![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This volume contains the proceedings of the International Workshop on Operator Theory and Applications held at the University of Algarve in Faro, Portugal, September 12-15, in the year 2000. The main topics of the conference were !> Factorization Theory; !> Factorization and Integrable Systems; !> Operator Theoretical Methods in Diffraction Theory; !> Algebraic Techniques in Operator Theory; !> Applications to Mathematical Physics and Related Topics. A total of 94 colleagues from 21 countries participated in the conference. The major part of participants came from Portugal (32), Germany (17), Israel (6), Mexico (6), the Netherlands (5), USA (4) and Austria (4). The others were from Ukraine, Venezuela (3 each), Spain, Sweden (2 each), Algeria, Australia, Belorussia, France, Georgia, Italy, Japan, Kuwait, Russia and Turkey (one of each country). It was the 12th meeting in the framework of the IWOTA conferences which started in 1981 on an initiative of Professors 1. Gohberg (Tel Aviv) and J. W. Helton (San Diego). Up to now, it was the largest conference in the field of Operator Theory in Portugal.
This volume contains the Proceedings of the International Workshop Variational Methods For Discontinuous Structures, which was jointly organized by the Dipar timento di Matematica Francesco Brioschi of Milano Politecnico and the Interna tional School for Advanced Studies (SISSA) of Trieste. The Conference took place at Villa Erba Antica (Cernobbio) on the Lago di Como on July 4- 6, 2001. In past years the calculus of variations faced mainly the study of continuous structures, say particularly problems with smooth solutions. One of the deepest and more delicate problems was the regularity of weak solutions. More recently, new sophisticated tools have been introduced in order to study discontinuities: in many variational problems solutions develop singularities, and sometimes the most interesting part of a solution is the singularity itself. The conference intended to focus on recent developments in this direction. Some of the talks were devoted to differential or variational modelling of image segmentation, occlusion and textures synthesizing in image analysis, varia tional description of micro-magnetic materials, dimension reduction and structured deformations in elasticity and plasticity, phase transitions, irrigation and drainage, evolution of crystalline shapes; in most cases theoretical and numerical analysis of these models were provided. viii Preface Other talks were dedicated to specific problems of the calculus of variations: variational theory of weak or lower-dimensional structures, optimal transport prob lems with free Dirichlet regions, higher order variational problems, symmetrization in the BV framework."
Provides a digest of the current developments, open questions and unsolved problems likely to determine a new frontier for future advanced study and research in the rapidly growing areas of wavelets, wavelet transforms, signal analysis, and signal and image processing. Ideal reference work for advanced students and practitioners in wavelets, and wavelet transforms, signal processing and time-frequency signal analysis. Professionals working in electrical and computer engineering, applied mathematics, computer science, biomedical engineering, physics, optics, and fluid mechanics will also find the book a valuable resource.
4Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non* The series is divergent; therefore we may be sense'. able to do something withit. Eric T. Bell O. Heaviside Mathematicsis a tool for thought. A highly necessary tool in a world whereboth feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d' tre ofthis series.
A collection of research articles originating from the Workshop on Nonlinear Analysis and Applications held in Bergamo in July 2001. Classical topics of nonlinear analysis were considered, such as calculus of variations, variational inequalities, critical point theory and their use in various aspects of the study of elliptic differential equations and systems, equations of Hamilton-Jacobi, Schrodinger and Navier-Stokes, and free boundary problems. Moreover, various models were focused upon: travelling waves in supported beams and plates, vortex condensation in electroweak theory, information theory, non-geometrical optics, and Dirac-Fock models for heavy atoms."
The evolution of systems in random media is a broad and fruitful field for the applica tions of different mathematical methods and theories. This evolution can be character ized by a semigroup property. In the abstract form, this property is given by a semigroup of operators in a normed vector (Banach) space. In the practically boundless variety of mathematical models of the evolutionary systems, we have chosen the semi-Markov ran dom evolutions as an object of our consideration. The definition of the evolutions of this type is based on rather simple initial assumptions. The random medium is described by the Markov renewal processes or by the semi Markov processes. The local characteristics of the system depend on the state of the ran dom medium. At the same time, the evolution of the system does not affect the medium. Hence, the semi-Markov random evolutions are described by two processes, namely, by the switching Markov renewal process, which describes the changes of the state of the external random medium, and by the switched process, i.e., by the semigroup of oper ators describing the evolution of the system in the semi-Markov random medium.
These two volumes constitute texts for graduate courses in linear operator theory. The reader is assumed to have a knowledge of both complex analysis and the first elements of operator theory. The texts are intended to concisely present a variety of classes of linear operators, each with its own character, theory, techniques and tools. For each of the classes, various differential and integral operators motivate or illustrate the main results. Although each class is treated seperately and the first impression may be that of many different theories, interconnections appear frequently and unexpectedly. The result is a beautiful, unified and powerful theory. The classes we have chosen are representatives of the principal important classes of operators, and we believe that these illustrate the richness of operator theory, both in its theoretical developments and in its applicants. Because we wanted the books to be of reasonable size, we were selective in the classes we chose and restricted our attention to the main features of the corresponding theories. However, these theories have been updated and enhanced by new developments, many of which appear here for the first time in an operator-theory text. In the selection of the material the taste and interest of the authors played an important role.
'Et moi, .. Of si j'avail su comment en revenir. je One selVice mathematics has rendered the n'y semis point alll!.' human race. It has put common sense back Jules Verne when: it belongs, on the topmon shelf next to the dusty canister labelled 'discarded nonsense'. The series is divergent; therefore we may be Eric T. Bell able to do something with iL O. Heaviside Mathematics is a tool for thought A highly necessary tool in a world where both feedback and nonlineari- ties abound, Similarly. all kinds of parts of mathematics serve as tools for other parts and for other sci- ences, Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser- vice topology has rendered mathematical physics .. , '; 'One service logic has rendered computer science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
The study of systems of special partial differential operators that arise naturally from the use of Clifford algebra as a calculus tool lies in the heart of Clifford analysis. The focus is on the study of Dirac operators and related ones, together with applications in mathematics, physics and engineering. At the present time, the study of Clifford algebra and Clifford analysis has grown into a major research field. There are two sources of papers in this collection. One is from a satellite conference to the ICM 2002 in Beijing, held August 15-18 at the University of Macau; and the other stems from invited contributions by top-notch experts in the field.
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y se.rais point aile.' human race. It has put common sense back Jules Verne where it belongs, on be topmost shelf next to the dusty canister labelled 'disc: arded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
Nonlinear Analysis and Applications is dedicated to Professor V. Lakshmikantham on the occasion of his 80th birthday. The volumes consist of 45 research papers from distinguished experts from a variety of research areas. Topics include monotonicity and compact methods, blow up and global existence for hyperbolic problems, dynamic systems on time scales, maximum monotone mappings, fixed point theory, quasivalued elliptic problems including mixed BVP's, impulsive and evolution inclusions, iterative processes, Morse theory, hemivariational inequalities, Navier-Stokes equations, multivalued BVP's, various aspects of control theory, integral operators, semigroup theories, modelling of real world phenomena, higher order parabolic equations, invariant measures, superlinear problems and operator equations.
Many developments on the cutting edge of research in operator theory and its applications are reflected in this collection of original and review articles. Particular emphasis lies on highlighting the interplay between operator theory and applications from other areas, such as multi-dimensional systems and function theory of several complex variables, distributed parameter systems and control theory, mathematical physics, wavelets, and numerical analysis.
The notions of positive functions and of reproducing kernel
Hilbert spaces play an important role in various fields of
mathematics, such as stochastic processes, linear systems theory,
operator theory, and the theory of analytic functions. Also they
are relevant for many applications, for example to statistical
learning theory and pattern recognition.
The chapters on Clifford algebra and differential geometry can be used as an introduction to the topics, and are suitable for senior undergraduates and graduates. The other chapters are also accessible at this level.; This self-contained book requires very little previous knowledge of the domains covered, although the reader will benefit from knowledge of complex analysis, which gives the basic example of a Dirac operator.; The more advanced reader will appreciate the fresh approach to the theory, as well as the new results on boundary value theory.; Concise, but self-contained text at the introductory grad level. Systematic exposition.; Clusters well with other Birkhauser titles in mathematical physics.; Appendix. General Manifolds * List of Symbols * Bibliography * Index
Boolean valued analysis is a technique for studying properties of an arbitrary mathematical object by comparing its representations in two different set-theoretic models whose construction utilises principally distinct Boolean algebras. The use of two models for studying a single object is a characteristic of the so-called non-standard methods of analysis. Application of Boolean valued models to problems of analysis rests ultimately on the procedures of ascending and descending, the two natural functors acting between a new Boolean valued universe and the von Neumann universe. This book demonstrates the main advantages of Boolean valued analysis which provides the tools for transforming, for example, function spaces to subsets of the reals, operators to functionals, and vector-functions to numerical mappings. Boolean valued representations of algebraic systems, Banach spaces, and involutive algebras are examined thoroughly. Audience: This volume is intended for classical analysts seeking powerful new tools, and for model theorists in search of challenging applications of nonstandard models.
This book contains a detailed mathematical analysis of the variational approach to image restoration based on the minimization of the total variation submitted to the constraints given by the image acquisition model. This model, initially introduced by Rudin, Osher, and Fatemi, had a strong influence in the development of variational methods for image denoising and restoration, and pioneered the use of the BV model in image processing. After a full analysis of the model, the minimizing total variation flow is studied under different boundary conditions, and its main qualitative properties are exhibited. In particular, several explicit solutions of the denoising problem are computed.
Survey on Classical Inequalities provides a study of some of the well known inequalities in classical mathematical analysis. Subjects dealt with include: Hardy-Littlewood-type inequalities, Hardy's and Carleman's inequalities, Lyapunov inequalities, Shannon's and related inequalities, generalized Shannon functional inequality, operator inequalities associated with Jensen's inequality, weighted Lp -norm inequalities in convolutions, inequalities for polynomial zeros as well as applications in a number of problems of pure and applied mathematics. It is my pleasure to express my appreciation to the distinguished mathematicians who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staff of Kluwer Academic Publishers. June 2000 Themistocles M. Rassias Vll LYAPUNOV INEQUALITIES AND THEIR APPLICATIONS RICHARD C. BROWN Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA. email address: [email protected] DON B. HINTON Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA. email address: [email protected] Abstract. For nearly 50 years Lyapunov inequalities have been an important tool in the study of differential equations. In this survey, building on an excellent 1991 historical survey by Cheng, we sketch some new developments in the theory of Lyapunov inequalities and present some recent disconjugacy results relating to second and higher order differential equations as well as Hamiltonian systems. 1. Introduction Lyapunov's inequality has proved useful in the study of spectral properties of ordinary differential equations. Typical applications include bounds for eigenvalues, stability criteria for periodic differential equations, and estimates for intervals of disconjugacy.
The aim of this book is to give a systematic and self-contained presentation of the Mathematical Scattering Theory within the framework of operator theory in Hilbert space. The term Mathematical Scattering Theory denotes that theory which is on the one hand the common mathematical foundation of several physical scattering theories (scattering of quantum objects, of classical waves and particles) and on the other hand a branch of operator theory devoted to the study of the behavior of the continuous part of perturbed operators (some authors also use the term Abstract Scattering Theory). EBBential contributions to the development of this theory are due to K. FRIEDRICHS, J. CooK, T. KATo, J. M. JAuCH, S. T. KURODA, M.S. BmMAN, M.G. KREiN, L. D. FAD DEEV, R. LAVINE, W. 0. AMREIN, B. SIMoN, D. PEARSON, V. ENss, and others. It seems to the authors that the theory has now reached a sufficiently developed state that a self-contained presentation of the topic is justified."
This book is a continuation of the book Green's Functions and Transfer Functions [35] written some ten years ago. However, there is no overlap whatsoever in the contents of the two books, and this book can be used quite independently of the previous one. This series of books represents a new kind of handbook, in which are collected data on the characteristics of systems with distributed and lumped parameters. The present volume covers some two hundred problems. Essentially, this book should be considered as a desktop handbook, intended, like [35], to give rapid "on-line" access to relevant data about problems. For each problem, the book lists all the main characteristics of the solution: standardising functions, Green's functions, transfer functions or matrices, eigenfunctions and eigenvalues with their asymptotics, roots of characteristic equations, and other data. In addition to systems described by a single differential equation, this volume also includes degenerate multiconnected systems, systems for which no Green's function or matrix exists, and other special cases which are important for applications.
This book is a comprehensive presentation of recent results and developments on several widely used transforms and their fast algorithms. In many cases, new options are provided for improved or new fast algorithms, some of which are not well known in the digital signal processing community. The book is suitable as a textbook for senior undergraduate and graduate courses in digital signal processing. It may also serve as an excellent self-study reference for electrical engineers and applied mathematicians whose work is related to the fields of electronics, signal processing, image and speech processing, or digital design and communication.
For the past several decades, the study of free boundary problems has been a very active subject of research occurring in a variety of applied sciences. What these problems have in common is their formulation in terms of suitably posed initial and boundary value problems for nonlinear partial differential equations. Such problems arise, for example, in the mathematical treatment of the processes of heat conduction, filtration through porous media, flows of non-Newtonian fluids, boundary layers, chemical reactions, semiconductors, and so on. The growing interest in these problems is reflected by the series of meetings held under the title "Free Boundary Problems: Theory and Applications" (Ox ford 1974, Pavia 1979, Durham 1978, Montecatini 1981, Maubuisson 1984, Irsee 1987, Montreal 1990, Toledo 1993, Zakopane 1995, Crete 1997, Chiba 1999). From the proceedings of these meetings, we can learn about the different kinds of mathematical areas that fall within the scope of free boundary problems. It is worth mentioning that the European Science Foundation supported a vast research project on free boundary problems from 1993 until 1999. The recent creation of the specialized journal Interfaces and Free Boundaries: Modeling, Analysis and Computation gives us an idea of the vitality of the subject and its present state of development. This book is a result of collaboration among the authors over the last 15 years.
In September 2000 a Summer School on "Factorization and
Integrable Systems" was held at the University of Algarve in
Portugal. The main aim of the school was to review the modern
factorization theory and its application to classical and quantum
integrable systems. The program consisted of a number of short
courses given by leading experts in the field. The lecture notes of
the courses have been specially prepared for publication in this
volume.
This volume is dedicated to our teacher and friend Hans Triebel. The core of the book is based on lectures given at the International Conference "Function Spaces, Differential Operators and Nonlinear Analysis" (FSDONA--01) held in Teistungen, Thuringia / Germany, from June 28 to July 4,2001, in honour of his 65th birthday. This was the fifth in a series of meetings organised under the same name by scientists from Finland (Helsinki, Oulu) , the Czech Republic (Prague, Plzen) and Germany (Jena) promoting the collaboration of specialists in East and West, working in these fields. This conference was a very special event because it celebrated Hans Triebel's extraordinary impact on mathematical analysis. The development of the mod ern theory of function spaces in the last 30 years and its application to various branches in both pure and applied mathematics is deeply influenced by his lasting contributions. In a series of books Hans Triebel has given systematic treatments of the theory of function spaces from different points of view, thus revealing its interdependence with interpolation theory, harmonic analysis, partial differential equations, nonlinear operators, entropy, spectral theory and, most recently, anal ysis on fractals. The presented collection of papers is a tribute to Hans Triebel's distinguished work. The book is subdivided into three parts: * Part I contains the two invited lectures by O.V. Besov (Moscow) and D.E. Edmunds (Sussex) having a survey character and honouring Hans Triebel's contributions.
Nonstandard Methods of Analysis is concerned with the main trends in this field; infinitesimal analysis and Boolean-valued analysis. The methods that have been developed in the last twenty-five years are explained in detail, and are collected in book form for the first time. Special attention is paid to general principles and fundamentals of formalisms for infinitesimals as well as to the technique of descents and ascents in a Boolean-valued universe. The book also includes various novel applications of nonstandard methods to ordered algebraic systems, vector lattices, subdifferentials, convex programming etc. that have been developed in recent years. For graduate students, postgraduates and all researchers interested in applying nonstandard methods in their work.
Boundary problems constitute an essential field of common mathematical interest. The intention of this volume is to highlight several analytic and geometric aspects of boundary problems with special emphasis on their interplay. It includes surveys on classical topics presented from a modern perspective as well as reports on current research. The collection splits into two related groups: - analysis and geometry of geometric operators and their index theory - elliptic theory of boundary value problems and the Shapiro-Lopatinsky condition |
You may like...
Local Fractional Integral Transforms and…
Xiaojun Yang, Dumitru Baleanu, …
Hardcover
R1,806
Discovery Miles 18 060
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,319
Discovery Miles 33 190
Geometric Methods in Physics XXXV…
Piotr Kielanowski, Anatol Odzijewicz, …
Hardcover
R2,682
Discovery Miles 26 820
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R2,920
Discovery Miles 29 200
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R1,892
Discovery Miles 18 920
Hardy Operators On Euclidean Spaces And…
Shanzhen Lu, Zunwei Fu, …
Hardcover
R1,914
Discovery Miles 19 140
|