Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
And God said, Let there be light; and there was light. Genesis 1,3 Light is not only the basis of our biological existence, but also an essential source of our knowledge about the physical laws of nature, ranging from the seventeenth century geometrical optics up to the twentieth century theory of general relativity and quantum electrodynamics. Folklore Don't give us numbers: give us insight! A contemporary natural scientist to a mathematician The present book is the second volume of a comprehensive introduction to themathematicalandphysicalaspectsofmodernquantum?eldtheorywhich comprehends the following six volumes: Volume I: Basics in Mathematics and Physics Volume II: Quantum Electrodynamics Volume III: Gauge Theory Volume IV: Quantum Mathematics Volume V: The Physics of the Standard Model Volume VI: Quantum Gravitation and String Theory. It is our goal to build a bridge between mathematicians and physicists based on the challenging question about the fundamental forces in * macrocosmos (the universe) and * microcosmos (the world of elementary particles). The six volumes address a broad audience of readers, including both und- graduate and graduate students, as well as experienced scientists who want to become familiar with quantum ?eld theory, which is a fascinating topic in modern mathematics and physics.
Preface.- The Constant Function c.- The Factorial Function n!.- The Zeta Numbers and Related Functions.- The Bernoulli Numbers Bn.- The Euler Numbers En.- The Bionmial Coefficients.- The Linear Function bx + c and Its Reciprocal.- Modifying Functions.- The Heaviside and Dirac Functions.- The Integer Powers xn and (bx + c)n.- The Square-Root Function and Its Reciprocal.- The Noninteger Power xv.- The Semielliptic Function and Its Reciprocal.- The (b/a)square root of x2 +- a2 Functions and Their Reciprocals.- The Quadratic Function ax + bx + c and Its Reciprocal.- The Cubic Function x3 + bx + c.- Polynomial Functions.- The Pochhammer Polynomials (x)n.- The Bernoulli Polynomials Bn(x).- The Euler Polynomials En(x).- The Legendre Polynomials Pn(x).- The Chebyshev Polynomials Tn(x) and Un(x).- The Laguerre Polynomials Ln(x).- The Hermite Polynomials Hn(x).- The Logarithmic Function ln(x).- The Exponential Function exp(x).- Exponential of Powers.- The Hyperbolic Cosine cosh(x). and Sine sinh(x) Functions.- The Hyperbolic Secant and Cosecant Functions.- The Inverse Hyperbolic Functions.- The Cosine cox(x) and Sine sin(x) Functions.- The Secant sec(x) and Cosecant csc(x) Fucntions.- The Tangent tan(x) and Cotangent cot(x) Functions.- The Inverse Circular Functions.- Periodic Functions.- The Exponential Integrals Ei(x) and Ein(x).- Sine and Cosine Integrals.- The Fresnel Integrals C(x) and S(x).- The Error Function erf(x) and Its Complement erfc(x).- The exp(x)erfc(square root of x) and Related Functions.- Dawson's Integral daw(x).- The Gamma Function.- The Digamma Function.- The Incomplete Gamma Functions.- The Parabolic Cylinder Function Dv(x).- The Kummer Function M(a, c, x).- The Tricomi Function U(a, c, x).- The Modified Bessel Functions In(x) of Integer Order.- The Modified Bessel Functions of In(x) Arbitrary Order.- The Macdonald Function Kv(x).- The Bessel Functions Jn(x) of Integer Order.- The Bessel Functions Jv(x) of Arbitrary Order.- The Neumann Function Yv(x). The Kelvin Functions.- The Airy Functions Ai(x) and Bi(x).- The Struve Function hv(x).- The Incomplete Beta Function.- The Legendre Functions Pv(x) and Qv(x).- The Gauss Hypergeometric Function F(a, b, c, x).- The Complete Elliptic Integrals K(k) and E(k).- The Incomplete Elliptic Integrals.- The Jacobian Elliptic Functions.- The Hurwitz Function.- Appendix A: Useful Data.- Appendix B: Bibliography.- Appendix C: Equator, The Atlas Function Calculator.- Symbol Index.- Subject Ind
In this text, a theory for general linear parabolic partial differential equations is established which covers equations with inhomogeneous symbol structure as well as mixed-order systems. Typical applications include several variants of the Stokes system and free boundary value problems. We show well-posedness in Lp-Lq-Sobolev spaces in time and space for the linear problems (i.e., maximal regularity) which is the key step for the treatment of nonlinear problems. The theory is based on the concept of the Newton polygon and can cover equations which are not accessible by standard methods as, e.g., semigroup theory. Results are obtained in different types of non-integer Lp-Sobolev spaces as Besov spaces, Bessel potential spaces, and Triebel-Lizorkin spaces. The last-mentioned class appears in a natural way as traces of Lp-Lq-Sobolev spaces. We also present a selection of applications in the whole space and on half-spaces. Among others, we prove well-posedness of the linearizations of the generalized thermoelastic plate equation, the two-phase Navier-Stokes equations with Boussinesq-Scriven surface, and the Lp-Lq two-phase Stefan problem with Gibbs-Thomson correction.
The analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications.
Foundations of Abstract Analysis is the first of a two book series offered as the second (expanded) edition to the previously published text Real Analysis. It is written for a graduate-level course on real analysis and presented in a self-contained way suitable both for classroom use and for self-study. While this book carries the rigor of advanced modern analysis texts, it elaborates the material in much greater details and therefore fills a gap between introductory level texts (with topics developed in Euclidean spaces) and advanced level texts (exclusively dealing with abstract spaces) making it accessible for a much wider interested audience. To relieve the reader of the potential overload of new words, definitions, and concepts, the book (in its unique feature) provides lists of new terms at the end of each section, in a chronological order. Difficult to understand abstract notions are preceded by informal discussions and blueprints followed by thorough details and supported by examples and figures. To further reinforce the text, hints and solutions to almost a half of more than 580 problems are provided at the end of the book, still leaving ample exercises for assignments. This volume covers topics in point-set topology and measure and integration. Prerequisites include advanced calculus, linear algebra, complex variables, and calculus based probability.
The book includes lectures given by the plenary and key speakers at the 9th International ISAAC Congress held 2013 in Krakow, Poland. The contributions treat recent developments in analysis and surrounding areas, concerning topics from the theory of partial differential equations, function spaces, scattering, probability theory, and others, as well as applications to biomathematics, queueing models, fractured porous media and geomechanics.
Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodym property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.
The purpose of this monograph is to present the current status of a rapidly developing part of several complex variables, motivated by the applicability of effective results to algebraic geometry and differential geometry. Highlighted are the new precise results on the L(2) extension of holomorphic functions. In Chapter 1, the classical questions of several complex variables motivating the development of this field are reviewed after necessary preparations from the basic notions of those variables and of complex manifolds such as holomorphic functions, pseudoconvexity, differential forms, and cohomology. In Chapter 2, the L(2) method of solving the d-bar equation is presented emphasizing its differential geometric aspect. In Chapter 3, a refinement of the Oka-Cartan theory is given by this method. The L(2) extension theorem with an optimal constant is included, obtained recently by Z. Blocki and by Q.-A. Guan and X.-Y. Zhou separately. In Chapter 4, various results on the Bergman kernel are presented, including recent works of Maitani-Yamaguchi, Berndtsson, and Guan-Zhou. Most of these results are obtained by the L(2) method. In the last chapter, rather specific results are discussed on the existence and classification of certain holomorphic foliations and Levi flat hypersurfaces as their stables sets. These are also applications of the L(2) method obtained during these 15 years.
As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), "There are three reasons for the study of inequalities: practical, theoretical, and aesthetic." On the aesthetic aspects, he said, "As has been pointed out, beauty is in the eye of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive." The content of the Handbook focuses mainly on both old and recent developments on approximate homomorphisms, on a relation between the Hardy-Hilbert and the Gabriel inequality, generalized Hardy-Hilbert type inequalities on multiple weighted Orlicz spaces, half-discrete Hilbert-type inequalities, on affine mappings, on contractive operators, on multiplicative Ostrowski and trapezoid inequalities, Ostrowski type inequalities for the Riemann-Stieltjes integral, means and related functional inequalities, Weighted Gini means, controlled additive relations, Szasz-Mirakyan operators, extremal problems in polynomials and entire functions, applications of functional equations to Dirichlet problem for doubly connected domains, nonlinear elliptic problems depending on parameters, on strongly convex functions, as well as applications to some new algorithms for solving general equilibrium problems, inequalities for the Fisher's information measures, financial networks, mathematical models of mechanical fields in media with inclusions and holes.
This contributed volume presents some recent theoretical advances in mathematics and its applications in various areas of science and technology. Written by internationally recognized scientists and researchers, the chapters in this book are based on talks given at the International Conference on Advances in Applied Mathematics (ICAAM), which took place December 16-19, 2013, in Hammamet, Tunisia. Topics discussed at the conference included spectral theory, operator theory, optimization, numerical analysis, ordinary and partial differential equations, dynamical systems, control theory, probability, and statistics. These proceedings aim to foster and develop further growth in all areas of applied mathematics.
The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincare, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.
This book presents an extensive collection of state-of-the-art results and references in nonlinear functional analysis demonstrating how the generic approach proves to be very useful in solving many interesting and important problems. Nonlinear analysis plays an ever-increasing role in theoretical and applied mathematics, as well as in many other areas of science such as engineering, statistics, computer science, economics, finance, and medicine. The text may be used as supplementary material for graduate courses in nonlinear functional analysis, optimization theory and approximation theory, and is a treasure trove for instructors, researchers, and practitioners in mathematics and in the mathematical sciences. Each chapter is self-contained; proofs are solid and carefully communicated. Genericity in Nonlinear Analysis is the first book to systematically present the generic approach to nonlinear analysis. Topics presented include convergence analysis of powers and infinite products via the Baire Category Theorem, fixed point theory of both single- and set-valued mappings, best approximation problems, discrete and continuous descent methods for minimization in a general Banach space, and the structure of minimal energy configurations with rational numbers in the Aubry-Mather theory.
Functional Equations and Inequalities with Applications presents a comprehensive, nearly encyclopedic, study of the classical topic of functional equations. This self-contained monograph explores all aspects of functional equations and their applications to related topics, such as differential equations, integral equations, the Laplace transformation, the calculus of finite differences, and many other basic tools in analysis. Each chapter examines a particular family of equations and gives an in-depth study of its applications as well as examples and exercises to support the material.
The fascinating correspondence between Paul Levy and Maurice Frechet spans an extremely active period in French mathematics during the twentieth century. The letters of these two Frenchmen show their vicissitudes of research and passionate enthusiasm for the emerging field of modern probability theory. The letters cover various topics of mathematical importance including academic careers and professional travels, issues concerning students and committees, and the difficulties both mathematicians met to be elected to the Paris Academy of Sciences. The technical questions that occupied Levy and Frechet on almost a daily basis are the primary focus of these letters, which are charged with elation, frustration and humour. Their mathematical victories and setbacks unfolded against the dramatic backdrop of the two World Wars and the occupation of France, during which Levy was obliged to go into hiding. The clear and persistent desire of these mathematicians to continue their work whatever the circumstance testifies to the enlightened spirit of their discipline which was persistent against all odds. The book contains a detailed and comprehensive introduction to the central topics of the correspondence. The original text of the letters is also annotated by numerous footnotes for helpful guidance. Paul Levy and Maurice Frechet will be useful to anybody interested in the history of mathematics in the twentieth century and, in particular, the birth of modern probab ility theory.
This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.
These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and relativistic quantum mechanics, condensed matter physics, and quantum field theory), there is much interest in computing Fredholm indices of certain linear partial differential operators. In the late 1970's, Constantine Callias found a formula for the Fredholm index of a particular first-order differential operator (intimately connected to a supersymmetric Dirac-type operator) additively perturbed by a potential, shedding additional light on the Fedosov-Hoermander Index Theorem. As a byproduct of our proof we also offer a glimpse at special non-Fredholm situations employing a generalized Witten index.
The study of geometric discrepancy, which provides a framework for quantifying the quality of a distribution of a finite set of points, has experienced significant growth in recent decades. This book provides a self-contained course in number theory, Fourier analysis and geometric discrepancy theory, and the relations between them, at the advanced undergraduate or beginning graduate level. It starts as a traditional course in elementary number theory, and introduces the reader to subsequent material on uniform distribution of infinite sequences, and discrepancy of finite sequences. Both modern and classical aspects of the theory are discussed, such as Weyl's criterion, Benford's law, the Koksma Hlawka inequality, lattice point problems, and irregularities of distribution for convex bodies. Fourier analysis also features prominently, for which the theory is developed in parallel, including topics such as convergence of Fourier series, one-sided trigonometric approximation, the Poisson summation formula, exponential sums, decay of Fourier transforms, and Bessel functions."
The study of geometric discrepancy, which provides a framework for quantifying the quality of a distribution of a finite set of points, has experienced significant growth in recent decades. This book provides a self-contained course in number theory, Fourier analysis and geometric discrepancy theory, and the relations between them, at the advanced undergraduate or beginning graduate level. It starts as a traditional course in elementary number theory, and introduces the reader to subsequent material on uniform distribution of infinite sequences, and discrepancy of finite sequences. Both modern and classical aspects of the theory are discussed, such as Weyl's criterion, Benford's law, the Koksma Hlawka inequality, lattice point problems, and irregularities of distribution for convex bodies. Fourier analysis also features prominently, for which the theory is developed in parallel, including topics such as convergence of Fourier series, one-sided trigonometric approximation, the Poisson summation formula, exponential sums, decay of Fourier transforms, and Bessel functions."
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schroedinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
This monograph contains a detailed exposition of the up-to-date theory of separably injective spaces: new and old results are put into perspective with concrete examples (such as l /c0 and C(K) spaces, where K is a finite height compact space or an F-space, ultrapowers of L spaces and spaces of universal disposition). It is no exaggeration to say that the theory of separably injective Banach spaces is strikingly different from that of injective spaces. For instance, separably injective Banach spaces are not necessarily isometric to, or complemented subspaces of, spaces of continuous functions on a compact space. Moreover, in contrast to the scarcity of examples and general results concerning injective spaces, we know of many different types of separably injective spaces and there is a rich theory around them. The monograph is completed with a preparatory chapter on injective spaces, a chapter on higher cardinal versions of separable injectivity and a lively discussion of open problems and further lines of research.
Modern Mathematical Methods for Scientists and Engineers is a modern introduction to basic topics in mathematics at the undergraduate level, with emphasis on explanations and applications to real-life problems. There is also an 'Application' section at the end of each chapter, with topics drawn from a variety of areas, including neural networks, fluid dynamics, and the behavior of 'put' and 'call' options in financial markets. The book presents several modern important and computationally efficient topics, including feedforward neural networks, wavelets, generalized functions, stochastic optimization methods, and numerical methods.A unique and novel feature of the book is the introduction of a recently developed method for solving partial differential equations (PDEs), called the unified transform. PDEs are the mathematical cornerstone for describing an astonishingly wide range of phenomena, from quantum mechanics to ocean waves, to the diffusion of heat in matter and the behavior of financial markets. Despite the efforts of many famous mathematicians, physicists and engineers, the solution of partial differential equations remains a challenge.The unified transform greatly facilitates this task. For example, two and a half centuries after Jean d'Alembert formulated the wave equation and presented a solution for solving a simple problem for this equation, the unified transform derives in a simple manner a generalization of the d'Alembert solution, valid for general boundary value problems. Moreover, two centuries after Joseph Fourier introduced the classical tool of the Fourier series for solving the heat equation, the unified transform constructs a new solution to this ubiquitous PDE, with important analytical and numerical advantages in comparison to the classical solutions. The authors present the unified transform pedagogically, building all the necessary background, including functions of real and of complex variables and the Fourier transform, illustrating the method with numerous examples.Broad in scope, but pedagogical in style and content, the book is an introduction to powerful mathematical concepts and modern tools for students in science and engineering.
This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the degenerate one. An introductory chapter presents the basic properties of the Heisenberg group, making the coverage self-contained. The setting is the first Heisenberg group, helping to keep the notation simple and allow the reader to focus on the core of the theory and techniques in the field. Further, detailed proofs make the work accessible to students at the graduate level.
Written by a leading scholar in mathematics, this monograph discusses the Radon transform. This topic has wide ranging applications, in particular X-ray technology, partial differential equations, nuclear magnetic resonance scanning, and tomography.
In this set of lecture notes, the author includes some of the latest research on the theory of Morrey Spaces associated with Harmonic Analysis. There are three main claims concerning these spaces that are covered: determining the integrability classes of the trace of Riesz potentials of an arbitrary Morrey function; determining the dimensions of singular sets of weak solutions of PDE (e.g. The Meyers-Elcart System); and determining whether there are any "full" interpolation results for linear operators between Morrey spaces. This book will serve as a useful reference to graduate students and researchers interested in Potential Theory, Harmonic Analysis, PDE, and/or Morrey Space Theory. |
You may like...
A Mathematical Journey to Quantum…
Salvatore Capozziello, Wladimir-Georges Boskoff
Hardcover
R2,349
Discovery Miles 23 490
Graphs and Discrete Dirichlet Spaces
Matthias Keller, Daniel Lenz, …
Hardcover
R3,992
Discovery Miles 39 920
Aggregation Operators for Various…
Akansha Mishra, Amit Kumar
Hardcover
R2,815
Discovery Miles 28 150
Operator Theory, Operator Algebras and…
Raul E. Curto, William Helton, …
Hardcover
R4,297
Discovery Miles 42 970
Orthogonal Polynomials: Current Trends…
Francisco Marcellan, Edmundo J. Huertas
Hardcover
R4,271
Discovery Miles 42 710
Hardy Operators On Euclidean Spaces And…
Shanzhen Lu, Zunwei Fu, …
Hardcover
R2,005
Discovery Miles 20 050
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,495
Discovery Miles 34 950
Bloch-type Periodic Functions: Theory…
Yong-kui Chang, Gaston Mandata N'G'Uerekata, …
Hardcover
R1,998
Discovery Miles 19 980
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R1,982
Discovery Miles 19 820
|