![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This book provides a graduate-level introduction to three powerful and closely related techniques in condensed matter physics: memory functions, projection operators, and the defect technique. Memory functions appear in the formalism of the generalized master equations that express the time evolution of probabilities via equations non-local in time, projection operators allow the extraction of parts of quantities, such as the diagonal parts of density matrices in statistical mechanics, and the defect technique allows solution of transport equations in which the translational invariance is broken in small regions, such as when crystals are doped with impurities. These three methods combined form an immensely useful toolkit for investigations in such disparate areas of physics as excitation in molecular crystals, sensitized luminescence, charge transport, non-equilibrium statistical physics, vibrational relaxation, granular materials, NMR, and even theoretical ecology. This book explains the three techniques and their interrelated nature, along with plenty of illustrative examples. Graduate students beginning to embark on a research project in condensed matter physics will find this book to be a most fruitful source of theoretical training.
This book describes recent developments as well as some classical results regarding holomorphic mappings. The book starts with a brief survey of the theory of semigroups of linear operators including the Hille-Yosida and the Lumer-Phillips theorems. The numerical range and the spectrum of closed densely defined linear operators are then discussed in more detail and an overview of ergodic theory is presented. The analytic extension of semigroups of linear operators is also discussed. The recent study of the numerical range of composition operators on the unit disk is mentioned. Then, the basic notions and facts in infinite dimensional holomorphy and hyperbolic geometry in Banach and Hilbert spaces are presented, L. A. Harris' theory of the numerical range of holomorphic mappings is generalized, and the main properties of the so-called quasi-dissipative mappings and their growth estimates are studied. In addition, geometric and quantitative analytic aspects of fixed point theory are discussed. A special chapter is devoted to applications of the numerical range to diverse geometric and analytic problems.
Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincare and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn-Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.
The chapters in this volume are based on talks given at the inaugural Technology, Engineering and Mathematics Conference (TEM18), held from March 26 to 27, 2018 in Kenitra, Morocco. Advances in mathematical modeling, optimization, numerical analysis, signal processing, and computer science are presented by leading experts in these fields. There is a particular emphasis on stochastic analysis, machine learning algorithms, and deep learning models, which are highly relevant to the state-of-the-art in augmented, virtual, and mixed realities. Topics include: Harmonic analysis Big data analytics and applications Biomathematics Computer engineering and applications Economics and financial engineering Medical imaging and non-destructive testing This volume is ideal for engineers and researchers working in technological fields that need to be modeled and simulated using the tools of modern mathematics.
This book offers a review of the theory of locally convex quasi *-algebras, authored by two of its contributors over the last 25 years. Quasi *-algebras are partial algebraic structures that are motivated by certain applications in Mathematical Physics. They arise in a natural way by completing a *-algebra under a locally convex *-algebra topology, with respect to which the multiplication is separately continuous. Among other things, the book presents an unbounded representation theory of quasi *-algebras, together with an analysis of normed quasi *-algebras, their spectral theory and a study of the structure of locally convex quasi *-algebras. Special attention is given to the case where the locally convex quasi *-algebra is obtained by completing a C*-algebra under a locally convex *-algebra topology, coarser than the C*-topology. Introducing the subject to graduate students and researchers wishing to build on their knowledge of the usual theory of Banach and/or locally convex algebras, this approach is supported by basic results and a wide variety of examples.
The purpose of this book is to build the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for research on arithmetic geometry in several directions. By adelic curve is meant a field equipped with a family of absolute values parametrized by a measure space, such that the logarithmic absolute value of each non-zero element of the field is an integrable function on the measure space. In the literature, such construction has been discussed in various settings which are apparently transversal to each other. The authors first formalize the notion of adelic curves and discuss in a systematic way its algebraic covers, which are important in the study of height theory of algebraic points beyond Weil-Lang's height theory. They then establish a theory of adelic vector bundles on adelic curves, which considerably generalizes the classic geometry of vector bundles or that of Hermitian vector bundles over an arithmetic curve. They focus on an analogue of the slope theory in the setting of adelic curves and in particular estimate the minimal slope of tensor product adelic vector bundles. Finally, by using the adelic vector bundles as a tool, a birational Arakelov geometry for projective variety over an adelic curve is developed. As an application, a vast generalization of Nakai-Moishezon's criterion of positivity is proven in clarifying the arguments of geometric nature from several fundamental results in the classic geometry of numbers. Assuming basic knowledge of algebraic geometry and algebraic number theory, the book is almost self-contained. It is suitable for researchers in arithmetic geometry as well as graduate students focusing on these topics for their doctoral theses.
This book provides an introduction to the theory of topological vector spaces, with a focus on locally convex spaces. It discusses topologies in dual pairs, culminating in the Mackey-Arens theorem, and also examines the properties of the weak topology on Banach spaces, for instance Banach's theorem on weak*-closed subspaces on the dual of a Banach space (alias the Krein-Smulian theorem), the Eberlein-Smulian theorem, Krein's theorem on the closed convex hull of weakly compact sets in a Banach space, and the Dunford-Pettis theorem characterising weak compactness in L1-spaces. Lastly, it addresses topics such as the locally convex final topology, with the application to test functions D( ) and the space of distributions, and the Krein-Milman theorem. The book adopts an "economic" approach to interesting topics, and avoids exploring all the arising side topics. Written in a concise mathematical style, it is intended primarily for advanced graduate students with a background in elementary functional analysis, but is also useful as a reference text for established mathematicians.
This self-contained and user-friendly textbook is designed for a first, one-semester course in statistical signal analysis for a broad audience of students in engineering and the physical sciences. The emphasis throughout is on fundamental concepts and relationships in the statistical theory of stationary random signals, which are explained in a concise, yet rigorous presentation. With abundant practice exercises and thorough explanations, A First Course in Statistics for Signal Analysis is an excellent tool for both teaching students and training laboratory scientists and engineers. Improvements in the second edition include considerably expanded sections, enhanced precision, and more illustrative figures.
This book provides a thorough introduction to the theory of complex semisimple quantum groups, that is, Drinfeld doubles of q-deformations of compact semisimple Lie groups. The presentation is comprehensive, beginning with background information on Hopf algebras, and ending with the classification of admissible representations of the q-deformation of a complex semisimple Lie group. The main components are: - a thorough introduction to quantized universal enveloping algebras over general base fields and generic deformation parameters, including finite dimensional representation theory, the Poincare-Birkhoff-Witt Theorem, the locally finite part, and the Harish-Chandra homomorphism, - the analytic theory of quantized complex semisimple Lie groups in terms of quantized algebras of functions and their duals, - algebraic representation theory in terms of category O, and - analytic representation theory of quantized complex semisimple groups. Given its scope, the book will be a valuable resource for both graduate students and researchers in the area of quantum groups.
This book presents the evolution of uniform approximations of continuous functions. Starting from the simple case of a real continuous function defined on a closed real interval, i.e., the Weierstrass approximation theorems, it proceeds up to the abstract case of approximation theorems in a locally convex lattice of (M) type. The most important generalizations of Weierstrass' theorems obtained by Korovkin, Bohman, Stone, Bishop, and Von Neumann are also included. In turn, the book presents the approximation of continuous functions defined on a locally compact space (the functions from a weighted space) and that of continuous differentiable functions defined on !n. In closing, it highlights selected approximation theorems in locally convex lattices of (M) type. The book is intended for advanced and graduate students of mathematics, and can also serve as a resource for researchers in the field of the theory of functions.
The present book deals with a streamlined presentation of Levy processes and their densities. It is directed at advanced undergraduates who have already completed a basic probability course. Poisson random variables, exponential random variables, and the introduction of Poisson processes are presented first, followed by the introduction of Poisson random measures in a simple case. With these tools the reader proceeds gradually to compound Poisson processes, finite variation Levy processes and finally one-dimensional stable cases. This step-by-step progression guides the reader into the construction and study of the properties of general Levy processes with no Brownian component. In particular, in each case the corresponding Poisson random measure, the corresponding stochastic integral, and the corresponding stochastic differential equations (SDEs) are provided. The second part of the book introduces the tools of the integration by parts formula for jump processes in basic settings and first gradually provides the integration by parts formula in finite-dimensional spaces and gives a formula in infinite dimensions. These are then applied to stochastic differential equations in order to determine the existence and some properties of their densities. As examples, instances of the calculations of the Greeks in financial models with jumps are shown. The final chapter is devoted to the Boltzmann equation.
This well-thought-out book covers the fundamentals of nonlinear analysis, with a particular focus on variational methods and their applications. Starting from preliminaries in functional analysis, it expands in several directions such as Banach spaces, fixed point theory, nonsmooth analysis, minimax theory, variational calculus and inequalities, critical point theory, monotone, maximal monotone and pseudomonotone operators, and evolution problems.
Iterative Methods for Fixed Points of Nonlinear Operators offers an introduction into iterative methods of fixed points for nonexpansive mappings, pseudo-contrations in Hilbert Spaces and in Banach Spaces. Iterative methods of zeros for accretive mappings in Banach Spaces and monotone mappings in Hilbert Spaces are also discussed. It is an essential work for mathematicians and graduate students in nonlinear analysis.
TheH-function or popularly known in the literature as Fox'sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction-diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.
This book features a selection of articles based on the XXXV Bialowieza Workshop on Geometric Methods in Physics, 2016. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Bialowieza Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.
The asymptotic distribution of eigenvalues of self-adjoint differential operators in the high-energy limit, or the semi-classical limit, is a classical subject going back to H. Weyl of more than a century ago. In the last decades there has been a renewed interest in non-self-adjoint differential operators which have many subtle properties such as instability under small perturbations. Quite remarkably, when adding small random perturbations to such operators, the eigenvalues tend to distribute according to Weyl's law (quite differently from the distribution for the unperturbed operators in analytic cases). A first result in this direction was obtained by M. Hager in her thesis of 2005. Since then, further general results have been obtained, which are the main subject of the present book. Additional themes from the theory of non-self-adjoint operators are also treated. The methods are very much based on microlocal analysis and especially on pseudodifferential operators. The reader will find a broad field with plenty of open problems.
This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems and displays how various approaches can easily be applied to a range of model cases. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.
The book is intended as a text for a one-semester graduate course in operator theory to be taught "from scratch'', not as a sequel to a functional analysis course, with the basics of the spectral theory of linear operators taking the center stage. The book consists of six chapters and appendix, with the material flowing from the fundamentals of abstract spaces (metric, vector, normed vector, and inner product), the Banach Fixed-Point Theorem and its applications, such as Picard's Existence and Uniqueness Theorem, through the basics of linear operators, two of the three fundamental principles (the Uniform Boundedness Principle and the Open Mapping Theorem and its equivalents: the Inverse Mapping and Closed Graph Theorems), to the elements of the spectral theory, including Gelfand's Spectral Radius Theorem and the Spectral Theorem for Compact Self-Adjoint Operators, and its applications, such as the celebrated Lyapunov Stability Theorem. Conceived as a text to be used in a classroom, the book constantly calls for the student's actively mastering the knowledge of the subject matter. There are problems at the end of each chapter, starting with Chapter 2 and totaling at 150. Many important statements are given as problems and frequently referred to in the main body. There are also 432 Exercises throughout the text, including Chapter 1 and the Appendix, which require of the student to prove or verify a statement or an example, fill in certain details in a proof, or provide an intermediate step or a counterexample. They are also an inherent part of the material. More difficult problems are marked with an asterisk, many problems and exercises are supplied with "existential'' hints. The book is generous on Examples and contains numerous Remarks accompanying definitions, examples, and statements to discuss certain subtleties, raise questions on whether the converse assertions are true, whenever appropriate, or whether the conditions are essential. With carefully chosen material, proper attention given to applications, and plenty of examples, problems, and exercises, this well-designed text is ideal for a one-semester Master's level graduate course in operator theory with emphasis on spectral theory for students majoring in mathematics, physics, computer science, and engineering. Contents Preface Preliminaries Metric Spaces Vector Spaces, Normed Vector Spaces, and Banach Spaces Linear Operators Elements of Spectral Theory in a Banach Space Setting Elements of Spectral Theory in a Hilbert Space Setting Appendix: The Axiom of Choice and Equivalents Bibliography Index
The Proceedings volume contains 16 contributions to the IMPA conference "New Trends in Parameter Identification for Mathematical Models", Rio de Janeiro, Oct 30 - Nov 3, 2017, integrating the "Chemnitz Symposium on Inverse Problems on Tour". This conference is part of the "Thematic Program on Parameter Identification in Mathematical Models" organized at IMPA in October and November 2017. One goal is to foster the scientific collaboration between mathematicians and engineers from the Brazialian, European and Asian communities. Main topics are iterative and variational regularization methods in Hilbert and Banach spaces for the stable approximate solution of ill-posed inverse problems, novel methods for parameter identification in partial differential equations, problems of tomography , solution of coupled conduction-radiation problems at high temperatures, and the statistical solution of inverse problems with applications in physics.
This textbook is an introduction to the theory and applications of finite tight frames, an area that has developed rapidly in the last decade. Stimulating much of this growth are the applications of finite frames to diverse fields such as signal processing, quantum information theory, multivariate orthogonal polynomials, and remote sensing. Featuring exercises and MATLAB examples in each chapter, the book is well suited as a textbook for a graduate course or seminar involving finite frames. The self-contained, user-friendly presentation also makes the work useful as a self-study resource or reference for graduate students, instructors, researchers, and practitioners in pure and applied mathematics, engineering, mathematical physics, and signal processing.
This book investigates the convergence and summability of both one-dimensional and multi-dimensional Fourier transforms, as well as the theory of Hardy spaces. To do so, it studies a general summability method known as theta-summation, which encompasses all the well-known summability methods, such as the Fejer, Riesz, Weierstrass, Abel, Picard, Bessel and Rogosinski summations. Following on the classic books by Bary (1964) and Zygmund (1968), this is the first book that considers strong summability introduced by current methodology. A further unique aspect is that the Lebesgue points are also studied in the theory of multi-dimensional summability. In addition to classical results, results from the past 20-30 years - normally only found in scattered research papers - are also gathered and discussed, offering readers a convenient "one-stop" source to support their work. As such, the book will be useful for researchers, graduate and postgraduate students alike.
This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions. Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions. Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4. The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Polya's enumeration theorem using symmetric functions. Chapters 7 and 8 are more specialized than the preceding ones, covering consecutive pattern matches in permutations, words, cycles, and alternating permutations and introducing the reciprocity method as a way to define ring homomorphisms with desirable properties. Counting with Symmetric Functions will appeal to graduate students and researchers in mathematics or related subjects who are interested in counting methods, generating functions, or symmetric functions. The unique approach taken and results and exercises explored by the authors make it an important contribution to the mathematical literature.
Written in honor of Victor Havin (1933-2015), this volume presents a collection of surveys and original papers on harmonic and complex analysis, function spaces and related topics, authored by internationally recognized experts in the fields. It also features an illustrated scientific biography of Victor Havin, one of the leading analysts of the second half of the 20th century and founder of the Saint Petersburg Analysis Seminar. A complete list of his publications, as well as his public speech "Mathematics as a source of certainty and uncertainty", presented at the Doctor Honoris Causa ceremony at Linkoeping University, are also included.
This monograph is about monotone complete C*-algebras, their properties and the new classification theory. A self-contained introduction to generic dynamics is also included because of its important connections to these algebras. Our knowledge and understanding of monotone complete C*-algebras has been transformed in recent years. This is a very exciting stage in their development, with much discovered but with many mysteries to unravel. This book is intended to encourage graduate students and working mathematicians to attack some of these difficult questions. Each bounded, upward directed net of real numbers has a limit. Monotone complete algebras of operators have a similar property. In particular, every von Neumann algebra is monotone complete but the converse is false. Written by major contributors to this field, Monotone Complete C*-algebras and Generic Dynamics takes readers from the basics to recent advances. The prerequisites are a grounding in functional analysis, some point set topology and an elementary knowledge of C*-algebras.
This book consists of invited survey articles and research papers in the scientific areas of the "International Workshop on Operator Algebras, Operator Theory and Applications," which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas. |
![]() ![]() You may like...
System-on-Chip Architectures and…
Maire McLoone, John V. McCanny
Hardcover
R2,973
Discovery Miles 29 730
AI-Driven Intelligent Models for…
Samala Nagaraj, Korupalli V Rajesh Kumar
Hardcover
R6,723
Discovery Miles 67 230
Quantitative statistical techniques
A. Swanepoel, F.L. Vivier, …
Paperback
R662
Discovery Miles 6 620
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
Internet of Things with 8051 and ESP8266
Anita Gehlot, Rajesh Singh, …
Hardcover
Network Science - Complexity in Nature…
Ernesto Estrada, Maria Fox, …
Hardcover
R3,020
Discovery Miles 30 200
|