![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
The chapters are split into sections, which, in turn, are split into subsections enumerated by two numbers: the first stands for the number of the section while the second for the number ofthe subsection itself. The same numeration is used for all kinds of statements and formulas. If we refer to statements or formulas in other chapters, we use triple numeration where the first number stands for the chapter and the other two have the same sense. The results presented in this book were discussed on the seminars at the Institute of Mathematics of Ukrainian Academy ofSciences, at the Steklov Mathematical Institute of the Academy of Sciences of the USSR, at Moscow and Tbilisi State Universities. I am deeply grateful to the heads of these seminars Professors V. K. Dzyadyk, N. P. Kor- neichuk, S. B. Stechkin, P. L. U1yanov, and L. V. Zhizhiashvili as well as to the mem- bers ofthese seminars that took an active part in the discussions. In TRODUCTIon It is well known for many years that every 21t -periodic summable function f(x) can be associated in a one-to-one manner with its Fourier series (1. 1) Slfl where I It = - f f(t)cosktdt 1t -It and I It - f f(t)sinktdt. 1t -It Therefore, if for approximation of a given function f(*), it is necessary to construct a sequence ofpolynomials Pn (.
The first formulations of linear boundary value problems for analytic functions were due to Riemann (1857). In particular, such problems exhibit as boundary conditions relations among values of the unknown analytic functions which have to be evaluated at different points of the boundary. Singular integral equations with a shift are connected with such boundary value problems in a natural way. Subsequent to Riemann's work, D. Hilbert (1905), C. Haseman (1907) and T. Carleman (1932) also considered problems of this type. About 50 years ago, Soviet mathematicians began a systematic study of these topics. The first works were carried out in Tbilisi by D. Kveselava (1946-1948). Afterwards, this theory developed further in Tbilisi as well as in other Soviet scientific centers (Rostov on Don, Ka zan, Minsk, Odessa, Kishinev, Dushanbe, Novosibirsk, Baku and others). Beginning in the 1960s, some works on this subject appeared systematically in other countries, e. g., China, Poland, Germany, Vietnam and Korea. In the last decade the geography of investigations on singular integral operators with shift expanded significantly to include such countries as the USA, Portugal and Mexico. It is no longer easy to enumerate the names of the all mathematicians who made contributions to this theory. Beginning in 1957, the author also took part in these developments. Up to the present, more than 600 publications on these topics have appeared."
This book provides an introduction to Hilbert space theory, Fourier transform and wavelets, linear operators, generalized functions and quantum mechanics. Although quantum mechanics has been developed between 1925 and 1930 in the last twenty years a large number of new aspect and techniques have been introduced. The book also covers these new fields in quantum mechanics. In quantum mechanics the basic mathematical tools are the theory of Hilbert spaces, the theory of linear operators, the theory of generalized functions and Lebesgue inte- gration theory. Many excellent textbooks have been written on Hilbert space theory and linear operators in Hilbert spaces. Comprehensive surveys of this subject are given by Weidmann [68], Prugovecki [47], Yosida [69], Kato [31], Richtmyer [49], Sewell [54] and others. The theory of generalized functions is also well covered in good textbooks (Gelfand and Shilov [25], Vladimirov [67]. Furthermore numerous textbooks on quantum mechanics exist (Dirac [17], Landau and Lifshitz [36], Mes- siah [41], Gasiorowicz [24], Schiff [51], Eder [18] and others). Besides these books there are several problem books on quantum mechanics (Fliigge [22], Constantinescu and Magyari [15], ter Haar [64], Mavromatis [39], Steeb [59], Steeb [60], Steeb [61]) and others). Computer algebra implementations of quantum mechanical problems are described by Steeb [59]. Unfortunately, many standard textbooks on quantum mechanics neglect the math- ematical background. The basic mathematical tools to understand quantum me- chanics should be fully integrated into an education in quantum mechanics.
In recent years, it has become increasingly clear that there are important connections relating three concepts -- groupoids, inverse semigroups, and operator algebras. There has been a great deal of progress in this area over the last two decades, and this book gives a careful, up-to-date and reasonably extensive account of the subject matter. After an introductory first chapter, the second chapter presents a self-contained account of inverse semigroups, locally compact and r-discrete groupoids, and Lie groupoids. The section on Lie groupoids in chapter 2 contains a detailed discussion of groupoids particularly important in noncommutative geometry, including the holonomy groupoids of a foliated manifold and the tangent groupoid of a manifold. The representation theories of locally compact and r-discrete groupoids are developed in the third chapter, and it is shown that the C*-algebras of r-discrete groupoids are the covariance C*-algebras for inverse semigroup actions on locally compact Hausdorff spaces. A final chapter associates a universal r-discrete groupoid with any inverse semigroup. Six subsequent appendices treat topics related to those covered in the text. The book should appeal to a wide variety of professional mathematicians and graduate students in fields such as operator algebras, analysis on groupoids, semigroup theory, and noncommutative geometry. It will also be of interest to mathematicians interested in tilings and theoretical physicists whose focus is modeling quasicrystals with tilings. An effort has been made to make the book lucid and 'user friendly"; thus it should be accessible to any reader with a basic background in measure theory and functional analysis.
ICPT91, the International Conference on Potential Theory, was held in Amersfoort, the Netherlands, from August 18--24, 1991. The volume consists of two parts, the first of which contains papers which also appear in the special issue of POTENTIAL ANALYSIS. The second part includes a collection of contributions edited and partly produced in Utrecht. Professor Monna wrote a preface reminiscing about his experiences with potential theory, mathematics and mathematicians during the last sixty years. The final pages contain a list of participants and a compact index.
Award-winning monograph of the Ferran Sunyer i Balaguer Prize 1997. This book is a self-contained exposition of the spectral theory
of Toeplitz operators with piecewise continuous symbols and
singular integral operators with piecewise continuous coefficients.
It includes an introduction to Carleson curves, Muckenhoupt
weights, weighted norm inequalities, local principles, Wiener-Hopf
factorization, and Banach algebras generated by idempotents. Some
basic phenomena in the field and the techniques for treating them
came to be understood only in recent years and are comprehensively
presented here for the first time.
As Lord Kelvin said, "Fourier's theorem is not only one of the most beautiful results of modern analysis, but it may be said to furnish an indispensable instrument in the treatment of nearly every recondite question in modern physics." This has remained durable knowledge for a century, and has extended its applicability to topics as diverse as medical imaging (CT scanning), the presentation of images on screens and their digital transmission, remote sensing, geophysical exploration, and many branches of engineering. Fourier Analysis and Imaging is based on years of teaching a course on the Fourier Transform at the senior or early graduate level, as well as on Prof. Bracewell's 1995 text Two-Dimensional Imaging. It is an excellent textbook and will also be a welcome addition to the reference library of those many professionals whose daily activities involve Fourier analysis in its many guises.
This comprehensive volume develops all of the standard features of Fourier analysis - Fourier series, Fourier transform, Fourier sine and cosine transforms, and wavelets. The books approach emphasizes the role of the "selector" functions, and is not embedded in the usual engineering context, which makes the material more accessible to a wider audience. While there are several publications on the various individual topics, none combine or even include all of the above.
"D. Walnut's lovely book aims at the upper undergraduate level, and so it includes relatively more preliminary material . . . than is typically the case in a graduate text. It goes from Haar systems to multiresolutions, and then the discrete wavelet transform . . . The applications to image compression are wonderful, and the best I have seen in books at this level. I also found the analysis of the best choice of basis, and wavelet packet, especially attractive. The later chapters include MATLAB codes. Highly recommended " Bulletin of the AMS An Introduction to Wavelet Analysis provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and application of wavelet bases. The book develops the basic theory of wavelet bases and transforms without assuming any knowledge of Lebesgue integration or the theory of abstract Hilbert spaces. The book elucidates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, and then shows how a more abstract approach allows one to generalize and improve upon the Haar series. Once these ideas have been established and explored, variations and extensions of Haar construction are presented. The mathematical prerequisites for the book are a course in advanced calculus, familiarity with the language of formal mathematical proofs, and basic linear algebra concepts. Features: * Rigorous proofs with consistent assumptions about the mathematical background of the reader (does not assume familiarity with Hilbert spaces or Lebesgue measure). * Complete background material on is offered on Fourier analysis topics. * Wavelets are presented first on the continuous domain and later restricted to the discrete domain for improved motivation and understanding of discrete wavelet transforms and applications. * Special appendix, "Excursions in Wavelet Theory, " provides a guide to current literature on the topic. * Over 170 exercises guide the reader through the text. An Introduction to Wavelet Analysis is an ideal text/reference for a broad audience of advanced students and researchers in applied mathematics, electrical engineering, computational science, and physical sciences. It is also suitable as a self-study reference guide for professionals."
A new foundation of Topology, summarized under the name Convenient Topology, is considered such that several deficiencies of topological and uniform spaces are remedied. This does not mean that these spaces are superfluous. It means exactly that a better framework for handling problems of a topological nature is used. In this setting semiuniform convergence spaces play an essential role. They include not only convergence structures such as topological structures and limit space structures, but also uniform convergence structures such as uniform structures and uniform limit space structures, and they are suitable for studying continuity, Cauchy continuity and uniform continuity as well as convergence structures in function spaces, e.g. simple convergence, continuous convergence and uniform convergence. Various interesting results are presented which cannot be obtained by using topological or uniform spaces in the usual context. The text is self-contained with the exception of the last chapter, where the intuitive concept of nearness is incorporated in Convenient Topology (there exist already excellent expositions on nearness spaces).
This series presents some tools of applied mathematics in the areas of proba bility theory, operator calculus, representation theory, and special functions used currently, and we expect more and more in the future, for solving problems in math ematics, physics, and, now, computer science. Much of the material is scattered throughout available literature, however, we have nowhere found in accessible form all of this material collected. The presentation of the material is original with the authors. The presentation of probability theory in connection with group represen tations is new, this appears in Volume I. Then the applications to computer science in Volume II are original as well. The approach found in Volume III, which deals in large part with infinite-dimensional representations of Lie algebras/Lie groups, is new as well, being inspired by the desire to find a recursive method for calcu lating group representations. One idea behind this is the possibility of symbolic computation of the matrix elements. In this volume, Representations and Probability Theory, we present an intro duction to Lie algebras and Lie groups emphasizing the connections with operator calculus, which we interpret through representations, principally, the action of the Lie algebras on spaces of polynomials. The main features are the connection with probability theory via moment systems and the connection with the classical ele mentary distributions via representation theory. The various systems of polynomi als that arise are one of the most interesting aspects of this study.
This volume is devoted to the life and work of the applied mathematician Professor Erhard Meister (1930-2001). He was a member of the editorial boards of this book series Operator The ory: Advances and Applications as well as of the journal Integral Equations and Operator Theory, both published by Birkhauser (now part of Springer-Verlag). Moreover he played a decisive role in the foundation of these two series by helping to establish contacts between Birkhauser and the founder and present chief editor of this book series after his emigration from Moldavia in 1974. The volume is divided into two parts. Part A contains reminiscences about the life of E. Meister including a short biography and an exposition of his professional work. Part B displays the wide range of his scientific interests through eighteen original papers contributed by authors with close scientific and personal relations to E. Meister. We hope that a great part of the numerous features of his life and work can be re-discovered from this book."
This book is devoted to new classes of parabolic differential and pseudo-differential equations extensively studied in the last decades, such as parabolic systems of a quasi-homogeneous structure, degenerate equations of the Kolmogorov type, pseudo-differential parabolic equations, and fractional diffusion equations. It will appeal to mathematicians interested in new classes of partial differential equations, and physicists specializing in diffusion processes.
Spontaneous potential (SP) well-logging is one of the most common and useful well-logging techniques in petroleum exploitation. This monograph is the first of its kind on the mathematical model of spontaneous potential well-logging and its numerical solutions. The mathematical model established in this book shows the necessity of introducing Sobolev spaces with fractional power, which seriously increases the difficulty of proving the well-posedness and proposing numerical solution schemes. In this book, in the axisymmetric situation the well-posedness of the corresponding mathematical model is proved and three efficient schemes of numerical solution are proposed, supported by a number of numerical examples to meet practical computation needs.
A beautiful interplay between probability theory (Markov
processes, martingale theory) on the one hand and operator and
spectral theory on the other yields a uniform treatment of several
kinds of Hamiltonians such as the Laplace operator, relativistic
Hamiltonian, Laplace-Beltrami operator, and generators of
Ornstein-Uhlenbeck processes. For such operators regular and
singular perturbations of order zero and their spectral properties
are investigated.
This book presents recent results in the following areas: spectral analysis of one-dimensional Schrodinger and Jacobi operators, discrete WKB analysis of solutions of second order difference equations, and applications of functional models of non-selfadjoint operators. Several developments treated appear for the first time in a book. It is addressed to a wide group of specialists working in operator theory or mathematical physics."
A set in complex Euclidean space is called C-convex if all its intersections with complex lines are contractible, and it is said to be linearly convex if its complement is a union of complex hyperplanes. These notions are intermediates between ordinary geometric convexity and pseudoconvexity. Their importance was first manifested in the pioneering work of Andre Martineau from about forty years ago. Since then a large number of new related results have been obtained by many different mathematicians. The present book puts the modern theory of complex linear convexity on a solid footing, and gives a thorough and up-to-date survey of its current status. Applications include the Fantappie transformation of analytic functionals, integral representation formulas, polynomial interpolation, and solutions to linear partial differential equations."
The main purpose of this handbook is to summarize and to put in order the ideas, methods, results and literature on the theory of random evolutions and their applications to the evolutionary stochastic systems in random media, and also to present some new trends in the theory of random evolutions and their applications. In physical language, a random evolution ( RE ) is a model for a dynamical sys tem whose state of evolution is subject to random variations. Such systems arise in all branches of science. For example, random Hamiltonian and Schrodinger equations with random potential in quantum mechanics, Maxwell's equation with a random refractive index in electrodynamics, transport equations associated with the trajec tory of a particle whose speed and direction change at random, etc. There are the examples of a single abstract situation in which an evolving system changes its "mode of evolution" or "law of motion" because of random changes of the "environment" or in a "medium." So, in mathematical language, a RE is a solution of stochastic operator integral equations in a Banach space. The operator coefficients of such equations depend on random parameters. Of course, in such generality, our equation includes any homogeneous linear evolving system. Particular examples of such equations were studied in physical applications many years ago. A general mathematical theory of such equations has been developed since 1969, the Theory of Random Evolutions."
As our title suggests, there are two aspects in the subject of this book. The first is the mathematical investigation of the dynamics of infinite systems of in teracting particles and the description of the time evolution of their states. The second is the rigorous derivation of kinetic equations starting from the results of the aforementioned investigation. As is well known, statistical mechanics started in the last century with some papers written by Maxwell and Boltzmann. Although some of their statements seemed statistically obvious, we must prove that they do not contradict what me chanics predicts. In some cases, in particular for equilibrium states, it turns out that mechanics easily provides the required justification. However things are not so easy, if we take a step forward and consider a gas is not in equilibrium, as is, e.g., the case for air around a flying vehicle. Questions of this kind have been asked since the dawn of the kinetic theory of gases, especially when certain results appeared to lead to paradoxical conclu sions. Today this matter is rather well understood and a rigorous kinetic theory is emerging. The importance of these developments stems not only from the need of providing a careful foundation of such a basic physical theory, but also to exhibit a prototype of a mathematical construct central to the theory of non-equilibrium phenomena of macroscopic size."
This book covers facts and methods for the reconstruction of a function in a real affine or projective space from data of integrals, particularly over lines, planes, and spheres. Recent results stress explicit analytic methods. Coverage includes the relations between algebraic integral geometry and partial differential equations. The first half of the book includes the ray, the spherical mean transforms in the plane or in 3-space, and inversion from incomplete data.
This is the first publication which follows an agreement by Kluwer Publishers with the Caribbean Mathematics Foundation (CMF), to publish the proceedings of its mathematical activities. To which one should add a disclaimer of sorts, namely that this volume is not the first in a series, because it is not first, and be cause neither party to the agreement construes these publications as elements of a series. Like the work of CMF, the arrangement between it and Kluwer Publishers, evolved gradually, empirically. CMF was created in 1988, and inaugurated with a conference on Ordered Algebraic Structures. Every year since there have been gatherings on a variety of mathematical topics: Locales and Topological Groups in 1989; Positive Operators in 1990; Finite Geometry and Abelian Groups in 1991; Semigroups of Operators last year. It should be stressed, however that in preparing for the first conference, there was no plan which might have augured what came after. One could say that one thing led to another, and one would be right enough.
The notion of singular quadratic form appears in mathematical physics as a tool for the investigation of formal expressions corresponding to perturbations devoid of operator sense. Numerous physical models are based on the use of Hamiltonians containing perturba tion terms with singular properties. Typical examples of such expressions are Schrodin ger operators with O-potentials (- + AD) and Hamiltonians in quantum field theory with perturbations given in terms of operators of creation and annihilation (P("
The aim of this work is to present in a unified approach a series of results concerning totally convex functions on Banach spaces and their applications to building iterative algorithms for computing common fixed points of mea surable families of operators and optimization methods in infinite dimen sional settings. The notion of totally convex function was first studied by Butnariu, Censor and Reich [31] in the context of the space lRR because of its usefulness for establishing convergence of a Bregman projection method for finding common points of infinite families of closed convex sets. In this finite dimensional environment total convexity hardly differs from strict convexity. In fact, a function with closed domain in a finite dimensional Banach space is totally convex if and only if it is strictly convex. The relevancy of total convexity as a strengthened form of strict convexity becomes apparent when the Banach space on which the function is defined is infinite dimensional. In this case, total convexity is a property stronger than strict convexity but weaker than locally uniform convexity (see Section 1.3 below). The study of totally convex functions in infinite dimensional Banach spaces was started in [33] where it was shown that they are useful tools for extrapolating properties commonly known to belong to operators satisfying demanding contractivity requirements to classes of operators which are not even mildly nonexpansive.
The theory of integral and integrodifferential equations has ad vanced rapidly over the last twenty years. Of course the question of existence is an age-old problem of major importance. This mono graph is a collection of some of the most advanced results to date in this field. The book is organized as follows. It is divided into twelve chap ters. Each chapter surveys a major area of research. Specifically, some of the areas considered are Fredholm and Volterra integral and integrodifferential equations, resonant and nonresonant problems, in tegral inclusions, stochastic equations and periodic problems. We note that the selected topics reflect the particular interests of the authors. Donal 0 'Regan Maria Meehan CHAPTER 1 INTRODUCTION AND PRELIMINARIES 1.1. Introduction The aim of this book is firstly to provide a comprehensive existence the ory for integral and integrodifferential equations, and secondly to present some specialised topics in integral equations which we hope will inspire fur ther research in the area. To this end, the first part of the book deals with existence principles and results for nonlinear, Fredholm and Volterra inte gral and integrodifferential equations on compact and half-open intervals, while selected topics (which reflect the particular interests of the authors) such as nonresonance and resonance problems, equations in Banach spaces, inclusions, and stochastic equations are presented in the latter part."
Recent years have been characterized by the increasing amountofpublications in the field ofso-called ill-posed problems. This is easilyunderstandable because we observe the rapid progress of a relatively young branch ofmathematics, ofwhich the first results date back to about 30 years ago. By now, impressive results have been achieved both in the theory ofsolving ill-posed problems and in the applicationsofalgorithms using modem computers. To mention just one field, one can name the computer tomography which could not possibly have been developed without modem tools for solving ill-posed problems. When writing this book, the authors tried to define the place and role of ill posed problems in modem mathematics. In a few words, we define the theory of ill-posed problems as the theory of approximating functions with approximately given arguments in functional spaces. The difference between well-posed and ill posed problems is concerned with the fact that the latter are associated with discontinuous functions. This approach is followed by the authors throughout the whole book. We hope that the theoretical results will be of interest to researchers working in approximation theory and functional analysis. As for particular algorithms for solving ill-posed problems, the authors paid general attention to the principles ofconstructing such algorithms as the methods for approximating discontinuous functions with approximately specified arguments. In this way it proved possible to define the limits of applicability of regularization techniques." |
You may like...
Comparisons of Stochastic Matrices with…
Joel E Cohen, J. H. B. Kemperman, …
Hardcover
R2,737
Discovery Miles 27 370
Electrical Motor Products…
Jianfeng Yu, Ting Zhang, …
Paperback
Embedded Software: Know It All
Jean J. Labrosse, Jack Ganssle, …
Paperback
R1,646
Discovery Miles 16 460
Reversible Logic Synthesis Methodologies…
Saleem Mohammed Ridha Taha
Hardcover
Pacific Service Magazine; v.9 (June…
Pacific Gas and Electric Company
Hardcover
R1,043
Discovery Miles 10 430
|