![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
Recent research has produced a large number of results concerning the Stone-Cech compactification or involving it in a central manner. The goal of this volume is to make many of these results easily accessible by collecting them in a single source together with the necessary introductory material. The author's interest in this area had its origin in his fascination with the classic text Rings of Continuous Functions by Leonard Gillman and Meyer Jerison. This excellent synthesis of algebra and topology appeared in 1960 and did much to draw attention to the Stone-Cech compactification {3X as a tool to investigate the relationships between a space X and the rings C(X) and C*(X) of real-valued continuous functions. Although in the approach taken here {3X is viewed as the object of study rather than as a tool, the influence of Rings of Continuous Functions is clearly evident. Three introductory chapters make the book essentially self-contained and the exposition suitable for the student who has completed a first course in topology at the graduate level. The development of the Stone Cech compactification and the more specialized topological prerequisites are presented in the first chapter. The necessary material on Boolean algebras, including the Stone Representation Theorem, is developed in Chapter 2. A very basic introduction to category theory is presented in the beginning of Chapter 10 and the remainder of the chapter is an introduction to the methods of categorical topology as it relates to the Stone-Cech compactification."
Irene Dorfman died in Moscow on April 6, 1994, shortly after seeing her beautiful book on Dirac structures [I]. The present volume contains a collection of papers aiming at celebrating her outstanding contributions to mathematics. Her most important discoveries are associated with the algebraic structures arising in the study of integrable equations. Most of the articles contained in this volume are in the same spirit. Irene, working as a student of Israel Gel'fand made the fundamental dis- covery that integrability is closely related to the existence of bi-Hamiltonian structures [2], [3]. These structures were discovered independently, and al- most simultaneously, by Magri [4] (see also [5]). Several papers in this book are based on this remarkable discovery. In particular Fokas, Olver, Rosenau construct large classes on integrable equations using bi-Hamiltonian struc- tures, Fordy, Harris derive such structures by considering the restriction of isospectral flows to stationary manifolds and Fuchssteiner discusses similar structures in a rather abstract setting.
These volumes are companions to the treatise; "Fundamentals of the Theory of Operator Algebras," which appeared as Volume 100 - I and II in the series, Pure and Applied Mathematics, published by Academic Press in 1983 and 1986, respectively. As stated in the preface to those volumes, "Their primary goal is to teach the sub ject and lead the reader to the point where the vast recent research literature, both in the subject proper and in its many applications, becomes accessible." No attempt was made to be encyclopCEdic; the choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. By way of supplementing the topics selected for presentation in "Fundamentals," a substantial list of exercises comprises the last section of each chapter. An equally important purpose of those exer cises is to develop "hand-on" skills in use of the techniques appearing in the text. As a consequence, each exercise was carefully designed to depend only on the material that precedes it, and separated into segments each of which is realistically capable of solution by an at tentive, diligent, well-motivated reader."
Frechet spaces have been studied since the days of Banach. These spaces, their inductive limits and their duals played a prominent role in the development of the theory of locally convex spaces. Also they are natural tools in many areas of real and complex analysis. The pioneering work of Grothendieck in the fifties has been one of the important sources of inspiration for research in the theory of Frechet spaces. A structure theory of nuclear Frechet spaces emerged and some important questions posed by Grothendieck were settled in the seventies. In particular, subspaces and quotient spaces of stable nuclear power series spaces were completely characterized. In the last years it has become increasingly clear that the methods used in the structure theory of nuclear Frechet spaces actually provide new insight to linear problems in diverse branches of analysis and lead to solutions of some classical problems. The unifying theme at our Workshop was the recent developments in the theory of the projective limit functor. This is appropriate because of the important role this theory had in the recent research. The main results of the structure theory of nuclear Frechet spaces can be formulated and proved within the framework of this theory. A major area of application of the theory of the projective limit functor is to decide when a linear operator is surjective and, if it is, to determine whether it has a continuous right inverse.
Concern with the class of problems investigated in this monograph began for me as a graduate student at MIT (1958-62) when serving as research assistant to Professor Eric Reissner who initiated me into the subject and whose influence - whether directly or dialectically - is probably discernable in the contours of the work. My fIrst attempt at a systematic derivation of the equations of shell theory was made while on a summer assistantship with Professor Norman Levinson in 1960. Beyond gaining a sobering reali- zation of the complexities involved, I made little progress at that time. In 1962-64 while a Temporary Member at the Courant Institute of Mathematical Sciences (NYU) I made a fresh start, while benefIting from my association and discus- sions with Professor Fritz John. With the conviction that the full integration of the equations with respect to the thickness coordinate, by means of the Legendre repre- sentations, must lead to a clarifIcation of the position of the two-dimensional theory in its three-dimensional context, the necessary computations were completed during that period. Several years passed while I became reconciled with the thought that the material needed to be organized as a monograph. This was done during 1969-70 while at the NASA Electronics Research Center in Cambridge, MA.
The subject of partial differential equations has an unchanging core of material but is constantly expanding and evolving. Introduction to Partial Differential Equations with MATLAB is a careful integration of traditional core topics with modern topics, taking full advantage of the computational power of MATLAB to enhance the learning experience. This advanced text/reference is an introduction to partial differential equations covering the traditional topics within a modern context. To provide an up-to-date treatment, techniques of numerical computation have been included with carefully selected nonlinear topics, including nonlinear first order equations. Each equation studied is placed in the appropriate physical context. The analytical aspects of solutions are discussed in an integrated fashion with extensive examples and exercises, both analytical and computational. The book is excellent for classroom use and can be used for self-study purposes.Topic and Features: * Nonlinear equations including nonlinear conservation laws; * Dispersive wave equations and the Schrodinger equation; * Numerical methods for each core equation including finite difference methods, finite element methods, and the fast Fourier transform; * Extensive use of MATLAB programs in exercise sets. MATLAB m files for numerical and graphics programs available by ftp from this web site. This text/reference is an excellent resources designed to introduce advanced students in mathematics, engineering and sciences to partial differential equations. It is also suitable as a self-study resource for professionals and practitioners.
The theory of Laplace transformation is an important part of the mathematical background required for engineers, physicists and mathematicians. Laplace transformation methods provide easy and effective techniques for solving many problems arising in various fields of science and engineering, especially for solving differential equations. What the Laplace transformation does in the field of differential equations, the z-transformation achieves for difference equations. The two theories are parallel and have many analogies. Laplace and z transformations are also referred to as operational calculus, but this notion is also used in a more restricted sense to denote the operational calculus of Mikusinski. This book does not use the operational calculus of Mikusinski, whose approach is based on abstract algebra and is not readily accessible to engineers and scientists. The symbolic computation capability of Mathematica can now be used in favor of the Laplace and z-transformations. The first version of the Mathematica Package LaplaceAndzTransforrns developed by the author appeared ten years ago. The Package computes not only Laplace and z-transforms but also includes many routines from various domains of applications. Upon loading the Package, about one hundred and fifty new commands are added to the built-in commands of Mathematica. The code is placed in front of the already built-in code of Laplace and z-transformations of Mathematica so that built-in functions not covered by the Package remain available. The Package substantially enhances the Laplace and z-transformation facilities of Mathematica. The book is mainly designed for readers working in the field of applications."
This monograph presents a complete and self-contained solution to the long-standing problem of giving a geometric description of state spaces of C*-algebras and von Neumann algebras, and of their Jordan algebraic analogs (JB-algebras and JBW-algebras). The material, which previously has appeared only in research papers and required substantial prerequisites for a reader's understanding, is made accessible here to a broad mathematical audience. Key features include: The properties used to describe state spaces are primarily of a geometric nature, but many can also be interpreted in terms of physics.There are numerous remarks discussing these connections * A quick introduction to Jordan algebras is given; no previous knowledge is assumed and all necessary background on the subject is given * A discussion of dynamical correspondences, which tie together Lie and Jordan structures, and relate the observables and the generators of time evolution in physics * The connection with Connes' notions of orientation and homogeneity in cones is explained * Chapters conclude with notes placing the material in historical context * Prerequisites are standard graduate courses in real and complex variables, measure theory, and functional analysis * Excellent bibliography and index In the authors' previous book, State Spaces of Operator Algebras: Basic Theory, Orientations and C*-products (ISBN 0-8176-3890-3), the role of orientations was examined and all the prerequisites on C*- algebras and von Neumann algebras, needed for this work, were provided in detail. These requisites, as well as all relevant definitions and results with reference back to State Spaces, are summarized in an appendix, further emphasizing the self-contained nature of this work.Geometry of State Spaces of Operator Algebras is intended for specialists in operator algebras, as well as graduate students and
Over the last decades, the study of nonself-adjoint or nonunitary operators has been mainly based on the method of characteristic functions and on methods of model construction or dilatation for corresponding operator classes. The characteristic function is a mathematical object (a matrix or an operator) associated with a class of nonself-adjoint (or nonunitary) operators that describes the spectral properties of the operators from this class. It may happen that characteristic functions are simpler than the corresponding operators; in this case one can significantly simplify the problem under investigation for these operators. For given characteristic function of an operator A, we construct, in explicit form, an operator that serves as a model A of the operator A in a certain linear space (to some extent this resembles the construction of diagonal and triangular matrices' unitary equivalent or similar, to certain matrix classes). The study of this model operator may give much information about the original operator (its spectrum, the completeness of the system of root subspaces, etc.). In this book, we consider various classes of linear (generally speaking, unbounded) operators, construct and study their characteristic functions and models. We also present a detailed study of contractiol)s and dissipative operators (in particular, from the viewpoint of their triangulation).
The present lectures are based on a course deli vered by the authors at the Uni versi ty of Bucharest, in the winter semester 1985-1986. Without aiming at completeness, the topics selected cover all the major questions concerning hyponormal operators. Our main purpose is to provide the reader with a straightforward access to an active field of research which is strongly related to the spectral and perturbation theories of Hilbert space operators, singular integral equations and scattering theory. We have in view an audience composed especially of experts in operator theory or integral equations, mathematical physicists and graduate students. The book is intended as a reference for the basic results on hyponormal operators, but has the structure of a textbook. Parts of it can also be used as a second year graduate course. As prerequisites the reader is supposed to be acquainted with the basic principles of functional analysis and operator theory as covered for instance by Reed and Simon [1]. A t several stages of preparation of the manuscript we were pleased to benefit from proper comments made by our cOlleagues: Grigore Arsene, Tiberiu Constantinescu, Raul Curto, Jan Janas, Bebe Prunaru, Florin Radulescu, Khrysztof Rudol, Konrad Schmudgen, Florian-Horia Vasilescu. We warmly thank them all. We are indebted to Professor Israel Gohberg, the editor of this series, for his constant encouragement and his valuable mathematical advice. We wish to thank Mr. Benno Zimmermann, the Mathematics Editor at Birkhauser Verlag, for cooperation and assistance during the preparation of the manuscript.
The linear theory of oscillations traditionally operates with frequency representa- tions based on the concepts of a transfer function and a frequency response. The universality of the critria of Nyquist and Mikhailov and the simplicity and obvi- ousness of the application of frequency and amplitude - frequency characteristics in analysing forced linear oscillations greatly encouraged the development of practi- cally important nonlinear theories based on various forms of the harmonic balance hypothesis [303]. Therefore mathematically rigorous frequency methods of investi- gating nonlinear systems, which appeared in the 60s, also began to influence many areas of nonlinear theory of oscillations. First in this sphere of influence was a wide range of problems connected with multidimensional analogues of the famous van der Pol equation describing auto- oscillations of generators of various radiotechnical devices. Such analogues have as a rule a unique unstable stationary point in the phase space and are Levinson dis- sipative. One of the pioneering works in this field, which started the investigation of a three-dimensional analogue of the van der Pol equation, was K. O. Friedrichs's paper [123]. The author suggested a scheme for constructing a positively invariant set homeomorphic to a torus, by means of which the existence of non-trivial periodic solutions was established. That scheme was then developed and improved for dif- ferent classes of multidimensional dynamical systems [131, 132, 297, 317, 334, 357, 358]. The method of Poincare mapping [12, 13, 17] in piecewise linear systems was another intensively developed direction.
Pseudodifferential analysis, introduced in this book in a way adapted to the needs of number theorists, relates automorphic function theory in the hyperbolic half-plane to automorphic distribution theory in the plane. Spectral-theoretic questions are discussed in one or the other environment: in the latter one, the problem of decomposing automorphic functions in according to the spectral decomposition of the modular Laplacian gives way to the simpler one of decomposing automorphic distributions in R2 into homogeneous components. The Poincare summation process, which consists in building automorphic distributions as series of "g"-transforms, for "g E SL"(2";"Z), of some initial function, say in "S"(R2), is analyzed in detail. On, a large class of new automorphic functions or measures is built in the same way: one of its features lies in an interpretation, as a spectral density, of the restriction of the zeta function to any line within the critical strip. The book is addressed to a wide audience of advanced graduate students and researchers working in analytic number theory or pseudo-differential analysis."
Multiparameter processes extend the existing one-parameter theory of random processes in an elegant way, and have found connections to diverse disciplines such as probability theory, real and functional analysis, group theory, analytic number theory, and group renormalization in mathematical physics, to name a few.This book lays the foundation of aspects of the rapidly developing subject of random fields, and is designed for a second graduate course in probability and beyond. Its intended audience is pure, as well as applied, mathematicians.
N atur non facit saltus? This book is devoted to the fundamental problem which arises contin uously in the process of the human investigation of reality: the role of a mathematical apparatus in a description of reality. We pay our main attention to the role of number systems which are used, or may be used, in this process. We shall show that the picture of reality based on the standard (since the works of Galileo and Newton) methods of real analysis is not the unique possible way of presenting reality in a human brain. There exist other pictures of reality where other num ber fields are used as basic elements of a mathematical description. In this book we try to build a p-adic picture of reality based on the fields of p-adic numbers Qp and corresponding analysis (a particular case of so called non-Archimedean analysis). However, this book must not be considered as only a book on p-adic analysis and its applications. We study a much more extended range of problems. Our philosophical and physical ideas can be realized in other mathematical frameworks which are not obliged to be based on p-adic analysis. We shall show that many problems of the description of reality with the aid of real numbers are induced by unlimited applications of the so called Archimedean axiom."
The papers contained in this volume are an indication of the topics th discussed and the interests of the participants of The 9 International Conference on Probability in Banach Spaces, held at Sandjberg, Denmark, August 16-21, 1993. A glance at the table of contents indicates the broad range of topics covered at this conference. What defines research in this field is not so much the topics considered but the generality of the ques tions that are asked. The goal is to examine the behavior of large classes of stochastic processes and to describe it in terms of a few simple prop erties that the processes share. The reward of research like this is that occasionally one can gain deep insight, even about familiar processes, by stripping away details, that in hindsight turn out to be extraneous. A good understanding about the disciplines involved in this field can be obtained from the recent book, Probability in Banach Spaces, Springer-Verlag, by M. Ledoux and M. Thlagrand. On page 5, of this book, there is a list of previous conferences in probability in Banach spaces, including the other eight international conferences. One can see that research in this field over the last twenty years has contributed significantly to knowledge in probability and has had important applications in many other branches of mathematics, most notably in statistics and functional analysis."
The theory of vector lattices, stemming from the mid-thirties, is now at the stage where its main achievements are being summarized. The sweeping changes of the last two decades have changed its image completely. The range of its application was expanded and enriched so as to embrace diverse branches of the theory of functions, geometry of Banach spaces, operator theory, convex analysis, etc. Furthermore, the theory of vector lattices was impregnated with principally new tools and techniques from other sections of mathematics. These circumstances gave rise to a series of mono graphs treating separate aspects of the theory and oriented to specialists. At the same time, the necessity of a book intended for a wider readership, reflecting the modern diretions of research became clear. The present book is meant to be an attempt at implementing this task. Although oriented to readers making their first acquaintance with vector-lattice theory, it is composed so that the main topics dealt with in the book reach the current level of research in the field, which is of interest and import for specialists. The monograph was conceived so as to be divisible into two parts that can be read independently of one another. The first part is mainly Chapter 1, devoted to the so-called Boolean-valued analysis of vector lattices. The term designates the applica tion of the theory of Boolean-valued models by D. Scott, R. Solovay and P.
The main goal of this work is to revisit the proof of the global stability of Minkowski space by D. Christodoulou and S. Klainerman, [Ch-KI]. We provide a new self-contained proof of the main part of that result, which concerns the full solution of the radiation problem in vacuum, for arbitrary asymptotically flat initial data sets. This can also be interpreted as a proof of the global stability of the external region of Schwarzschild spacetime. The proof, which is a significant modification of the arguments in [Ch-Kl], is based on a double null foliation of spacetime instead of the mixed null-maximal foliation used in [Ch-Kl]. This approach is more naturally adapted to the radiation features of the Einstein equations and leads to important technical simplifications. In the first chapter we review some basic notions of differential geometry that are sys tematically used in all the remaining chapters. We then introduce the Einstein equations and the initial data sets and discuss some of the basic features of the initial value problem in general relativity. We shall review, without proofs, well-established results concerning local and global existence and uniqueness and formulate our main result. The second chapter provides the technical motivation for the proof of our main theorem.
This volume collects the notes of the CIME course "Nonlinear PDE s and applications" held in Cetraro (Italy) on June 23 28, 2008. It consists of four series of lectures, delivered by Stefano Bianchini (SISSA, Trieste), Eric A. Carlen (Rutgers University), Alexander Mielke (WIAS, Berlin), and Cedric Villani (Ecole Normale Superieure de Lyon). They presented a broad overview of far-reaching findings and exciting new developments concerning, in particular, optimal transport theory, nonlinear evolution equations, functional inequalities, and differential geometry. A sampling of the main topics considered here includes optimal transport, Hamilton-Jacobi equations, Riemannian geometry, and their links with sharp geometric/functional inequalities, variational methods for studying nonlinear evolution equations and their scaling properties, and the metric/energetic theory of gradient flows and of rate-independent evolution problems. The book explores the fundamental connections between all of these topics and points to new research directions in contributions by leading experts in these fields.
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin s global theory of pseudo-differential operators, and Feichtinger s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by Bopp operators (also called Landau operators in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
Biane, Philippe: Non-commutative stochastic calculus.-Voiculescu, Dan-Virgil: Lectures on free probability.- Guionnet, Alice: Large random matrices: Lectures on macroscopic asymptotics. "
A carefully prepared account of the basic ideas in Fourier analysis and its applications to the study of partial differential equations. The author succeeds to make his exposition accessible to readers with a limited background, for example, those not acquainted with the Lebesgue integral. Readers should be familiar with calculus, linear algebra, and complex numbers. At the same time, the author has managed to include discussions of more advanced topics such as the Gibbs phenomenon, distributions, Sturm-Liouville theory, Cesaro summability and multi-dimensional Fourier analysis, topics which one usually does not find in books at this level. A variety of worked examples and exercises will help the readers to apply their newly acquired knowledge.
This volume reflects the variety of areas where Maz'ya's results are fundamental, influential and/or pioneering. New advantages in such areas are presented by world-recognized experts and include, in particularly, Beurling's minimum principle, inverse hyperbolic problems, degenerate oblique derivative problems, the Lp-contractivity of the generated semigroups, some class of singular integral operators, general Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities,domains with rough boundaries, integral and supremum operators, finite rank Toeplitz operators, etc.
Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2002. The subject of this book is the study of automorphic distributions, by which is meant distributions on R2 invariant under the linear action of SL(2, Z), and of the operators associated with such distributions under the Weyl rule of symbolic calculus. Researchers and postgraduates interested in pseudodifferential analyis, the theory of non-holomorphic modular forms, and symbolic calculi will benefit from the clear exposition and new results and insights.
The NATO Advanced Study Institute "Microlocal Analysis and Spectral The ory" was held in Tuscany (Italy) at Castelvecchio Pascoli, in the district of Lucca, hosted by the international vacation center "11 Ciocco," from September 23 to October 3, 1996. The Institute recorded the considerable progress realized recently in the field of Microlocal Analysis. In a broad sense, Microlocal Analysis is the modern version of the classical Fourier technique in solving partial differential equa tions, where now the localization proceeding takes place with respect to the dual variables too. Precisely, through the tools of pseudo-differential operators, wave-front sets and Fourier integral operators, the general theory of the lin ear partial differential equations is now reaching a mature form, in the frame of Schwartz distributions or other generalized functions. At the same time, Microlocal Analysis has grown up into a definite and independent part of Math ematical Analysis, with other applications all around Mathematics and Physics, one major theme being Spectral Theory for Schrodinger equation in Quantum Mechanics."
Aimed at mathematicians, physicists, engineers, and grad students, this monograph will be useful for the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and serves as an excellent classroom text or a valuable self-study resource. |
You may like...
Linear Systems, Signal Processing and…
Daniel Alpay, Mihaela B. Vajiac
Hardcover
R4,274
Discovery Miles 42 740
Symplectic Difference Systems…
Ondrej Dosly, Julia Elyseeva, …
Hardcover
Hardy Operators On Euclidean Spaces And…
Shanzhen Lu, Zunwei Fu, …
Hardcover
R1,914
Discovery Miles 19 140
Hausdorff Calculus - Applications to…
Yingjie Liang, Wen Chen, …
Hardcover
R4,318
Discovery Miles 43 180
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R1,892
Discovery Miles 18 920
Tensor Norms and Operator Ideals, Volume…
A. Defant, K. Floret
Hardcover
R1,966
Discovery Miles 19 660
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
|