![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
Function transformations, which include linear integral
transformations, are some of the most important mathematical tools
for solving problems in all areas of engineering and the physical
sciences. They allow one to quickly solve a problem by breaking it
down into a series of smaller, more manageable problems.
This book contains the most remarkable papers of L.V. Kantorovich in applied and numerical mathematics. It explores the principal directions of Kantorovich's research in approximate methods. The book covers descriptive set theory and functional analysis in semi-ordered vector spaces.
This self-contained monograph unifies theorems, applications and problem solving techniques of matrix inequalities. In addition to the frequent use of methods from Functional Analysis, Operator Theory, Global Analysis, Linear Algebra, Approximations Theory, Difference and Functional Equations and more, the reader will also appreciate techniques of classical analysis and algebraic arguments, as well as combinatorial methods. Subjects such as operator Young inequalities, operator inequalities for positive linear maps, operator inequalities involving operator monotone functions, norm inequalities, inequalities for sector matrices are investigated thoroughly throughout this book which provides an account of a broad collection of classic and recent developments. Detailed proofs for all the main theorems and relevant technical lemmas are presented, therefore interested graduate and advanced undergraduate students will find the book particularly accessible. In addition to several areas of theoretical mathematics, Matrix Analysis is applicable to a broad spectrum of disciplines including operations research, mathematical physics, statistics, economics, and engineering disciplines. It is hoped that graduate students as well as researchers in mathematics, engineering, physics, economics and other interdisciplinary areas will find the combination of current and classical results and operator inequalities presented within this monograph particularly useful.
This book presents a printed testimony for the fact that George Andrews, one of the world's leading experts in partitions and q-series for the last several decades, has passed the milestone age of 80. To honor George Andrews on this occasion, the conference "Combinatory Analysis 2018" was organized at the Pennsylvania State University from June 21 to 24, 2018. This volume comprises the original articles from the Special Issue "Combinatory Analysis 2018 - In Honor of George Andrews' 80th Birthday" resulting from the conference and published in Annals of Combinatorics. In addition to the 37 articles of the Andrews 80 Special Issue, the book includes two new papers. These research contributions explore new grounds and present new achievements, research trends, and problems in the area. The volume is complemented by three special personal contributions: "The Worlds of George Andrews, a daughter's take" by Amy Alznauer, "My association and collaboration with George Andrews" by Krishna Alladi, and "Ramanujan, his Lost Notebook, its importance" by Bruce Berndt. Another aspect which gives this Andrews volume a truly unique character is the "Photos" collection. In addition to pictures taken at "Combinatory Analysis 2018", the editors selected a variety of photos, many of them not available elsewhere: "Andrews in Austria", "Andrews in China", "Andrews in Florida", "Andrews in Illinois", and "Andrews in India". This volume will be of interest to researchers, PhD students, and interested practitioners working in the area of Combinatory Analysis, q-Series, and related fields.
This book presents modern methods in functional analysis and operator theory along with their applications in recent research. The book also deals with the solvability of infinite systems of linear equations in various sequence spaces. It uses the classical sequence spaces, generalized Cesaro and difference operators to obtain calculations and simplifications of complicated spaces involving these operators. In order to make it self-contained, comprehensive and of interest to a larger mathematical community, the authors have presented necessary concepts with results for advanced research topics. This book is intended for graduate and postgraduate students, teachers and researchers as a basis for further research, advanced lectures and seminars.
This contributed volume is based on talks given at the August 2016 summer school "Fluids Under Pressure," held in Prague as part of the "Prague-Sum" series. Written by experts in their respective fields, chapters explore the complex role that pressure plays in physics, mathematical modeling, and fluid flow analysis. Specific topics covered include: Oceanic and atmospheric dynamics Incompressible flows Viscous compressible flows Well-posedness of the Navier-Stokes equations Weak solutions to the Navier-Stokes equations Fluids Under Pressure will be a valuable resource for graduate students and researchers studying fluid flow dynamics.
Reproducing kernel Hilbert spaces have developed into an important tool in many areas, especially statistics and machine learning, and they play a valuable role in complex analysis, probability, group representation theory, and the theory of integral operators. This unique text offers a unified overview of the topic, providing detailed examples of applications, as well as covering the fundamental underlying theory, including chapters on interpolation and approximation, Cholesky and Schur operations on kernels, and vector-valued spaces. Self-contained and accessibly written, with exercises at the end of each chapter, this unrivalled treatment of the topic serves as an ideal introduction for graduate students across mathematics, computer science, and engineering, as well as a useful reference for researchers working in functional analysis or its applications.
This monograph serves as a much-needed, self-contained reference on the topic of modulation spaces. By gathering together state-of-the-art developments and previously unexplored applications, readers will be motivated to make effective use of this topic in future research. Because modulation spaces have historically only received a cursory treatment, this book will fill a gap in time-frequency analysis literature, and offer readers a convenient and timely resource. Foundational concepts and definitions in functional, harmonic, and real analysis are reviewed in the first chapter, which is then followed by introducing modulation spaces. The focus then expands to the many valuable applications of modulation spaces, such as linear and multilinear pseudodifferential operators, and dispersive partial differential equations. Because it is almost entirely self-contained, these insights will be accessible to a wide audience of interested readers. Modulation Spaces will be an ideal reference for researchers in time-frequency analysis and nonlinear partial differential equations. It will also appeal to graduate students and seasoned researchers who seek an introduction to the time-frequency analysis of nonlinear dispersive partial differential equations.
This book provides an introduction to the theory and applications of point processes, both in time and in space. Presenting the two components of point process calculus, the martingale calculus and the Palm calculus, it aims to develop the computational skills needed for the study of stochastic models involving point processes, providing enough of the general theory for the reader to reach a technical level sufficient for most applications. Classical and not-so-classical models are examined in detail, including Poisson-Cox, renewal, cluster and branching (Kerstan-Hawkes) point processes.The applications covered in this text (queueing, information theory, stochastic geometry and signal analysis) have been chosen not only for their intrinsic interest but also because they illustrate the theory. Written in a rigorous but not overly abstract style, the book will be accessible to earnest beginners with a basic training in probability but will also interest upper graduate students and experienced researchers.
This textbook introduces spectral theory for bounded linear operators by focusing on (i) the spectral theory and functional calculus for normal operators acting on Hilbert spaces; (ii) the Riesz-Dunford functional calculus for Banach-space operators; and (iii) the Fredholm theory in both Banach and Hilbert spaces. Detailed proofs of all theorems are included and presented with precision and clarity, especially for the spectral theorems, allowing students to thoroughly familiarize themselves with all the important concepts. Covering both basic and more advanced material, the five chapters and two appendices of this volume provide a modern treatment on spectral theory. Topics range from spectral results on the Banach algebra of bounded linear operators acting on Banach spaces to functional calculus for Hilbert and Banach-space operators, including Fredholm and multiplicity theories. Supplementary propositions and further notes are included as well, ensuring a wide range of topics in spectral theory are covered. Spectral Theory of Bounded Linear Operators is ideal for graduate students in mathematics, and will also appeal to a wider audience of statisticians, engineers, and physicists. Though it is mostly self-contained, a familiarity with functional analysis, especially operator theory, will be helpful.
This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painleve equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5-12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.
The present volume gathers contributions to the conference Microlocal and Time-Frequency Analysis 2018 (MLTFA18), which was held at Torino University from the 2nd to the 6th of July 2018. The event was organized in honor of Professor Luigi Rodino on the occasion of his 70th birthday. The conference's focus and the contents of the papers reflect Luigi's various research interests in the course of his long and extremely prolific career at Torino University.
This handbook focuses on special functions in physics in the real and complex domain. It covers more than 170 different functions with additional numerical hints for efficient computation, which are useful to anyone who needs to program with other programming languages as well. The book comes with MATLAB-based programs for each of these functions and a detailed html-based documentation. Some of the explained functions are: Gamma and Beta functions; Legendre functions, which are linked to quantum mechanics and electrodynamics; Bessel functions; hypergeometric functions, which play an important role in mathematical physics; orthogonal polynomials, which are largely used in computational physics; and Riemann zeta functions, which play an important role, e.g., in quantum chaos or string theory. The book's primary audience are scientists, professionals working in research areas of industries, and advanced students in physics, applied mathematics, and engineering.
Functional analysis deals with infinite-dimensional spaces. Its results are among the greatest achievements of modern mathematics and it has wide-reaching applications to probability theory, statistics, economics, classical and quantum physics, chemistry, engineering, and pure mathematics. This book deals with measure theory and discrete aspects of functional analysis, including Fourier series, sequence spaces, matrix maps, and summability. Based on the author's extensive teaching experience, the text is accessible to advanced undergraduate and first-year graduate students. It can be used as a basis for a one-term course or for a one-year sequence, and is suitable for self-study for readers with an undergraduate-level understanding of real analysis and linear algebra. More than 750 exercises are included to help the reader test their understanding. Key background material is summarized in the Preliminaries.
Considering that the motion of strings with finitely many masses on them is described by difference equations, this book presents the spectral theory of such problems on finite graphs of strings. The direct problem of finding the eigenvalues as well as the inverse problem of finding strings with a prescribed spectrum are considered. This monograph gives a comprehensive and self-contained account on the subject, thereby also generalizing known results. The interplay between the representation of rational functions and their zeros and poles is at the center of the methods used. The book also unravels connections between finite dimensional and infinite dimensional spectral problems on graphs, and between self-adjoint and non-self-adjoint finite-dimensional problems. This book is addressed to researchers in spectral theory of differential and difference equations as well as physicists and engineers who may apply the presented results and methods to their research.
The book consists of articles based on the XXXVIII Bialowieza Workshop on Geometric Methods in Physics, 2019. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, with applications to classical and quantum physics. For the past eight years, the Bialowieza Workshops have been complemented by a School on Geometry and Physics, comprising series of advanced lectures for graduate students and early-career researchers. The extended abstracts of the five lecture series that were given in the eighth school are included. The unique character of the Workshop-and-School series draws on the venue, a famous historical, cultural and environmental site in the Bialowieza forest, a UNESCO World Heritage Centre in the east of Poland: lectures are given in the Nature and Forest Museum and local traditions are interwoven with the scientific activities. The chapter "Toeplitz Extensions in Noncommutative Topology and Mathematical Physics" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book provides the first systematic critique of the concept of climate change adaptation within the field of international development. Drawing on a reworked political ecology framework, it argues that climate is not something out there that we adapt to. Instead, it is part of the social and biophysical forces through which our lived environments are actively yet unevenly produced. From this original foundation, the book challenges us to rethink the concepts of climate change, vulnerability, resilience and adaptive capacity in transformed ways. With case studies drawn from Pakistan, India and Mongolia, it demonstrates concretely how climatic change emerges as a dynamic force in the ongoing transformation of contested rural landscapes. In crafting this synthesis, the book recalibrates the frameworks we use to envisage climatic change in the context of contemporary debates over development, livelihoods and poverty. With its unique theoretical contribution and case study material, this book will appeal to researchers and students in environmental studies, sociology, geography, politics and development studies."
Geometry and Martingales in Banach Spaces provides a compact exposition of the results explaining the interrelations existing between the metric geometry of Banach spaces and the theory of martingales, and general random vectors with values in those Banach spaces. Geometric concepts such as dentability, uniform smoothness, uniform convexity, Beck convexity, etc. turn out to characterize asymptotic behavior of martingales with values in Banach spaces.
This volume presents cutting edge research from the frontiers of functional equations and analytic inequalities active fields. It covers the subject of functional equations in a broad sense, including but not limited to the following topics: Hyperstability of a linear functional equation on restricted domains Hyers-Ulam's stability results to a three point boundary value problem of nonlinear fractional order differential equations Topological degree theory and Ulam's stability analysis of a boundary value problem of fractional differential equations General Solution and Hyers-Ulam Stability of Duo Trigintic Functional Equation in Multi-Banach Spaces Stabilities of Functional Equations via Fixed Point Technique Measure zero stability problem for the Drygas functional equation with complex involution Fourier Transforms and Ulam Stabilities of Linear Differential Equations Hyers-Ulam stability of a discrete diamond-alpha derivative equation Approximate solutions of an interesting new mixed type additive-quadratic-quartic functional equation. The diverse selection of inequalities covered includes Opial, Hilbert-Pachpatte, Ostrowski, comparison of means, Poincare, Sobolev, Landau, Polya-Ostrowski, Hardy, Hermite-Hadamard, Levinson, and complex Korovkin type. The inequalities are also in the environments of Fractional Calculus and Conformable Fractional Calculus. Applications from this book's results can be found in many areas of pure and applied mathematics, especially in ordinary and partial differential equations and fractional differential equations. As such, this volume is suitable for researchers, graduate students and related seminars, and all science and engineering libraries. The exhibited thirty six chapters are self-contained and can be read independently and interesting advanced seminars can be given out of this book.
This book features a collection of up-to-date research papers that study various aspects of general operator algebra theory and concrete classes of operators, including a range of applications. Most of the papers included were presented at the International Workshop on Operator Algebras, Toeplitz Operators, and Related Topics, in Boca del Rio, Veracruz, Mexico, in November 2018. The conference, which was attended by more than 30 leading experts in the field, was held in celebration of Nikolai Vasilevski's 70th birthday, and the contributions are dedicated to him.
This self-contained book lays the foundations for a systematic understanding of potential theoretic and uniformization problems on fractal Sierpinski carpets, and proposes a theory based on the latest developments in the field of analysis on metric spaces. The first part focuses on the development of an innovative theory of harmonic functions that is suitable for Sierpinski carpets but differs from the classical approach of potential theory in metric spaces. The second part describes how this theory is utilized to prove a uniformization result for Sierpinski carpets. This book is intended for researchers in the fields of potential theory, quasiconformal geometry, geometric group theory, complex dynamics, geometric function theory and PDEs.
This monograph is the first comprehensive treatment of multiplicity-free induced representations of finite groups as a generalization of finite Gelfand pairs. Up to now, researchers have been somehow reluctant to face such a problem in a general situation, and only partial results were obtained in the one-dimensional case. Here, for the first time, new interesting and important results are proved. In particular, after developing a general theory (including the study of the associated Hecke algebras and the harmonic analysis of the corresponding spherical functions), two completely new highly nontrivial and significant examples (in the setting of linear groups over finite fields) are examined in full detail. The readership ranges from graduate students to experienced researchers in Representation Theory and Harmonic Analysis.
The theory of natural dualities, as presented in this text, is broad enough to encompass many known dualities through a rich assortment of substantive theorems, yet concrete enough to be used to generate an array of previously undiscovered dualities. This text will serve as a user manual for algebraists, for category theorists and for those who use algebra in their work, particularly mathematicians and computer scientists interested in non-classical logics. It will also give the specialist a complete account of the foundations, leading to the research frontier of this rapidly developing field. As the first text devoted to the theory of Natural Dualities, it provides an efficient path through a large body of results, examples and applications in this subject which is otherwise available only in scattered research papers. To enable the book to be used in courses, each chapter ends with an extensive exercise set. Several fundamental unsolved problems are included.
Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincare and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn-Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.
A guide to the new research in the field of fractional order analysis Fractional Order Analysis contains the most recent research findings in fractional order analysis and its applications. The authors--noted experts on the topic--offer an examination of the theory, methods, applications, and the modern tools and techniques in the field of fractional order analysis. The information, tools, and applications presented can help develop mathematical methods and models with better accuracy. Comprehensive in scope, the book covers a range of topics including: new fractional operators, fractional derivatives, fractional differential equations, inequalities for different fractional derivatives and fractional integrals, fractional modeling related to transmission of Malaria, and dynamics of Zika virus with various fractional derivatives, and more. Designed to be an accessible text, several useful, relevant and connected topics can be found in one place, which is crucial for an understanding of the research problems of an applied nature. This book: Contains recent development in fractional calculus Offers a balance of theory, methods, and applications Puts the focus on fractional analysis and its interdisciplinary applications, such as fractional models for biological models Helps make research more relevant to real-life applications Written for researchers, professionals and practitioners, Fractional Order Analysis offers a comprehensive resource to fractional analysis and its many applications as well as information on the newest research. |
![]() ![]() You may like...
Operator Theory, Operator Algebras and…
Raul E. Curto, William Helton, …
Hardcover
R4,451
Discovery Miles 44 510
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
A Mathematical Journey to Quantum…
Salvatore Capozziello, Wladimir-Georges Boskoff
Hardcover
R2,531
Discovery Miles 25 310
Applications of Functional Analysis and…
V. Hutson, J Pym, …
Hardcover
R6,660
Discovery Miles 66 600
|