![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy 2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin l, 2, 3]. In 1931, Kolmogorov l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman 1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals)."
The aim of the book is to present the state of the art of the theory of symmetric (Hermitian) matrix Riccati equations and to contribute to the development of the theory of non-symmetric Riccati equations as well as to certain classes of coupled and generalized Riccati equations occurring in differential games and stochastic control. The volume offers a complete treatment of generalized and coupled Riccati equations. It deals with differential, discrete-time, algebraic or periodic symmetric and non-symmetric equations, with special emphasis on those equations appearing in control and systems theory. Extensions to Riccati theory allow to tackle robust control problems in a unified approach. The book is intended to make available classical and recent results to engineers and mathematicians alike. It is accessible to graduate students in mathematics, applied mathematics, control engineering, physics or economics. Researchers working in any of the fields where Riccati equations are used can find the main results with the proper mathematical background.
The Third International Conference on Non-associative Algebra and its Applications was held in Oviedo (Spain) from July 12th to July 17th, 1993. The two previous Conferences were held in Novosibirsk and Tashkent respectively. The OrganisingCommittee ofthe Conference was composed ofSantos Gonzalez Jimenez from Oviedo University and Alberto Elduque and Consuelo Martinez from Zaragoza University. The Scientific Committee was made up of the following members: G. Benkart, University of Wisconsin, USA C. Burgueiio, University of La Frontera, CHILE A. Galindo, University of Madrid, SPAIN S. Gonzalez, University of Oviedo, SPAIN P. Holgate, University of London, ENGLAND N. Jacobson, University of Yale, USA W. Kaup, University of Tiibingen . GER IANY E. Kleinfeld, Univesity of Iowa. USA A. J. Kostrikin, University of Moscow, RUSSIA K. McCrimmon, University of Virginia, USA A. Micali, University of Montpellier, FRANCE R. Moody, University of Alberta, CANADA H. C. Myung, University of Nort. hern Iowa. USA S. Okubo, University of Rochester, USA M. Osborn, University of Wisconsin. USA A. Perez de Vargas, University of Madrid. SPAIN H. Petersson, Fern-University, GERI\1AW{ M. Racine, University of Otawa, CANADA A. Rodriguez, University of Granada, SPAIN I. Shestakov, University of Novosibirsk, RUSSIA A. Slinko, University of Moscow. RUSSIA E. Taft, University of Rutgers, USA E. Zelmanov, University of Wisconsin. USA Unfortunately, one ofthem, Professor Philip Holgate, died some months before the Conference took place.
One service mathematics has rendered the 'Et moi, "0' si j'avait su oomment en revenir. human race. It has put common sense back je n'y serais point aile: ' Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'el: re of this series."
This volume consists of the plenary lectures and invited talks in the special session on pseudo-differential operators given at the Fourth Congress of the International Society for Analysis, Applications and Computation (ISAAC) held at York University in Toronto, August 11-16, 2003. The theme is to look at pseudo-differential operators in a very general sense and to report recent advances in a broad spectrum of topics, such as pde, quantization, filters and localization operators, modulation spaces, and numerical experiments in wavelet transforms and orthonormal wavelet bases.
This volume focuses on recent developments in non-linear and hyperbolic equations. It will be a most valuable resource for researchers in applied mathematics, the theory of wavelets, and in mathematical and theoretical physics. Nine up-to-date contributions have been written on invitation by experts in the respective fields. The book is the third volume of the subseries "Advances in Partial Differential Equations."
This volume consists of articles contributed by participants at the fourth Ja pan-U.S. Joint Seminar on Operator Algebras. The seminar took place at the University of Pennsylvania from May 23 through May 27, 1988 under the auspices of the Mathematics Department. It was sponsored and supported by the Japan Society for the Promotion of Science and the National Science Foundation (USA). This sponsorship and support is acknowledged with gratitude. The seminar was devoted to discussions and lectures on results and prob lems concerning mappings of operator algebras (C*-and von Neumann alge bras). Among the articles contained in these proceedings, there are papers dealing with actions of groups on C* algebras, completely bounded mappings, index and subfactor theory, and derivations of operator algebras. The seminar was held in honor of the sixtieth birthday of Sh6ichir6 Sakai, one of the great leaders of Functional Analysis for many decades. This vol ume is dedicated to Professor Sakai, on the occasion of that birthday, with the respect and admiration of all the contributors and the participants at the seminar. H. Araki Kyoto, Japan R. Kadison Philadelphia, Pennsylvania, USA Contents Preface.... ..... ....... ........... ...... ......... ................ ...... ............... ... vii On Convex Combinations of Unitary Operators in C*-Algebras UFFE HAAGERUP ......................................................................... ."
This self-contained title demonstrates an important interplay between abstract and concrete operator theory. Key ideas are developed in a step-by-step approach, beginning with required background and historical material, and culminating in the final chapters with state-of-the-art topics. Good examples, bibliography and index make this text a valuable classroom or reference resource.
This volume contains the proceedings of the Colloquium "Analysis, Manifolds and Physics" organized in honour of Yvonne Choquet-Bruhat by her friends, collaborators and former students, on June 3, 4 and 5, 1992 in Paris. Its title accurately reflects the domains to which Yvonne Choquet-Bruhat has made essential contributions. Since the rise of General Relativity, the geometry of Manifolds has become a non-trivial part of space-time physics. At the same time, Functional Analysis has been of enormous importance in Quantum Mechanics, and Quantum Field Theory. Its role becomes decisive when one considers the global behaviour of solutions of differential systems on manifolds. In this sense, General Relativity is an exceptional theory in which the solutions of a highly non-linear system of partial differential equations define by themselves the very manifold on which they are supposed to exist. This is why a solution of Einstein's equations cannot be physically interpreted before its global behaviour is known, taking into account the entire hypothetical underlying manifold. In her youth, Yvonne Choquet-Bruhat contributed in a spectacular way to this domain stretching between physics and mathematics, when she gave the proof of the existence of solutions to Einstein's equations on differential manifolds of a quite general type. The methods she created have been worked out by the French school of mathematics, principally by Jean Leray. Her first proof of the local existence and uniqueness of solutions of Einstein's equations inspired Jean Leray's theory of general hyperbolic systems.
In this volume the investigations of filtering problems, a start on which has been made in 55], are being continued and are devoted to theoretical problems of processing stochastic fields. The derivation of the theory of processing stochastic fields is similar to that of the theory extensively developed for stochastic processes ('stochastic fields with a one-dimensional domain'). Nevertheless there exist essential distinctions between these cases making a construction of the theory for the multi-dimensional case in such a way difficult. Among these are the absence of the notion of the 'past-future' in the case of fields, which plays a fundamental role in constructing stochastic processes theory. So attempts to introduce naturally the notion of the causality (non-anticipativity) when synthesising stable filters designed for processing fields have not met with success. Mathematically, principal distinctions between multi-dimensional and one-dimensional cases imply that the set of roots of a multi-variable polyno mial does not necessary consist of a finite number of isolated points. From the main theorem of algebra it follows that in the one-dimensional case every poly nomial of degree n has just n roots (considering their multiplicity) in the com plex plane. As a consequence, in particular, an arbitrary rational function cents(."
By a Hilbert-space operator we mean a bounded linear transformation be tween separable complex Hilbert spaces. Decompositions and models for Hilbert-space operators have been very active research topics in operator theory over the past three decades. The main motivation behind them is the in variant subspace problem: does every Hilbert-space operator have a nontrivial invariant subspace? This is perhaps the most celebrated open question in op erator theory. Its relevance is easy to explain: normal operators have invariant subspaces (witness: the Spectral Theorem), as well as operators on finite dimensional Hilbert spaces (witness: canonical Jordan form). If one agrees that each of these (i. e. the Spectral Theorem and canonical Jordan form) is important enough an achievement to dismiss any further justification, then the search for nontrivial invariant subspaces is a natural one; and a recalcitrant one at that. Subnormal operators have nontrivial invariant subspaces (extending the normal branch), as well as compact operators (extending the finite-dimensional branch), but the question remains unanswered even for equally simple (i. e. simple to define) particular classes of Hilbert-space operators (examples: hyponormal and quasinilpotent operators). Yet the invariant subspace quest has certainly not been a failure at all, even though far from being settled. The search for nontrivial invariant subspaces has undoubtly yielded a lot of nice results in operator theory, among them, those concerning decompositions and models for Hilbert-space operators. This book contains nine chapters."
In 1932 Norbert Wiener gave a series of lectures on Fourier analysis at the Univer sity of Cambridge. One result of Wiener's visit to Cambridge was his well-known text The Fourier Integral and Certain of its Applications; another was a paper by G. H. Hardy in the 1933 Journalofthe London Mathematical Society. As Hardy says in the introduction to this paper, This note originates from a remark of Prof. N. Wiener, to the effect that "a f and g [= j] cannot both be very small". ... The theo pair of transforms rems which follow give the most precise interpretation possible ofWiener's remark. Hardy's own statement of his results, lightly paraphrased, is as follows, in which f is an integrable function on the real line and f is its Fourier transform: x 2 m If f and j are both 0 (Ix1e- /2) for large x and some m, then each is a finite linear combination ofHermite functions. In particular, if f and j are x2 x 2 2 2 both O(e- / ), then f = j = Ae- / , where A is a constant; and if one x 2 2 is0(e- / ), then both are null.
Partial differential equations constitute an integral part of mathematics. They lie at the interface of areas as diverse as differential geometry, functional analysis, or the theory of Lie groups and have numerous applications in the applied sciences. A wealth of methods has been devised for their analysis. Over the past decades, operator algebras in connection with ideas and structures from geometry, topology, and theoretical physics have contributed a large variety of particularly useful tools. One typical example is the analysis on singular configurations, where elliptic equations have been studied successfully within the framework of operator algebras with symbolic structures adapted to the geometry of the underlying space. More recently, these techniques have proven to be useful also for studying parabolic and hyperbolic equations. Moreover, it turned out that many seemingly smooth, noncompact situations can be handled with the ideas from singular analysis. The three papers at the beginning of this volume highlight this aspect. They deal with parabolic equations, a topic relevant for many applications. The first article prepares the ground by presenting a calculus for pseudo differential operators with an anisotropic analytic parameter. In the subsequent paper, an algebra of Mellin operators on the infinite space-time cylinder is constructed. It is shown how timelike infinity can be treated as a conical singularity.
Harmonic Analysis in China is a collection of surveys and research papers written by distinguished Chinese mathematicians from within the People's Republic of China and expatriates. The book covers topics in analytic function spaces of several complex variables, integral transforms, harmonic analysis on classical Lie groups and manifolds, LP- estimates of the Cauchy-Riemann equations and wavelet transforms. The reader will also be able to trace the great influence of the late Professor Loo-keng Hua's ideas and methods on research into harmonic analysis on classical domains and the theory of functions of several complex variables. Western scientists will thus become acquainted with the unique features and future trends of harmonic analysis in China. Audience: Analysts, as well as engineers and physicists who use harmonic analysis.
This book explores new difference schemes for approximating the solutions of regular and singular perturbation boundary-value problems for PDEs. The construction is based on the exact difference scheme and Taylor's decomposition on the two or three points, which permits investigation of differential equations with variable coefficients and regular and singular perturbation boundary value problems.
In Complex Potential Theory, specialists in several complex variables meet with specialists in potential theory to demonstrate the interface and interconnections between their two fields. The following topics are discussed: * Real and complex potential theory. Capacity and approximation, basic properties of plurisubharmonic functions and methods to manipulate their singularities and study theory growth, Green functions, Chebyshev-like quadratures, electrostatic fields and potentials, propagation of smallness. * Complex dynamics. Review of complex dynamics in one variable, Julia sets, Fatou sets, background in several variables, Henon maps, ergodicity use of potential theory and multifunctions. * Banach algebras and infinite dimensional holomorphy. Analytic multifunctions, spectral theory, analytic functions on a Banach space, semigroups of holomorphic isometries, Pick interpolation on uniform algebras and von Neumann inequalities for operators on a Hilbert space.
Inequalities play a fundamental role in Functional Analysis and it is widely recognized that finding them, especially sharp estimates, is an art. E. H. Lieb has discovered a host of inequalities that are enormously useful in mathematics as well as in physics. His results are collected in this book which should become a standard source for further research. Together with the mathematical proofs the author also presents numerous applications to the calculus of variations and to many problems of quantum physics, in particular to atomic physics.
solution, are provided for calculation of the responses to forces or motions exciting the structure. The new chapters in earthquake-resistant design of buildings describe the provisions of both the 1985 and 1988 versions of the UBC (Uniform Building Code) for the static lateral force method and for the dynamic lateral force method. Other revisions of the book include the presentation of the New mark beta method to obtain the time history response of dynamic systems, and the direct integration method in which the response is found assuming that the excitation function is linear for a specified time interval. A modifi cation of the dynamic condensation method, which has been developed re cently by the author for the reduction of eigenproblems, is presented in Chap ter 13. The proposed modification substantially reduces the numerical operation required in the implementation of the dynamic condensation method. The subjects in this new edition are organized in six parts. Part I deals with structures modeled as single degree-of-freedom systems. It introduces basic concepts and presents important methods for the solution of such dynamic systems. Part II introduces important concepts and methodology for multi degree-of-freedom systems through the use of structures modeled as shear buildings. Part III describes methods for the dynamic analysis of framed struc tures modeled as discrete systems with many degrees of freedom."
Nonstandard methods of analysis consist generally in comparative study of two interpretations of a mathematical claim or construction given as a formal symbolic expression by means of two different set-theoretic models: one, a "standard" model and the other, a "nonstandard" model. The second half of the twentieth century is a period of significant progress in these methods and their rapid development in a few directions. The first of the latter appears often under the name coined by its inventor, A. Robinson. This memorable but slightly presumptuous and defiant term, non standard analysis, often swaps places with the term Robinsonian or classical non standard analysis. The characteristic feature of Robinsonian analysis is a frequent usage of many controversial concepts appealing to the actual infinitely small and infinitely large quantities that have resided happily in natural sciences from ancient times but were strictly forbidden in modern mathematics for many decades. The present-day achievements revive the forgotten term infinitesimal analysis which reminds us expressively of the heroic bygones of Calculus. Infinitesimal analysis expands rapidly, bringing about radical reconsideration of the general conceptual system of mathematics. The principal reasons for this progress are twofold. Firstly, infinitesimal analysis provides us with a novel under standing for the method of indivisibles rooted deeply in the mathematical classics."
During the last few years, the theory of operator algebras, particularly non-self-adjoint operator algebras, has evolved dramatically, experiencing both international growth and interfacing with other important areas. The present volume presents a survey of some of the latest developments in the field in a form that is detailed enough to be accessible to advanced graduate students as well as researchers in the field. Among the topics treated are: operator spaces, Hilbert modules, limit algebras, reflexive algebras and subspaces, relations to basis theory, C* algebraic quantum groups, endomorphisms of operator algebras, conditional expectations and projection maps, and applications, particularly to wavelet theory. The volume also features an historical paper offering a new approach to the Pythagoreans' discovery of irrational numbers.
This volume proposes and explores a new definition of logarithmic mappings as invertible selectors of multifunctions induced by linear operators with domains and ranges in an algebra over a field of characteristic zero. Several important previously published results are presented. Amongst the applications of logarithmic and antilogarithmic mappings are the solution of linear and nonlinear equations in algebras of square matrices. Some results may also provide numerical algorithms for the approximation of solutions. Audience: Research mathematicians and other scientists of other disciplines whose work involves the solution of equations.
Functional Equations andInequalities provides an extensive studyofsome of the most important topics of current interest in functional equations and inequalities. Subjects dealt with include: a Pythagorean functional equation, a functional definition oftrigonometric functions, the functional equation ofthe square root spiral, a conditional Cauchy functional equation, an iterative functional equation, the Hille-type functional equation, the polynomial-like iterative functional equation, distribution ofzeros and inequalities for zeros of algebraic polynomials, a qualitative study ofLobachevsky's complex functional equation, functional inequalities in special classesoffunctions, replicativity and function spaces, normal distributions, some difference equations, finite sums decompositions of functions, harmonic functions, set-valued quasiconvex functions, the problem of expressibility in some extensions of free groups, Aleksandrov problem and mappings which preserve distances, Ulam's problem, stability of some functional equation for generalized trigonometric functions, Hyers-Ulam stability of Hosszil's equation, superstability of a functional equation, and some demand functions in a duopoly market with advertising. It is a pleasureto express my deepest appreciationto all the mathematicians who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staffofKluwer Academic Publishers. June 2000 Themistocles M. Rassias xi ON THE STABILITY OF A FUNCTIONAL EQUATION FOR GENERALIZED TRIGONOMETRIC FUNCTIONS ROMAN BADORA lnstytut Matematyki, Uniwersytet Sli;ski, ul. Bankowa 14, PL-40-007 Katowice, Poland, e-mail: robadora@gate. math. us. edu. pl Abstract. In the present paper the stability result concerning a functional equation for generalized trigonometric functions is presented. Z.
The chapters are split into sections, which, in turn, are split into subsections enumerated by two numbers: the first stands for the number of the section while the second for the number ofthe subsection itself. The same numeration is used for all kinds of statements and formulas. If we refer to statements or formulas in other chapters, we use triple numeration where the first number stands for the chapter and the other two have the same sense. The results presented in this book were discussed on the seminars at the Institute of Mathematics of Ukrainian Academy ofSciences, at the Steklov Mathematical Institute of the Academy of Sciences of the USSR, at Moscow and Tbilisi State Universities. I am deeply grateful to the heads of these seminars Professors V. K. Dzyadyk, N. P. Kor- neichuk, S. B. Stechkin, P. L. U1yanov, and L. V. Zhizhiashvili as well as to the mem- bers ofthese seminars that took an active part in the discussions. In TRODUCTIon It is well known for many years that every 21t -periodic summable function f(x) can be associated in a one-to-one manner with its Fourier series (1. 1) Slfl where I It = - f f(t)cosktdt 1t -It and I It - f f(t)sinktdt. 1t -It Therefore, if for approximation of a given function f(*), it is necessary to construct a sequence ofpolynomials Pn (.
The first formulations of linear boundary value problems for analytic functions were due to Riemann (1857). In particular, such problems exhibit as boundary conditions relations among values of the unknown analytic functions which have to be evaluated at different points of the boundary. Singular integral equations with a shift are connected with such boundary value problems in a natural way. Subsequent to Riemann's work, D. Hilbert (1905), C. Haseman (1907) and T. Carleman (1932) also considered problems of this type. About 50 years ago, Soviet mathematicians began a systematic study of these topics. The first works were carried out in Tbilisi by D. Kveselava (1946-1948). Afterwards, this theory developed further in Tbilisi as well as in other Soviet scientific centers (Rostov on Don, Ka zan, Minsk, Odessa, Kishinev, Dushanbe, Novosibirsk, Baku and others). Beginning in the 1960s, some works on this subject appeared systematically in other countries, e. g., China, Poland, Germany, Vietnam and Korea. In the last decade the geography of investigations on singular integral operators with shift expanded significantly to include such countries as the USA, Portugal and Mexico. It is no longer easy to enumerate the names of the all mathematicians who made contributions to this theory. Beginning in 1957, the author also took part in these developments. Up to the present, more than 600 publications on these topics have appeared."
This book provides an introduction to Hilbert space theory, Fourier transform and wavelets, linear operators, generalized functions and quantum mechanics. Although quantum mechanics has been developed between 1925 and 1930 in the last twenty years a large number of new aspect and techniques have been introduced. The book also covers these new fields in quantum mechanics. In quantum mechanics the basic mathematical tools are the theory of Hilbert spaces, the theory of linear operators, the theory of generalized functions and Lebesgue inte- gration theory. Many excellent textbooks have been written on Hilbert space theory and linear operators in Hilbert spaces. Comprehensive surveys of this subject are given by Weidmann [68], Prugovecki [47], Yosida [69], Kato [31], Richtmyer [49], Sewell [54] and others. The theory of generalized functions is also well covered in good textbooks (Gelfand and Shilov [25], Vladimirov [67]. Furthermore numerous textbooks on quantum mechanics exist (Dirac [17], Landau and Lifshitz [36], Mes- siah [41], Gasiorowicz [24], Schiff [51], Eder [18] and others). Besides these books there are several problem books on quantum mechanics (Fliigge [22], Constantinescu and Magyari [15], ter Haar [64], Mavromatis [39], Steeb [59], Steeb [60], Steeb [61]) and others). Computer algebra implementations of quantum mechanical problems are described by Steeb [59]. Unfortunately, many standard textbooks on quantum mechanics neglect the math- ematical background. The basic mathematical tools to understand quantum me- chanics should be fully integrated into an education in quantum mechanics. |
You may like...
Sampling Theory in Fourier and Signal…
J.R. Higgins, R.L. Stens
Hardcover
R6,169
Discovery Miles 61 690
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,319
Discovery Miles 33 190
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R1,892
Discovery Miles 18 920
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
Hardy Operators On Euclidean Spaces And…
Shanzhen Lu, Zunwei Fu, …
Hardcover
R1,914
Discovery Miles 19 140
Theory of Approximate Functional…
Madjid Eshaghi Gordji, Sadegh Abbaszadeh
Hardcover
R1,379
Discovery Miles 13 790
Local Fractional Integral Transforms and…
Xiaojun Yang, Dumitru Baleanu, …
Hardcover
R1,806
Discovery Miles 18 060
|