![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
Every mathematician working in Banaeh spaee geometry or Approximation theory knows, from his own experienee, that most "natural" geometrie properties may faH to hold in a generalnormed spaee unless the spaee is an inner produet spaee. To reeall the weIl known definitions, this means IIx 11 = *, where is an inner (or: scalar) product on E, Le. a function from ExE to the underlying (real or eomplex) field satisfying: (i) O for x ~ o. (ii) is linear in x. (iii) = (intherealease,thisisjust =
This volume contains surveys as well as research articles broadly centered on spectral analysis. Topics range from spectral continuity for magnetic and pseudodifferential operators to localization in random media, from the stability of matter to properties of Aharonov-Bohm and Quantum Hall Hamiltonians, from waveguides and resonances to supersymmetric models and dissipative fermion systems. This is the first of a series of volumes reporting every two years on recent progress in spectral theory.
This volume is dedicated to Bill Helton on the occasion of his sixty fifth birthday. It contains biographical material, a list of Bill's publications, a detailed survey of Bill's contributions to operator theory, optimization and control and 19 technical articles. Most of the technical articles are expository and should serve as useful introductions to many of the areas which Bill's highly original contributions have helped to shape over the last forty odd years. These include interpolation, Szegoe limit theorems, Nehari problems, trace formulas, systems and control theory, convexity, matrix completion problems, linear matrix inequalities and optimization. The book should be useful to graduate students in mathematics and engineering, as well as to faculty and individuals seeking entry level introductions and references to the indicated topics. It can also serve as a supplementary text to numerous courses in pure and applied mathematics and engineering, as well as a source book for seminars.
This book is a survey of the theory of formal deformation quantization of Poisson manifolds, in the formalism developed by Kontsevich. It is intended as an educational introduction for mathematical physicists who are dealing with the subject for the first time. The main topics covered are the theory of Poisson manifolds, star products and their classification, deformations of associative algebras and the formality theorem. Readers will also be familiarized with the relevant physical motivations underlying the purely mathematical construction.
This revised and expanded monograph presents the general theory for frames and Riesz bases in Hilbert spaces as well as its concrete realizations within Gabor analysis, wavelet analysis, and generalized shift-invariant systems. Compared with the first edition, more emphasis is put on explicit constructions with attractive properties. Based on the exiting development of frame theory over the last decade, this second edition now includes new sections on the rapidly growing fields of LCA groups, generalized shift-invariant systems, duality theory for as well Gabor frames as wavelet frames, and open problems in the field. Key features include: *Elementary introduction to frame theory in finite-dimensional spaces * Basic results presented in an accessible way for both pure and applied mathematicians * Extensive exercises make the work suitable as a textbook for use in graduate courses * Full proofs includ ed in introductory chapters; only basic knowledge of functional analysis required * Explicit constructions of frames and dual pairs of frames, with applications and connections to time-frequency analysis, wavelets, and generalized shift-invariant systems * Discussion of frames on LCA groups and the concrete realizations in terms of Gabor systems on the elementary groups; connections to sampling theory * Selected research topics presented with recommendations for more advanced topics and further readin g * Open problems to stimulate further research An Introduction to Frames and Riesz Bases will be of interest to graduate students and researchers working in pure and applied mathematics, mathematical physics, and engineering. Professionals working in digital signal processing who wish to understand the theory behind many modern signal processing tools may also find this book a useful self-study reference. Review of the first edition: "Ole Christensen's An Introduction to Frames and Riesz Bases is a first-rate introduction to the field ... . The book provides an excellent exposition of these topics. The material is broad enough to pique the interest of many readers, the included exercises supply some interesting challenges, and the coverage provides enough background for those new to the subject to begin conducting original research." - Eric S. Weber, American Mathematical Monthly, Vol. 112, February, 2005
In this volume three important papers of M.G. Krein appear for the first time in English translation. Each of them is a short self-contained monograph, each a masterpiece of exposition. Although two of them were written more than twenty years ago, the passage of time has not decreased their value. They are as fresh and vital as if they had been written only yesterday. These papers contain a wealth of ideas, and will serve as a source of stimulation and inspiration for experts and beginners alike. The first paper is dedicated to the theory of canonical linear differential equations, with periodic coefficients. It focuses on the study of linear Hamiltonian systems with bounded solutions which stay bounded under small perturbations of the system. The paper uses methods from operator theory in finite and infinite dimensional spaces and complex analysis. For an account of more recent literature which was generated by this paper see AMS Translations (2), Volume 93, 1970, pages 103-176 and Integral Equations and Operator Theory, Volume 5, Number 5, 1982, pages 718-757.
In classical analysis, there is a vast difference between the class of problems that may be handled by means of the methods of calculus and the class of problems requiring combinatorial techniques. With the advent of the digital computer, the distinction begins to blur, and with the increasing emphasis on problems involving optimization over structures, tIlE' distinction vanishes. What is necessary for the analytic and computational treatment of significant questions arising in modern control theory, mathematical economics, scheduling theory, operations research, bioengineering, and so forth is a new and more flexible mathematical theory which subsumes both the cla8sical continuous and discrete t 19orithms. The work by HAMMER (IVANESCU) and RUDEANU on Boolean methods represents an important step in this dnectlOn, and it is thus a great pleasure to welcome it into print. It will certainly stimulate a great deal of additional research in both theory and application. RICHARD BELLMAN University of Southern California FOf(,WOl'
The origins of Schur analysis lie in a 1917 article by Issai Schur in which he constructed a numerical sequence to correspond to a holomorphic contractive function on the unit disk. These sequences are now known as Schur parameter sequences. Schur analysis has grown significantly since its beginnings in the early twentieth century and now encompasses a wide variety of problems related to several classes of holomorphic functions and their matricial generalizations. These problems include interpolation and moment problems as well as Schur parametrization of particular classes of contractive or nonnegative Hermitian block matrices. This book is primarily devoted to topics related to matrix versions of classical interpolation and moment problems. The major themes include Schur analysis of nonnegative Hermitian block Hankel matrices and the construction of Schur-type algorithms. This book also covers a number of recent developments in orthogonal rational matrix functions, matrix-valued Caratheodory functions and maximal weight solutions for particular matricial moment problems on the unit circle.
The present volume contains a collection of original research articles and expository contributions on recent developments in operator theory and its multifaceted applications. They cover a wide range of themes from the IWOTA 2010 conference held at the TU Berlin, Germany, including spectral theory, function spaces, mathematical system theory, evolution equations and semigroups, and differential and difference operators. The book encompasses new trends and various modern topics in operator theory, and serves as a useful source of information to mathematicians, scientists and engineers.
This book explains and examines the theoretical underpinnings of the Complex Variable Boundary Element Method (CVBEM) as applied to higher dimensions, providing the reader with the tools for extending and using the CVBEM in various applications. Relevant mathematics and principles are assembled and the reader is guided through the key topics necessary for an understanding of the development of the CVBEM in both the usual two as well as three or higher dimensions. In addition to this, problems are provided that build upon the material presented. The Complex Variable Boundary Element Method (CVBEM) is an approximation method useful for solving problems involving the Laplace equation in two dimensions. It has been shown to be a useful modelling technique for solving two-dimensional problems involving the Laplace or Poisson equations on arbitrary domains. The CVBEM has recently been extended to 3 or higher spatial dimensions, which enables the precision of the CVBEM in solving the Laplace equation to be now available for multiple dimensions. The mathematical underpinnings of the CVBEM, as well as the extension to higher dimensions, involve several areas of applied and pure mathematics including Banach Spaces, Hilbert Spaces, among other topics. This book is intended for applied mathematics graduate students, engineering students or practitioners, developers of industrial applications involving the Laplace or Poisson equations and developers of computer modelling applications.
Leon Ehrenpreis has been one of the leading mathematicians in the twentieth century. His contributions to the theory of partial differential equations were part of the golden era of PDEs, and led him to what is maybe his most important contribution, the Fundamental Principle, which he announced in 1960, and fully demonstrated in 1970. His most recent work, on the other hand, focused on a novel and far reaching understanding of the Radon transform, and offered new insights in integral geometry. Leon Ehrenpreis died in 2010, and this volume collects writings in his honor by a cadre of distinguished mathematicians, many of which were his collaborators.
This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the text and aid graduate students in functional analysis. The book will also be an invaluable reference volume for researchers in analysis. Volume 1 covers the basics of Banach space theory, operatory theory in Banach spaces, harmonic analysis and probability. The authors also provide an annex devoted to compact Abelian groups. Volume 2 focuses on applications of the tools presented in the first volume, including Dvoretzky's theorem, spaces without the approximation property, Gaussian processes, and more. Four leading experts also provide surveys outlining major developments in the field since the publication of the original French edition.
This book focuses on the constructive and practical aspects of spectral methods. It rigorously examines the most important qualities as well as drawbacks of spectral methods in the context of numerical methods devoted to solve non-standard eigenvalue problems. In addition, the book also considers some nonlinear singularly perturbed boundary value problems along with eigenproblems obtained by their linearization around constant solutions. The book is mathematical, poising problems in their proper function spaces, but its emphasis is on algorithms and practical difficulties. The range of applications is quite large. High order eigenvalue problems are frequently beset with numerical ill conditioning problems. The book describes a wide variety of successful modifications to standard algorithms that greatly mitigate these problems. In addition, the book makes heavy use of the concept of pseudospectrum, which is highly relevant to understanding when disaster is imminent in solving eigenvalue problems. It also envisions two classes of applications, the stability of some elastic structures and the hydrodynamic stability of some parallel shear flows. This book is an ideal reference text for professionals (researchers) in applied mathematics, computational physics and engineering. It will be very useful to numerically sophisticated engineers, physicists and chemists. The book can also be used as a textbook in review courses such as numerical analysis, computational methods in various engineering branches or physics and computational methods in analysis.
This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader can test various cases and view the results until they fully understand the principle. Additionally, the applet source code in Visual Basic is provided online, allowing this book to be used for teaching simple programming techniques. A complete, intuitive guide to the basics, "Digital Fourier Analysis - Fundamentals" is an essential reference for undergraduate students in science and engineering.
This book studies the situation over discrete Abelian groups with wide range applications. It covers classical functional equations, difference and differential equations, polynomial ideals, digital filtering and polynomial hypergroups, giving unified treatment of several different problems. There is no other comprehensive work in this field. The book will be of interest to graduate students, research workers in harmonic analysis, spectral analysis, functional equations and hypergroups.
Since the publication of Banach's treatise on the theory of linear operators, the literature on the theory of bases in topological vector spaces has grown enormously. Much of this literature has for its origin a question raised in Banach's book, the question whether every sepa rable Banach space possesses a basis or not. The notion of a basis employed here is a generalization of that of a Hamel basis for a finite dimensional vector space. For a vector space X of infinite dimension, the concept of a basis is closely related to the convergence of the series which uniquely correspond to each point of X. Thus there are different types of bases for X, according to the topology imposed on X and the chosen type of convergence for the series. Although almost four decades have elapsed since Banach's query, the conjectured existence of a basis for every separable Banach space is not yet proved. On the other hand, no counter examples have been found to show the existence of a special Banach space having no basis. However, as a result of the apparent overconfidence of a group of mathematicians, who it is assumed tried to solve the problem, we have many elegant works which show the tight connection between the theory of bases and structure of linear spaces."
Blaschke Products and Their Applications presents a collection of survey articles that examine Blaschke products and several of its applications to fields such as approximation theory, differential equations, dynamical systems, harmonic analysis, to name a few. Additionally, this volume illustrates the historical roots of Blaschke products and highlights key research on this topic. For nearly a century, Blaschke products have been researched. Their boundary behaviour, the asymptomatic growth of various integral means and their derivatives, their applications within several branches of mathematics, and their membership in different function spaces and their dynamics, are a few examples of where Blaschke products have shown to be important. The contributions written by experts from various fields of mathematical research will engage graduate students and researches alike, bringing the reader to the forefront of research in the topic. The readers will also discover the various open problems, enabling them to better pursue their own research.
This volume is a collection of papers devoted to the 70th birthday of Professor Vladimir Rabinovich. The opening article (by Stefan Samko) includes a short biography of Vladimir Rabinovich, along with some personal recollections and bibliography of his work. It is followed by twenty research and survey papers in various branches of analysis (pseudodifferential operators and partial differential equations, Toeplitz, Hankel, and convolution type operators, variable Lebesgue spaces, etc.) close to Professor Rabinovich's research interests. Many of them are written by participants of the International workshop "Analysis, Operator Theory, and Mathematical Physics" (Ixtapa, Mexico, January 23-27, 2012) having a long history of scientific collaboration with Vladimir Rabinovich, and are partially based on the talks presented there.The volume will be of great interest to researchers and graduate students in differential equations, operator theory, functional and harmonic analysis, and mathematical physics.
This book provides the foundations for a rigorous theory of functional analysis with bicomplex scalars. It begins with a detailed study of bicomplex and hyperbolic numbers and then defines the notion of bicomplex modules. After introducing a number of norms and inner products on such modules (some of which appear in this volume for the first time), the authors develop the theory of linear functionals and linear operators on bicomplex modules. All of this may serve for many different developments, just like the usual functional analysis with complex scalars and in this book it serves as the foundational material for the construction and study of a bicomplex version of the well known Schur analysis.
This book provides readers with a concise introduction to current studies on operator-algebras and their generalizations, operator spaces and operator systems, with a special focus on their application in quantum information science. This basic framework for the mathematical formulation of quantum information can be traced back to the mathematical work of John von Neumann, one of the pioneers of operator algebras, which forms the underpinning of most current mathematical treatments of the quantum theory, besides being one of the most dynamic areas of twentieth century functional analysis. Today, von Neumann's foresight finds expression in the rapidly growing field of quantum information theory. These notes gather the content of lectures given by a very distinguished group of mathematicians and quantum information theorists, held at the IMSc in Chennai some years ago, and great care has been taken to present the material as a primer on the subject matter. Starting from the basic definitions of operator spaces and operator systems, this text proceeds to discuss several important theorems including Stinespring's dilation theorem for completely positive maps and Kirchberg's theorem on tensor products of C*-algebras. It also takes a closer look at the abstract characterization of operator systems and, motivated by the requirements of different tensor products in quantum information theory, the theory of tensor products in operator systems is discussed in detail. On the quantum information side, the book offers a rigorous treatment of quantifying entanglement in bipartite quantum systems, and moves on to review four different areas in which ideas from the theory of operator systems and operator algebras play a natural role: the issue of zero-error communication over quantum channels, the strong subadditivity property of quantum entropy, the different norms on quantum states and the corresponding induced norms on quantum channels, and, lastly, the applications of matrix-valued random variables in the quantum information setting.
This volume contains twenty-one solicited articles by speakers at the IWOTA 2009 workshop, ranging from expository surveys to original research papers, each carefully refereed.The contributions reflect recent developments in operator theory and its applications. Consistent with the topics of recent IWOTA meetings, IWOTA 2009 was designed as a comprehensive, inclusive conference covering all aspects of theoretical and applied operator theory, ranging from classical analysis, differential and integral equations, complex and harmonic analysis to mathematical physics, mathematical systems and control theory, signal processing and numerical analysis. The conference brought together international experts for a week-long stay at Hotel Real de Minas, in an atmosphere conducive to fruitful professional interactions. These Proceedings reflect the high quality of the papers presented at the conference. "
This book presents the application of someAI relatedoptimization techniques in the operation and control of electric power systems. With practical applications and examples theuse offunctional analysis, simulated annealing, Tabu-search, Genetic algorithms and fuzzy systems for the optimization of power systems is discussed in detail. Preliminary mathematical concepts are presented before moving to more advanced material. Researchers and graduate students will benefit from this book. Engineers working in utility companies, operations and control, and resource management will also find this book useful. "
This book is dedicated to the memory of Israel Gohberg (1928-2009) - one of the great mathematicians of our time - who inspired innumerable fellow mathematicians and directed many students. The volume reflects the wide spectrum of Gohberg's mathematical interests. It consists of more than 25 invited and peer-reviewed original research papers written by his former students, co-authors and friends. Included are contributions to single and multivariable operator theory, commutative and non-commutative Banach algebra theory, the theory of matrix polynomials and analytic vector-valued functions, several variable complex function theory, and the theory of structured matrices and operators. Also treated are canonical differential systems, interpolation, completion and extension problems, numerical linear algebra and mathematical systems theory. |
You may like...
Symplectic Difference Systems…
Ondrej Dosly, Julia Elyseeva, …
Hardcover
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,319
Discovery Miles 33 190
Hardy Operators On Euclidean Spaces And…
Shanzhen Lu, Zunwei Fu, …
Hardcover
R1,914
Discovery Miles 19 140
Operator Theory, Analysis and the State…
Harm Bart, Sanne ter Horst, …
Hardcover
R2,512
Discovery Miles 25 120
Applications of Functional Analysis and…
V. Hutson, J Pym, …
Hardcover
R6,141
Discovery Miles 61 410
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R1,892
Discovery Miles 18 920
Bloch-type Periodic Functions: Theory…
Yong-kui Chang, Gaston Mandata N'G'Uerekata, …
Hardcover
R1,907
Discovery Miles 19 070
|