Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
The purpose of this monograph is two-fold: it introduces a conceptual language for the geometrical objects underlying Painleve equations, and it offers new results on a particular Painleve III equation of type PIII (D6), called PIII (0, 0, 4, 4), describing its relation to isomonodromic families of vector bundles on P1 with meromorphic connections. This equation is equivalent to the radial sine (or sinh) Gordon equation and, as such, it appears widely in geometry and physics. It is used here as a very concrete and classical illustration of the modern theory of vector bundles with meromorphic connections. Complex multi-valued solutions on C* are the natural context for most of the monograph, but in the last four chapters real solutions on R>0 (with or without singularities) are addressed. These provide examples of variations of TERP structures, which are related to tt geometry and harmonic bundles. As an application, a new global picture o0 is given.
Providing an introduction to current research topics in functional analysis and its applications to quantum physics, this book presents three lectures surveying recent progress and open problems. A special focus is given to the role of symmetry in non-commutative probability, in the theory of quantum groups, and in quantum physics. The first lecture presents the close connection between distributional symmetries and independence properties. The second introduces many structures (graphs, C*-algebras, discrete groups) whose quantum symmetries are much richer than their classical symmetry groups, and describes the associated quantum symmetry groups. The last lecture shows how functional analytic and geometric ideas can be used to detect and to quantify entanglement in high dimensions. The book will allow graduate students and young researchers to gain a better understanding of free probability, the theory of compact quantum groups, and applications of the theory of Banach spaces to quantum information. The latter applications will also be of interest to theoretical and mathematical physicists working in quantum theory.
This book is devoted to the study of nonlinear evolution and difference equations of first and second order governed by a maximal monotone operator. This class of abstract evolution equations contains not only a class of ordinary differential equations, but also unify some important partial differential equations, such as the heat equation, wave equation, Schrodinger equation, etc. In addition to their applications in ordinary and partial differential equations, this class of evolution equations and their discrete version of difference equations have found many applications in optimization. In recent years, extensive studies have been conducted in the existence and asymptotic behaviour of solutions to this class of evolution and difference equations, including some of the authors works. This book contains a collection of such works, and its applications. Key selling features: Discusses in detail the study of non-linear evolution and difference equations governed by maximal monotone operator Information is provided in a clear and simple manner, making it accessible to graduate students and scientists with little or no background in the subject material Includes a vast collection of the authors' own work in the field and their applications, as well as research from other experts in this area of study
Many geometrical features of manifolds and fibre bundles modelled on Frechet spaces either cannot be defined or are difficult to handle directly. This is due to the inherent deficiencies of Frechet spaces; for example, the lack of a general solvability theory for differential equations, the non-existence of a reasonable Lie group structure on the general linear group of a Frechet space, and the non-existence of an exponential map in a Frechet-Lie group. In this book, the authors describe in detail a new approach that overcomes many of these limitations by using projective limits of geometrical objects modelled on Banach spaces. It will appeal to researchers and graduate students from a variety of backgrounds with an interest in infinite-dimensional geometry. The book concludes with an appendix outlining potential applications and motivating future research.
This book studies the 20th century evolution of essential ideas in mathematical analysis, a field that since the times of Newton and Leibnitz has been one of the most important and prestigious in mathematics. Each chapter features a comprehensive first part on developments during the period 1900-1950, and then provides outlooks on representative achievements during the later part of the century. The book will be an interesting and useful reference for graduate students and lecturers in mathematics, professional mathematicians and historians of science, as well as the interested layperson.
to Spectral Theory With Applications to Schr6dinger Operators Springer I.M. Sigal P.D. Hislop Department of Mathematics Department of Mathematics University of Kentucky University of Toronto Toronto, Ontario M5S lAI Lexington, KY 40506-0027 USA Canada Editors J .E. Marsden L. Sirovich Control and Dynamical Systems 104-44 Division of Applied Mathematics California 1 nstitute of Technology Brown University Pasadena, CA 91125 Providence, RI 02912 USA USA Mathematics Subject Classification (1991): S1Q05, 35JIO, 35Q55 LJbrary of Congress Cataloging-in-Publication Data Hislop, P.D., 1955- Introduction to spectrallheory : with applications 10 Schrodinger operators I P.D. Hislop, l.M. Siga!. p. cm. - (Applied mathematical sciences; v. 113) lncludes bibliographical references (p. ) and index. ISBN 978-1-4612-6888-8 ISBN 978-1-4612-0741-2 (eBook) DOI 10.1007/978-1-4612-0741-2 1. Schr6dinger operalors. 2. Spectraltheory (Mathematics) I. Siga1, hrael Michae!, 1945- . II. Title. III. Series: Applied mathematlcal sclem:es (Springer-Verlag New York Inc.); v. 113. QA1. A647 voI. 113 IQC 174.17. S3j 510 s-de20 [515 '7223[ 95-12926 Pri nte d o n acid -free paper . (c) 1996 Springer Science+Business Media New York Originally published by Springer-Verlag New Vork in 1996 Softcover reprint ofthe hardcover 15t edition 1996 AII rights reserved. This work may not be translated or copied in whole or in part without the written permission ofthe publisher Springer Science+Business Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis.
This book presents a modern and systematic approach to Linear Response Theory (LRT) by combining analytic and algebraic ideas. LRT is a tool to study systems that are driven out of equilibrium by external perturbations. In particular the reader is provided with a new and robust tool to implement LRT for a wide array of systems. The proposed formalism in fact applies to periodic and random systems in the discrete and the continuum. After a short introduction describing the structure of the book, its aim and motivation, the basic elements of the theory are presented in chapter 2. The mathematical framework of the theory is outlined in chapters 3-5: the relevant von Neumann algebras, noncommutative $L^p$- and Sobolev spaces are introduced; their construction is then made explicit for common physical systems; the notion of isopectral perturbations and the associated dynamics are studied. Chapter 6 is dedicated to the main results, proofs of the Kubo and Kubo-Streda formulas. The book closes with a chapter about possible future developments and applications of the theory to periodic light conductors. The book addresses a wide audience of mathematical physicists, focusing on the conceptual aspects rather than technical details and making algebraic methods accessible to analysts.
The Radon transform represents a function on a manifold by its integrals over certain submanifolds. Integral transformations of this kind have a wide range of applications in modern analysis, integral and convex geometry, medical imaging, and many other areas. Reconstruction of functions from their Radon transforms requires tools from harmonic analysis and fractional differentiation. This comprehensive introduction contains a thorough exploration of Radon transforms and related operators when the basic manifolds are the real Euclidean space, the unit sphere, and the real hyperbolic space. Radon-like transforms are discussed not only on smooth functions but also in the general context of Lebesgue spaces. Applications, open problems, and recent results are also included. The book will be useful for researchers in integral geometry, harmonic analysis, and related branches of mathematics, including applications. The text contains many examples and detailed proofs, making it accessible to graduate students and advanced undergraduates.
The chapters in this volume highlight the state-of-the-art of compressed sensing and are based on talks given at the third international MATHEON conference on the same topic, held from December 4-8, 2017 at the Technical University in Berlin. In addition to methods in compressed sensing, chapters provide insights into cutting edge applications of deep learning in data science, highlighting the overlapping ideas and methods that connect the fields of compressed sensing and deep learning. Specific topics covered include: Quantized compressed sensing Classification Machine learning Oracle inequalities Non-convex optimization Image reconstruction Statistical learning theory This volume will be a valuable resource for graduate students and researchers in the areas of mathematics, computer science, and engineering, as well as other applied scientists exploring potential applications of compressed sensing.
This concise text is intended as an introductory course in measure and integration. It covers essentials of the subject, providing ample motivation for new concepts and theorems in the form of discussion and remarks, and with many worked-out examples. The novelty of Measure and Integration: A First Course is in its style of exposition of the standard material in a student-friendly manner. New concepts are introduced progressively from less abstract to more abstract so that the subject is felt on solid footing. The book starts with a review of Riemann integration as a motivation for the necessity of introducing the concepts of measure and integration in a general setting. Then the text slowly evolves from the concept of an outer measure of subsets of the set of real line to the concept of Lebesgue measurable sets and Lebesgue measure, and then to the concept of a measure, measurable function, and integration in a more general setting. Again, integration is first introduced with non-negative functions, and then progressively with real and complex-valued functions. A chapter on Fourier transform is introduced only to make the reader realize the importance of the subject to another area of analysis that is essential for the study of advanced courses on partial differential equations. Key Features Numerous examples are worked out in detail. Lebesgue measurability is introduced only after convincing the reader of its necessity. Integrals of a non-negative measurable function is defined after motivating its existence as limits of integrals of simple measurable functions. Several inquisitive questions and important conclusions are displayed prominently. A good number of problems with liberal hints is provided at the end of each chapter. The book is so designed that it can be used as a text for a one-semester course during the first year of a master's program in mathematics or at the senior undergraduate level. About the Author M. Thamban Nair is a professor of mathematics at the Indian Institute of Technology Madras, Chennai, India. He was a post-doctoral fellow at the University of Grenoble, France through a French government scholarship, and also held visiting positions at Australian National University, Canberra, University of Kaiserslautern, Germany, University of St-Etienne, France, and Sun Yat-sen University, Guangzhou, China. The broad area of Prof. Nair's research is in functional analysis and operator equations, more specifically, in the operator theoretic aspects of inverse and ill-posed problems. Prof. Nair has published more than 70 research papers in nationally and internationally reputed journals in the areas of spectral approximations, operator equations, and inverse and ill-posed problems. He is also the author of three books: Functional Analysis: A First Course (PHI-Learning, New Delhi), Linear Operator Equations: Approximation and Regularization (World Scientific, Singapore), and Calculus of One Variable (Ane Books Pvt. Ltd, New Delhi), and he is also co-author of Linear Algebra (Springer, New York).
The equations of mathematical physics are the mathematical models of the large class of phenomenon of physics, chemistry, biology, economics, etc. In Sequential Models of Mathematical Physics, the author considers the justification of the process of constructing mathematical models. The book seeks to determine the classic, generalized and sequential solutions, the relationship between these solutions, its direct physical sense, the methods of its practical finding, and its existence. Features Describes a sequential method based on the construction of space completion, as well as its applications in number theory, the theory of distributions, the theory of extremum, and mathematical physics Presentation of the material is carried out on the simplest example of a one-dimensional stationary heat transfer process; all necessary concepts and constructions are introduced and illustrated with elementary examples, which makes the material accessible to a wide area of readers The solution of a specific mathematical problem is obtained as a result of the joint application of methods and concepts from completely different mathematical directions
As in the previous Seminar Notes, the current volume reflects general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. A classical theme in the Local Theory of Banach Spaces which is well represented in this volume is the identification of lower-dimensional structures in high-dimensional objects. More recent applications of high-dimensionality are manifested by contributions in Random Matrix Theory, Concentration of Measure and Empirical Processes. Naturally, the Gaussian measure plays a central role in many of these topics, and is also studied in this volume; in particular, the recent breakthrough proof of the Gaussian Correlation Conjecture is revisited. The interplay of the theory with Harmonic and Spectral Analysis is also well apparent in several contributions. The classical relation to both the primal and dual Brunn-Minkowski theories is also well represented, and related algebraic structures pertaining to valuations and valent functions are discussed. All contributions are original research papers and were subject to the usual refereeing standards.
This book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic Laplacians under both singular and non-singular perturbations. Areas in which the theory has not yet been sufficiently developed, such as the spectral theory of transfer operators or the singular perturbation theory of hyperbolic Laplacians, will profit from the numerical experiments discussed in this book. Detailed descriptions of numerical approaches to the spectra and eigenfunctions of transfer operators and to computations of Selberg zeta functions will be of value to researchers active in analysis, while those researchers focusing more on numerical aspects will benefit from discussions of the analytic theory, in particular those concerning the transfer operator method and the spectral theory of hyperbolic spaces.
During the past two decades there has been active interplay between geometric measure theory and Fourier analysis. This book describes part of that development, concentrating on the relationship between the Fourier transform and Hausdorff dimension. The main topics concern applications of the Fourier transform to geometric problems involving Hausdorff dimension, such as Marstrand type projection theorems and Falconer's distance set problem, and the role of Hausdorff dimension in modern Fourier analysis, especially in Kakeya methods and Fourier restriction phenomena. The discussion includes both classical results and recent developments in the area. The author emphasises partial results of important open problems, for example, Falconer's distance set conjecture, the Kakeya conjecture and the Fourier restriction conjecture. Essentially self-contained, this book is suitable for graduate students and researchers in mathematics.
The main purpose of this book is to give a detailed and complete survey of recent progress related to the real-variable theory of Musielak-Orlicz Hardy-type function spaces, and to lay the foundations for further applications. The real-variable theory of function spaces has always been at the core of harmonic analysis. Recently, motivated by certain questions in analysis, some more general Musielak-Orlicz Hardy-type function spaces were introduced. These spaces are defined via growth functions which may vary in both the spatial variable and the growth variable. By selecting special growth functions, the resulting spaces may have subtler and finer structures, which are necessary in order to solve various endpoint or sharp problems. This book is written for graduate students and researchers interested in function spaces and, in particular, Hardy-type spaces.
This work presents a computational program based on the principles of non-commutative geometry and showcases several applications to topological insulators. Noncommutative geometry has been originally proposed by Jean Bellissard as a theoretical framework for the investigation of homogeneous condensed matter systems. Recently, this approach has been successfully applied to topological insulators, where it facilitated many rigorous results concerning the stability of the topological invariants against disorder.In the first part of the book the notion of a homogeneous material is introduced and the class of disordered crystals defined together with the classification table, which conjectures all topological phases from this class. The manuscript continues with a discussion of electrons' dynamics in disordered crystals and the theory of topological invariants in the presence of strong disorder is briefly reviewed. It is shown how all this can be captured in the language of noncommutative geometry using the concept of non-commutative Brillouin torus, and a list of known formulas for various physical response functions is presented. In the second part, auxiliary algebras are introduced and a canonical finite-volume approximation of the non-commutative Brillouin torus is developed. Explicit numerical algorithms for computing generic correlation functions are discussed. In the third part upper bounds on the numerical errors are derived and it is proved that the canonical-finite volume approximation converges extremely fast to the thermodynamic limit. Convergence tests and various applications concludes the presentation.The book is intended for graduate students and researchers in numerical and mathematical physics.
From the Preface:"...Magnus has had such a profound influence on combinatorial group theory because many of his ideas, startingly and strikingly simple, have provided not only deep insights into a very difficult subject but also powerful methods for dealing with these difficulties...His ideas have also found application in topology, K-theory, the theory of Lie and associative algebras, computational complexity, and also in logic.The expert in group theory, however, will be astonished to find that this reprinting of Magnus' papers contains a very large amount of very important work on diffraction problems and related topics in analysis. Indeed Magnus is one of the very few mathematicians who has done significant work in two completely different fields. There is a large number of mathematicians who know Magnus for his work in analysis but are totally unaware of his work in group theory...His books, his teaching...his many doctoral students, his effect on the thinking of his colleagues both in private conversation and in seminars have also helped to establish him as a mathematician of the first rank and enriched the mathematical community."
Originally published in 1910 as number twelve in the Cambridge Tracts in Mathematics and Mathematical Physics series, this book provides an up-to-date version of Du Bois-Reymond's Infinitarcalcul by the celebrated English mathematician G. H. Hardy. This tract will be of value to anyone with an interest in the history of mathematics or the theory of functions.
The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.
Intuitive Probability and Random Processes using MATLAB (R) is an introduction to probability and random processes that merges theory with practice. Based on the author's belief that only "hands-on" experience with the material can promote intuitive understanding, the approach is to motivate the need for theory using MATLAB examples, followed by theory and analysis, and finally descriptions of "real-world" examples to acquaint the reader with a wide variety of applications. The latter is intended to answer the usual question "Why do we have to study this?" Other salient features are: *heavy reliance on computer simulation for illustration and student exercises *the incorporation of MATLAB programs and code segments *discussion of discrete random variables followed by continuous random variables to minimize confusion *summary sections at the beginning of each chapter *in-line equation explanations *warnings on common errors and pitfalls *over 750 problems designed to help the reader assimilate and extend the concepts Intuitive Probability and Random Processes using MATLAB (R) is intended for undergraduate and first-year graduate students in engineering. The practicing engineer as well as others having the appropriate mathematical background will also benefit from this book. About the Author Steven M. Kay is a Professor of Electrical Engineering at the University of Rhode Island and a leading expert in signal processing. He has received the Education Award "for outstanding contributions in education and in writing scholarly books and texts..." from the IEEE Signal Processing society and has been listed as among the 250 most cited researchers in the world in engineering.
This book offers a systematic treatment of a classic topic in Analysis. It fills a gap in the existing literature by presenting in detail the classic -Hoelder condition and introducing the notion of locally Hoelder-continuous function in an open set in Rn. Further, it provides the essential notions of multidimensional geometry applied to analysis. Written in an accessible style and with proofs given as clearly as possible, it is a valuable resource for graduate students in Mathematical Analysis and researchers dealing with Hoelder-continuous functions and their applications.
Focusing on p-adic and adelic analogues of pseudodifferential equations, this monograph presents a very general theory of parabolic-type equations and their Markov processes motivated by their connection with models of complex hierarchic systems. The Gelfand-Shilov method for constructing fundamental solutions using local zeta functions is developed in a p-adic setting and several particular equations are studied, such as the p-adic analogues of the Klein-Gordon equation. Pseudodifferential equations for complex-valued functions on non-Archimedean local fields are central to contemporary harmonic analysis and mathematical physics and their theory reveals a deep connection with probability and number theory. The results of this book extend and complement the material presented by Vladimirov, Volovich and Zelenov (1994) and Kochubei (2001), which emphasize spectral theory and evolution equations in a single variable, and Albeverio, Khrennikov and Shelkovich (2010), which deals mainly with the theory and applications of p-adic wavelets.
Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincare inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincare inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincare inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincare inequalities.
Lieb-Robinson bounds for multi-commutators are effective mathematical tools to handle analytic aspects of infinite volume dynamics of non-relativistic quantum particles with short-range, possibly time-dependent interactions.In particular, the existence of fundamental solutions is shown for those (non-autonomous) C*-dynamical systems for which the usual conditions found in standard theories of (parabolic or hyperbolic) non-autonomous evolution equations are not given. In mathematical physics, bounds on multi-commutators of an order higher than two can be used to study linear and non-linear responses of interacting particles to external perturbations. These bounds are derived for lattice fermions, in view of applications to microscopic quantum theory of electrical conduction discussed in this book. All results also apply to quantum spin systems, with obvious modifications. In order to make the results accessible to a wide audience, in particular to students in mathematics with little Physics background, basics of Quantum Mechanics are presented, keeping in mind its algebraic formulation. The C*-algebraic setting for lattice fermions, as well as the celebrated Lieb-Robinson bounds for commutators, are explained in detail, for completeness.
This textbook on functional analysis offers a short and concise introduction to the subject. The book is designed in such a way as to provide a smooth transition between elementary and advanced topics and its modular structure allows for an easy assimilation of the content. Starting from a dedicated chapter on the axiom of choice, subsequent chapters cover Hilbert spaces, linear operators, functionals and duality, Fourier series, Fourier transform, the fixed point theorem, Baire categories, the uniform bounded principle, the open mapping theorem, the closed graph theorem, the Hahn-Banach theorem, adjoint operators, weak topologies and reflexivity, operators in Hilbert spaces, spectral theory of operators in Hilbert spaces, and compactness. Each chapter ends with workable problems. The book is suitable for graduate students, but also for advanced undergraduates, in mathematics and physics. Contents: List of Figures Basic Notation Choice Principles Hilbert Spaces Completeness, Completion and Dimension Linear Operators Functionals and Dual Spaces Fourier Series Fourier Transform Fixed Point Theorem Baire Category Theorem Uniform Boundedness Principle Open Mapping Theorem Closed Graph Theorem Hahn-Banach Theorem The Adjoint Operator Weak Topologies and Reflexivity Operators in Hilbert Spaces Spectral Theory of Operators on Hilbert Spaces Compactness Bibliography Index |
You may like...
A Mathematical Journey to Quantum…
Salvatore Capozziello, Wladimir-Georges Boskoff
Hardcover
R2,349
Discovery Miles 23 490
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Vladislav V. Kravchenko, …
Hardcover
R6,266
Discovery Miles 62 660
Singularly Perturbed Boundary Value…
Matteo Dalla Riva, Massimo Lanza De Cristoforis, …
Hardcover
R4,313
Discovery Miles 43 130
Aggregation Operators for Various…
Akansha Mishra, Amit Kumar
Hardcover
R2,815
Discovery Miles 28 150
Bloch-type Periodic Functions: Theory…
Yong-kui Chang, Gaston Mandata N'G'Uerekata, …
Hardcover
R1,998
Discovery Miles 19 980
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R1,982
Discovery Miles 19 820
Hardy Operators On Euclidean Spaces And…
Shanzhen Lu, Zunwei Fu, …
Hardcover
R2,005
Discovery Miles 20 050
|