequence, the most important structural properties and some interesting applications of dominated operators have become available since recently."
The aim of this book is a detailed study of topological effects related to continuity of the dependence of solutions on initial values and parameters. This allows us to develop cheaply a theory which deals easily with equations having singularities and with equations with multivalued right hand sides (differential inclusions). An explicit description of corresponding topological structures expands the theory in the case of equations with continuous right hand sides also. In reality, this is a new science where Ordinary Differential Equations, General Topology, Integration theory and Functional Analysis meet. In what concerns equations with discontinuities and differential inclu sions, we do not restrict the consideration to the Cauchy problem, but we show how to develop an advanced theory whose volume is commensurable with the volume of the existing theory of Ordinary Differential Equations. The level of the account rises in the book step by step from second year student to working scientist."
In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions," vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations." |
![]() ![]() You may like...
Collective and State Violence in Turkey…
Stephan Astourian, Raymond Kevorkian
Hardcover
R1,644
Discovery Miles 16 440
Applications in Engineering, Life and…
Dumitru Baleanu, Antonio Mendes Lopes
Hardcover
R4,789
Discovery Miles 47 890
|