![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This text is well-designed with respect to the exposition from the preliminary to the more advanced and the applications interwoven throughout. It provides the essential foundations for the theory as well as the basic facts relating to almost periodicity. In six structured and self-contained chapters, the author unifies the treatment of various classes of almost periodic functions, while uniquely addressing oscillations and waves in the almost periodic case. This is the first text to present the latest results in almost periodic oscillations and waves. The presentation level and inclusion of several clearly presented proofs make this work ideal for graduate students in engineering and science. The concept of almost periodicity is widely applicable to continuuum mechanics, electromagnetic theory, plasma physics, dynamical systems, and astronomy, which makes the book a useful tool for mathematicians and physicists.
Homotopy theory and C* algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It serves a wide audience of graduate students and researchers interested in C*-algebras, homotopy theory and applications.
This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne 's rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff 's classical theory on analytic difference equations on the other.
The existence of unitary dilations makes it possible to study arbitrary contractions on a Hilbert space using the tools of harmonic analysis. The first edition of this book was an account of the progress done in this direction in 1950-70. Since then, this work has influenced many other areas of mathematics, most notably interpolation theory and control theory. This second edition, in addition to revising and amending the original text, focuses on further developments of the theory, including the study of two operator classes: operators whose powers do not converge strongly to zero, and operators whose functional calculus (as introduced in Chapter III) is not injective. For both of these classes, a wealth of material on structure, classification and invariant subspaces is included in Chapters IX and X. Several chapters conclude with a sketch of other developments related with (and developing) the material of the first edition.
No books dealing with a comprehensive illustration of the fast developing field of nonlinear analysis had been published for the mathematicians interested in this field for more than a half century until D. H. Hyers, G. Isac and Th. M. Rassias published their book, "Stability of Functional Equations in Several Variables." This book will complement the books of Hyers, Isac and Rassias and of Czerwik (Functional Equations and Inequalities in Several Variables) by presenting mainly the results applying to the Hyers-Ulam-Rassias stability. Many mathematicians have extensively investigated the subjects on the Hyers-Ulam-Rassias stability. This book covers and offers almost all classical results on the Hyers-Ulam-Rassias stability in an integrated and self-contained fashion.
This book lays the foundations for a theory on almost periodic stochastic processes and their applications to various stochastic differential equations, functional differential equations with delay, partial differential equations, and difference equations. It is in part a sequel of authors recent work on almost periodic stochastic difference and differential equations and has the particularity to be the first book that is entirely devoted to almost periodic random processes and their applications. The topics treated in it range from existence, uniqueness, and stability of solutions for abstract stochastic difference and differential equations.
This book collects the notes of the lectures given at an Advanced Course on Dynamical Systems at the Centre de Recerca Matematica (CRM) in Barcelona. The notes consist of four series of lectures. The first one, given by Andrew Toms, presents the basic properties of the Cuntz semigroup and its role in the classification program of simple, nuclear, separable C*-algebras. The second series of lectures, delivered by N. Christopher Phillips, serves as an introduction to group actions on C*-algebras and their crossed products, with emphasis on the simple case and when the crossed products are classifiable. The third one, given by David Kerr, treats various developments related to measure-theoretic and topological aspects of crossed products, focusing on internal and external approximation concepts, both for groups and C*-algebras. Finally, the last series of lectures, delivered by Thierry Giordano, is devoted to the theory of topological orbit equivalence, with particular attention to the classification of minimal actions by finitely generated abelian groups on the Cantor set.
The theory of function spaces endowed with the topology of point wise convergence, or Cp-theory, exists at the intersection of three important areas of mathematics: topological algebra, functional analysis, and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from each of these areas of research. Through over 500 carefully selected problems and exercises, this volume provides a self-contained introduction to Cp-theory and general topology. By systematically introducing each of the major topics in Cp-theory, this volume is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research. Key features include: - A unique problem-based introduction to the theory of function spaces. - Detailed solutions to each of the presented problems and exercises. - A comprehensive bibliography reflecting the state-of-the-art in modern Cp-theory. - Numerous open problems and directions for further research. This volume can be used as a textbook for courses in both Cp-theory and general topology as well as a reference guide for specialists studying Cp-theory and related topics. This book also provides numerous topics for PhD specialization as well as a large variety of material suitable for graduate research.
This book provides a systematic development of the Rubio de Francia theory of extrapolation, its many generalizations and its applications to one and two-weight norm inequalities. The book is based upon a new and elementary proof of the classical extrapolation theorem that fully develops the power of the Rubio de Francia iteration algorithm. This technique allows us to give a unified presentation of the theory and to give important generalizations to Banach function spaces and to two-weight inequalities. We provide many applications to the classical operators of harmonic analysis to illustrate our approach, giving new and simpler proofs of known results and proving new theorems. The book is intended for advanced graduate students and researchers in the area of weighted norm inequalities, as well as for mathematicians who want to apply extrapolation to other areas such as partial differential equations.
The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: "Grafakos's book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises." - Ken Ross, MAA Online
This second edition of Elements of Operator Theory is a concept-driven textbook that includes a significant expansion of the problems and solutions used to illustrate the principles of operator theory. Written in a user-friendly, motivating style intended to avoid the formula-computational approach, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, and Hilbert spaces, culminating with the Spectral Theorem. Included in this edition: more than 150 examples, with several interesting counterexamples that demonstrate the frontiers of important theorems, as many as 300 fully rigorous proofs, specially tailored to the presentation, 300 problems, many with hints, and an additional 20 pages of problems for the second edition. *This self-contained work is an excellent text for the classroom as well as a self-study resource for researchers.
This book contains almost 450 exercises, all with complete solutions; it provides supplementary examples, counter-examples, and applications for the basic notions usually presented in an introductory course in Functional Analysis. Three comprehensive sections cover the broad topic of functional analysis. A large number of exercises on the weak topologies is included.
This volume contains solicited articles by speakers at the workshop ranging from expository surveys to original research papers, each of which carefully refereed. They all bear witness to the very rich mathematics that is connected with the study of elementary operators, may it be multivariable spectral theory, the invariant subspace problem or tensor products of C*-algebras.
Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author's involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume "Sobolev Spaces", published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.
In this volume we study the generalized Bessel functions of the first kind by using a number of classical and new findings in complex and classical analysis. Our aim is to present interesting geometric properties and functional inequalities for these generalized Bessel functions. Moreover, we extend many known inequalities involving circular and hyperbolic functions to Bessel and modified Bessel functions.
In the last few years the use of geometrie methods has permeated many more branehes of mathematies and the seiences. Briefly its role may be eharaeterized as folIows. Whereas methods of mathematieal analysis deseribe phenomena 'in the sm all " geometrie methods eontribute to giving the picture 'in the large'. A seeond no less important property of geometrie methods is the eonvenienee of using its language to deseribe and give qualitative explanations for diverse mathematieal phenomena and patterns. From this point of view, the theory of veetor bundles together with mathematieal analysis on manifolds (global anal- ysis and differential geometry) has provided a major stimulus. Its language turned out to be extremely fruitful: connections on prineipal veetor bundles (in terms of whieh various field theories are deseribed), transformation groups including the various symmetry groups that arise in eonneetion with physieal problems, in asymptotie methods of partial differential equations with small parameter, in elliptie operator theory, in mathematieal methods of classieal meehanies and in mathematieal methods in eeonomies. There are other eur- rently less signifieant applieations in other fields. Over a similar period, uni- versity edueation has ehanged eonsiderably with the appearanee of new courses on differential geometry and topology. New textbooks have been published but 'geometry and topology' has not, in our opinion, been wen eovered from a prae- tieal applieations point of view.
One service mathematics has rendered the "Et moi, ..., si j'avait su comment en revenir, human race. It has put common sense back je n 'y serais point all
A. Dynin: Pseudo-differential operators on Heisenberg groups.- A. Dynin: An index formula for elliptic boundary problems.- G.I. Eskin: General mixed boundary problems for elliptic differential equations.- B. Helffer: Hypoellipticite pour des operateurs differentiels sur des groupes de Lie nilpotents.- J.J. Kohn: Lectures on degenerate elliptic problems.- K. Taira: Conditions necessaires et suffisantes pour l'existence et l'unicite des solutions du probleme de la derivee oblique.- F. Treves: Boundary value problems for elliptic equations.
These notes are devoted to the study of some classical problems in the Geometry of Banach spaces. The novelty lies in the fact that their solution relies heavily on techniques coming from Descriptive Set Theory. Thecentralthemeisuniversalityproblems.Inparticular, thetextprovides an exposition of the methods developed recently in order to treat questions of the following type: (Q) LetC be a class of separable Banach spaces such that every space X in the classC has a certain property, say property (P). When can we ?nd a separable Banach space Y which has property (P) and contains an isomorphic copy of every member ofC? We will consider quite classical properties of Banach spaces, such as "- ing re?exive," "having separable dual," "not containing an isomorphic copy of c," "being non-universal," etc. 0 It turns out that a positive answer to problem (Q), for any of the above mentioned properties, is possible if (and essentially only if) the classC is "simple." The "simplicity" ofC is measured in set theoretic terms. Precisely, if the classC is analytic in a natural "coding" of separable Banach spaces, then we can indeed ?nd a separable space Y which is universal for the class C and satis?es the requirements imposed above.
Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodym property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.
This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many readers will benefit from the introductory chapters on the spectral theory of dynamical systems; others will find complements on the spectral study of bounded sequences; finally, a very basic presentation of substitutions, together with some recent findings and questions, rounds out the book.
This book describes the Schur complement as a rich and basic tool in mathematical research and applications and discusses many significant results that illustrate its power and fertility. Coverage includes historical development, basic properties, eigenvalue and singular value inequalities, matrix inequalities in both finite and infinite dimensional settings, closure properties, and applications in statistics, probability, and numerical analysis.
This is the third Selecta of publications of Elliott Lieb, the first two being Stabil ity of Matter: From Atoms to Stars, edited by Walter Thirring, and Inequalities, edited by Michael Loss and Mary Beth Ruskai. A companion fourth Selecta on Statistical Mechanics is also edited by us. Elliott Lieb has been a pioneer of the discipline of mathematical physics as it is nowadays understood and continues to lead several of its most active directions today. For the first part of this selecta we have made a selection of Lieb's works on Condensed Matter Physics. The impact of Lieb's work in mathematical con densed matter physics is unrivaled. It is fair to say that if one were to name a founding father of the field, Elliott Lieb would be the only candidate to claim this singular position. While in related fields, such as Statistical Mechanics and Atomic Physics, many key problems are readily formulated in unambiguous mathematical form, this is less so in Condensed Matter Physics, where some say that rigor is "probably impossible and certainly unnecessary." By carefully select ing the most important questions and formulating them as well-defined mathemat ical problems, and then solving a good number of them, Lieb has demonstrated the quoted opinion to be erroneous on both counts. What is true, however, is that many of these problems turn out to be very hard. It is not unusual that they take a decade (even several decades) to solve."
This book offers a modern way of dealing with the problems of equilibrium states of Bose systems. Starting with the variation principle of statistical mechanics and the energy-entropy balance principle as equilibrium criteria, results for general boson systems and models are explicitly derived using simple functional analytic calculus. Bridging the gap between general theoretical physics and the phenomenological research in the field of Bose systems, this book provides an insight into the fascinating quantum world of bosons. Key topics include the occurrence of BEC and its intimate structural relation with the phenomena of spontaneous symmetry breaking and off-diagonal long range order; the condensate equation; the issue concerning the choice of boundary conditions; solvable versus non-solvable boson models; the set of quasi-free boson states; the role of dissipative perturbations; and the surprising but general relation between general quantum fluctuations and boson systems. Only some knowledge of quantum mechanics and undergraduate algebra and analysis is assumed. This textbook brings students and researchers smoothly from general concepts to vivid applications.
Covers Fourier transformation and Fourier series with a particular emphasis on window functions. Written for students and practitioners who deal with Fourier transformation. Including many illustrations and easy-to-solve exercises Presents serious science in an amusing way |
![]() ![]() You may like...
Einstein vs. Bergson - An Enduring…
Alessandra Campo, Simone Gozzano
Hardcover
R3,139
Discovery Miles 31 390
Thrown Upon the World - A True Story
George Kolber, Charles Kolber
Hardcover
R598
Discovery Miles 5 980
|