![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.
This proceedings volume gathers together original articles and survey works that originate from presentations given at the conference Transient Transcendence in Transylvania, held in Brasov, Romania, from May 13th to 17th, 2019. The conference gathered international experts from various fields of mathematics and computer science, with diverse interests and viewpoints on transcendence. The covered topics are related to algebraic and transcendental aspects of special functions and special numbers arising in algebra, combinatorics, geometry and number theory. Besides contributions on key topics from invited speakers, this volume also brings selected papers from attendees.
A remarkable interplay exists between the fields of elliptic functions and orthogonal polynomials. In the first monograph to explore their connections, Elliptic Polynomials combines these two areas of study, leading to an interesting development of some basic aspects of each. It presents new material about various classes of polynomials and about the odd Jacobi elliptic functions and their inverses.
Unmatched in its coverage of the topic, the first edition of
GENERALIZED VECTOR AND DYADIC ANALYSIS helped revolutionize the
treatment of boundary-value problems, establishing itself as a
classic in the field. This expanded, revised edition is the most
comprehensive book available on vector analysis founded upon the
new method symbolic vector. GENERALIZED VECTOR AND DYADIC ANALYSIS
presents a copious list of vector and dyadic identities, along with
various forms of Green's theorems with derivations. In addition,
this edition presents an historical study of the past
mis-understandings and contradictions that have occurred in vector
analysis presentations, furthering the reader's understanding of
the subject.
To date, the theoretical development of q-calculus has rested on a non-uniform basis. Generally, the bulky Gasper-Rahman notation was used, but the published works on q-calculus looked different depending on where and by whom they were written. This confusion of tongues not only complicated the theoretical development but also contributed to q-calculus remaining a neglected mathematical field. This book overcomes these problems by introducing a new and interesting notation for q-calculus based on logarithms.For instance, q-hypergeometric functions are now visually clear and easy to trace back to their hypergeometric parents. With this new notation it is also easy to see the connection between q-hypergeometric functions and the q-gamma function, something that until now has been overlooked. The book covers many topics on q-calculus, including special functions, combinatorics, and q-difference equations. Apart from a thorough review of the historical development of q-calculus, this book also presents the domains of modern physics for which q-calculus is applicable, such as particle physics and supersymmetry, to name just a few. "
Are some areas of fast Fourier transforms still unclear to you? Do the notation and vocabulary seem inconsistent? Does your knowledge of their algorithmic aspects feel incomplete? The fast Fourier transform represents one of the most important advancements in scientific and engineering computing. Until now, however, treatments have been either brief, cryptic, intimidating, or not published in the open literature. Inside the FFT Black Box brings the numerous and varied ideas together in a common notational framework, clarifying vague FFT concepts. Examples and diagrams explain algorithms completely, with consistent notation. This approach connects the algorithms explicitly to the underlying mathematics. Reviews and explanations of FFT ideas taken from engineering, mathematics, and computer science journals teach the computational techniques relevant to FFT. Two appendices familiarize readers with the design and analysis of computer algorithms, as well. This volume employs a unified and systematic approach to FFT. It closes the gap between brief textbook introductions and intimidating treatments in the FFT literature. Inside the FFT Black Box provides an up-to-date, self-contained guide for learning the FFT and the multitude of ideas and computing techniques it employs.
The unifying approach of functional analysis is to view functions as points in some abstract vector space and the differential and integral operators relating these points as linear transformations on these spaces. The author presents the basics of functional analysis with attention paid to both expository style and technical detail, while getting to interesting results as quickly as possible. The book is accessible to students who have completed first courses in linear algebra and real analysis. Topics are developed in their historical context, with accounts of the past ¿ including biographies ¿ appearing throughout the text. The book offers suggestions and references for further study, and many exercises. Karen Saxe is Associate Professor of Mathematics at Macalester College in St. Paul, Minnesota. She received her Ph.D. from the University of Oregon. Before joining the faculty at Macalester, she held a two-year FIPSE post-doctoral position at St. Olaf College in Northfield, Minnesota. She currently serves on the editorial board of the MAA's College Mathematics Journal. This is her first book.
Presenting excellent material for a first course on functional analysis , Functional Analysis in Applied Mathematics and Engineering concentrates on material that will be useful to control engineers from the disciplines of electrical, mechanical, and aerospace engineering.
This second volume of Analysis in Banach Spaces, Probabilistic Methods and Operator Theory, is the successor to Volume I, Martingales and Littlewood-Paley Theory. It presents a thorough study of the fundamental randomisation techniques and the operator-theoretic aspects of the theory. The first two chapters address the relevant classical background from the theory of Banach spaces, including notions like type, cotype, K-convexity and contraction principles. In turn, the next two chapters provide a detailed treatment of the theory of R-boundedness and Banach space valued square functions developed over the last 20 years. In the last chapter, this content is applied to develop the holomorphic functional calculus of sectorial and bi-sectorial operators in Banach spaces. Given its breadth of coverage, this book will be an invaluable reference to graduate students and researchers interested in functional analysis, harmonic analysis, spectral theory, stochastic analysis, and the operator-theoretic approach to deterministic and stochastic evolution equations.
This text is an introduction to functional analysis which requires readers to have a minimal background in linear algebra and real analysis at the first-year graduate level. Prerequisite knowledge of general topology or Lebesgue integration is not required. The book explains the principles and applications of functional analysis and explores the development of the basic properties of normed linear, inner product spaces and continuous linear operators defined in these spaces. Though Lebesgue integral is not discussed, the book offers an in-depth knowledge on the numerous applications of the abstract results of functional analysis in differential and integral equations, Banach limits, harmonic analysis, summability and numerical integration. Also covered in the book are versions of the spectral theorem for compact, symmetric operators and continuous, self adjoint operators.
"Contains research articles by nearly 40 leading mathematicians from North and South America, Europe, Africa, and Asia, presented at the Fourth International Conference on p-adic Functional Analysis held recently in Nijmegen, The Netherlands. Includes numerous new open problems documented with extensive comments and references."
This monograph has two main purposes, first to act as a companion volume to more advanced texts by gathering together the principal mathematical topics commonly used in developing scattering theories and, in so doing, provide a reasonable, self-contained introduction to linear and nonlinear scattering theory for those who might wish to begin working in the area. Secondly, to indicate how these various aspects might be applied to problems in mathematical physics and the applied sciences. Of particular interest will be the influence of boundary conditions.
It is necessary to estimate parameters by approximation and interpolation in many areas-from computer graphics to inverse methods to signal processing. Radial basis functions are modern, powerful tools which are being used more widely as the limitations of other methods become apparent. Martin Buhmann provides a complete analysis of radial basic functions from the theoretical and practical implementation viewpoints. He also includes a comprehensive bibliography.
"Covers the areas of modern analysis and probability theory. Presents a collection of papers given at the Festschrift held in honor of the 65 birthday of M. M. Rao, whose prolific published research includes the well-received Marcel Dekker, Inc. books Theory of Orlicz Spaces and Conditional Measures and Applications. Features previously unpublished research articles by a host of internationally recognized scholars."
This work addresses all of the major topics in Fourier series, emphasizing the concept of approximate identities and presenting applications, particularly in time series analysis. It stresses throughout the idea of homogenous Banach spaces and provides recent results. Techniques from functional analysis and measure theory are utilized.;College and university bookstores may order five or more copies at a special student price, available on request from Marcel Dekker, Inc.
Intended for specialists in functional analysis and stability theory, this work presents a systematic exposition of estimations for norms of operator-valued functions, and applies the estimates to spectrum perturbations of linear operators and stability theory. The author demonstrates his own approach to spectrum perturbations.
The study of composition operators lies at the interface of
analytic function theory and operator theory. Composition Operators
on Spaces of Analytic Functions synthesizes the achievements of the
past 25 years and brings into focus the broad outlines of the
developing theory. It provides a comprehensive introduction to the
linear operators of composition with a fixed function acting on a
space of analytic functions. This new book both highlights the
unifying ideas behind the major theorems and contrasts the
differences between results for related spaces.
Foundations of Abstract Analysis is the first of a two book series offered as the second (expanded) edition to the previously published text Real Analysis. It is written for a graduate-level course on real analysis and presented in a self-contained way suitable both for classroom use and for self-study. While this book carries the rigor of advanced modern analysis texts, it elaborates the material in much greater details and therefore fills a gap between introductory level texts (with topics developed in Euclidean spaces) and advanced level texts (exclusively dealing with abstract spaces) making it accessible for a much wider interested audience. To relieve the reader of the potential overload of new words, definitions, and concepts, the book (in its unique feature) provides lists of new terms at the end of each section, in a chronological order. Difficult to understand abstract notions are preceded by informal discussions and blueprints followed by thorough details and supported by examples and figures. To further reinforce the text, hints and solutions to almost a half of more than 580 problems are provided at the end of the book, still leaving ample exercises for assignments. This volume covers topics in point-set topology and measure and integration. Prerequisites include advanced calculus, linear algebra, complex variables, and calculus based probability.
Multifractal theory was introduced by theoretical physicists in 1986. Since then, multifractals have increasingly been studied by mathematicians. This new work presents the latest research on random results on random multifractals and the physical thermodynamical interpretation of these results. As the amount of work in this area increases, Lars Olsen presents a unifying approach to current multifractal theory. Featuring high quality, original research material, this important new book fills a gap in the current literature available, providing a rigorous mathematical treatment of multifractal measures.
Providing complete expository and research papers on the geometric and analytic aspects of Fourier analysis, this work discusses new approaches to classical problems in the theory of trigonometric series, singular integrals/pseudo-differential operators, Fourier analysis on various groups, numerical aspects of Fourier analysis and their applications, wavelets and more.
This reference/text develops a constructive theory of solvability on linear and nonlinear abstract and differential equations - involving A-proper operator equations in separable Banach spaces, and treats the problem of existence of a solution for equations involving pseudo-A-proper and weakly-A-proper mappings, and illustrates their applications.;Facilitating the understanding of the solvability of equations in infinite dimensional Banach space through finite dimensional appoximations, this book: offers an elementary introductions to the general theory of A-proper and pseudo-A-proper maps; develops the linear theory of A-proper maps; furnishes the best possible results for linear equations; establishes the existence of fixed points and eigenvalues for P-gamma-compact maps, including classical results; provides surjectivity theorems for pseudo-A-proper and weakly-A-proper mappings that unify and extend earlier results on monotone and accretive mappings; shows how Friedrichs' linear extension theory can be generalized to the extensions of densely defined nonlinear operators in a Hilbert space; presents the generalized topological degree theory for A-proper mappings; and applies abstract results to boundary value problems and to bifurcation and asymptotic bifurcation problems.;There are also over 900 display equations, and an appendix that contains basic theorems from real function theory and measure/integration theory.
This text offers an overview of the basic theories and techniques of functional analysis and its applications. It contains topics such as the fixed point theory starting from Ky Fan's KKM covering and quasi-Schwartz operators. It also includes over 200 exercises to reinforce important concepts.;The author explores three fundamental results on Banach spaces, together with Grothendieck's structure theorem for compact sets in Banach spaces (including new proofs for some standard theorems) and Helley's selection theorem. Vector topologies and vector bornologies are examined in parallel, and their internal and external relationships are studied. This volume also presents recent developments on compact and weakly compact operators and operator ideals; and discusses some applications to the important class of Schwartz spaces.;This text is designed for a two-term course on functional analysis for upper-level undergraduate and graduate students in mathematics, mathematical physics, economics and engineering. It may also be used as a self-study guide by researchers in these disciplines.
This book is based on the conference on Function Spaces held at Southern Illinois University at Edwardsville, in April, 1990. It is designed to cover a wide range of topics, including spaces of analytic functions, isometries of function spaces, geometry of Banach spaces, and Banach algebras.
"Written by accomplished and well-known researchers in the field, this unique volume discusses important research topics on p-adic functional analysis and closely related areas, provides an authoritative overview of the main investigative fronts where developments are expected in the future, and more. "
Written as a textbook, A First Course in Functional Analysis is an introduction to basic functional analysis and operator theory, with an emphasis on Hilbert space methods. The aim of this book is to introduce the basic notions of functional analysis and operator theory without requiring the student to have taken a course in measure theory as a prerequisite. It is written and structured the way a course would be designed, with an emphasis on clarity and logical development alongside real applications in analysis. The background required for a student taking this course is minimal; basic linear algebra, calculus up to Riemann integration, and some acquaintance with topological and metric spaces. |
![]() ![]() You may like...
Electrospinning: Nanofabrication and…
Binding, Xianfeng Wang, …
Paperback
R3,900
Discovery Miles 39 000
System-Ergonomic Design of Cognitive…
Reiner Onken, Axel Schulte
Hardcover
R4,441
Discovery Miles 44 410
What We Know About CSCL - And…
Jan-Willem Strijbos, Paul A Kirschner, …
Hardcover
R3,034
Discovery Miles 30 340
Custom Search - Discover more: - A…
Irina Shamaeva, David Michael Galley
Hardcover
R3,273
Discovery Miles 32 730
Algebraic Geometry for Coding Theory and…
Everett W. Howe, Kristin E. Lauter, …
Hardcover
R5,090
Discovery Miles 50 900
|