![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
Singular perturbations occur when a small coefficient affects the highest order derivatives in a system of partial differential equations. From the physical point of view singular perturbations generate in the system under consideration thin layers located often but not always at the boundary of the domains that are called boundary layers or internal layers if the layer is located inside the domain. Important physical phenomena occur in boundary layers. The most common boundary layers appear in fluid mechanics, e.g., the flow of air around an airfoil or a whole airplane, or the flow of air around a car. Also in many instances in geophysical fluid mechanics, like the interface of air and earth, or air and ocean. This self-contained monograph is devoted to the study of certain classes of singular perturbation problems mostly related to thermic, fluid mechanics and optics and where mostly elliptic or parabolic equations in a bounded domain are considered. This book is a fairly unique resource regarding the rigorous mathematical treatment of boundary layer problems. The explicit methodology developed in this book extends in many different directions the concept of correctors initially introduced by J. L. Lions, and in particular the lower- and higher-order error estimates of asymptotic expansions are obtained in the setting of functional analysis. The review of differential geometry and treatment of boundary layers in a curved domain is an additional strength of this book. In the context of fluid mechanics, the outstanding open problem of the vanishing viscosity limit of the Navier-Stokes equations is investigated in this book and solved for a number of particular, but physically relevant cases. This book will serve as a unique resource for those studying singular perturbations and boundary layer problems at the advanced graduate level in mathematics or applied mathematics and may be useful for practitioners in other related fields in science and engineering such as aerodynamics, fluid mechanics, geophysical fluid mechanics, acoustics and optics.
This book is devoted to the theory of entire operators, founded one of the century's best known mathematicians, M.G. Krein. The theory lies at the junction of the spectral theory of Hermitian operators and the theory of analytic functions, harmoniously combining the methods of each. The purpose of the book is to show how various problems of classical and modern analysis can be looked at from the entire operator theory point of view. This is the first systematic presentation of basic concepts of Krein's theory and its applications. The present study of Krein's unpublished lectures and his works gives (over)due recognition to the unique approach he developed - an approach which for many years was not broadly known. The book is intended for researchers as well as graduate and postgraduate students interested in the spectral theory of operators, complex analysis, differential equations and extrapolation problems.
Wavelet Analysis: Basic Concepts and Applications provides a basic and self-contained introduction to the ideas underpinning wavelet theory and its diverse applications. This book is suitable for master's or PhD students, senior researchers, or scientists working in industrial settings, where wavelets are used to model real-world phenomena and data needs (such as finance, medicine, engineering, transport, images, signals, etc.). Features: Offers a self-contained discussion of wavelet theory Suitable for a wide audience of post-graduate students, researchers, practitioners, and theorists Provides researchers with detailed proofs Provides guides for readers to help them understand and practice wavelet analysis in different areas
This book helps students explore Fourier analysis and its related topics, helping them appreciate why it pervades many fields of mathematics, science, and engineering. This introductory textbook was written with mathematics, science, and engineering students with a background in calculus and basic linear algebra in mind. It can be used as a textbook for undergraduate courses in Fourier analysis or applied mathematics, which cover Fourier series, orthogonal functions, Fourier and Laplace transforms, and an introduction to complex variables. These topics are tied together by the application of the spectral analysis of analog and discrete signals, and provide an introduction to the discrete Fourier transform. A number of examples and exercises are provided including implementations of Maple, MATLAB, and Python for computing series expansions and transforms. After reading this book, students will be familiar with: * Convergence and summation of infinite series * Representation of functions by infinite series * Trigonometric and Generalized Fourier series * Legendre, Bessel, gamma, and delta functions * Complex numbers and functions * Analytic functions and integration in the complex plane * Fourier and Laplace transforms. * The relationship between analog and digital signals Dr. Russell L. Herman is a professor of Mathematics and Professor of Physics at the University of North Carolina Wilmington. A recipient of several teaching awards, he has taught introductory through graduate courses in several areas including applied mathematics, partial differential equations, mathematical physics, quantum theory, optics, cosmology, and general relativity. His research interests include topics in nonlinear wave equations, soliton perturbation theory, fluid dynamics, relativity, chaos and dynamical systems.
This book covers a diverse range of topics in Mathematical Physics, linear and nonlinear PDEs. Though the text reflects the classical theory, the main emphasis is on introducing readers to the latest developments based on the notions of weak solutions and Sobolev spaces. In numerous problems, the student is asked to prove a given statement, e.g. to show the existence of a solution to a certain PDE. Usually there is no closed-formula answer available, which is why there is no answer section, although helpful hints are often provided. This textbook offers a valuable asset for students and educators alike. As it adopts a perspective on PDEs that is neither too theoretical nor too practical, it represents the perfect companion to a broad spectrum of courses.
This book features original research articles on the topic of mathematical modelling and fractional differential equations. The contributions, written by leading researchers in the field, consist of chapters on classical and modern dynamical systems modelled by fractional differential equations in physics, engineering, signal processing, fluid mechanics, and bioengineering, manufacturing, systems engineering, and project management. The book offers theory and practical applications for the solutions of real-life problems and will be of interest to graduate level students, educators, researchers, and scientists interested in mathematical modelling and its diverse applications. Features Presents several recent developments in the theory and applications of fractional calculus Includes chapters on different analytical and numerical methods dedicated to several mathematical equations Develops methods for the mathematical models which are governed by fractional differential equations Provides methods for models in physics, engineering, signal processing, fluid mechanics, and bioengineering Discusses real-world problems, theory, and applications
This book contains the latest advances in variational analysis and set / vector optimization, including uncertain optimization, optimal control and bilevel optimization. Recent developments concerning scalarization techniques, necessary and sufficient optimality conditions and duality statements are given. New numerical methods for efficiently solving set optimization problems are provided. Moreover, applications in economics, finance and risk theory are discussed. Summary The objective of this book is to present advances in different areas of variational analysis and set optimization, especially uncertain optimization, optimal control and bilevel optimization. Uncertain optimization problems will be approached from both a stochastic as well as a robust point of view. This leads to different interpretations of the solutions, which widens the choices for a decision-maker given his preferences. Recent developments regarding linear and nonlinear scalarization techniques with solid and nonsolid ordering cones for solving set optimization problems are discussed in this book. These results are useful for deriving optimality conditions for set and vector optimization problems. Consequently, necessary and sufficient optimality conditions are presented within this book, both in terms of scalarization as well as generalized derivatives. Moreover, an overview of existing duality statements and new duality assertions is given. The book also addresses the field of variable domination structures in vector and set optimization. Including variable ordering cones is especially important in applications such as medical image registration with uncertainties. This book covers a wide range of applications of set optimization. These range from finance, investment, insurance, control theory, economics to risk theory. As uncertain multi-objective optimization, especially robust approaches, lead to set optimization, one main focus of this book is uncertain optimization. Important recent developments concerning numerical methods for solving set optimization problems sufficiently fast are main features of this book. These are illustrated by various examples as well as easy-to-follow-steps in order to facilitate the decision process for users. Simple techniques aimed at practitioners working in the fields of mathematical programming, finance and portfolio selection are presented. These will help in the decision-making process, as well as give an overview of nondominated solutions to choose from.
The subject of harmonic approximation has recently matured into a coherent research area with extensive applications. This is the first book to give a systematic account of these developments, beginning with classical results concerning uniform approximation on compact sets, and progressing through fusion techniques to deal with approximation on unbounded sets. All the time inspiration is drawn from holomorphic results such as the well-known theorems of Runge and Mergelyan. The final two chapters deal with wide-ranging and surprising applications to the Dirichlet problem, maximum principle, Radon transform and the construction of pathological harmonic functions. This book is aimed at graduate students and researchers who have some knowledge of subharmonic functions, or an interest in holomorphic approximation.
What you ll find in this monograph is nothing less than a complete and rigorous study of modern functional analysis. It is intended for the student or researcher who could benefit from functional analytic methods, but who does not have an extensive background in the subject and does not plan to make a career as a functional analyst. It develops the topological structures in connection with a number of topic areas such as measure theory, convexity, and Banach lattices, as well as covering the analytic approach to Markov processes. Many of the results were previously available only in works scattered throughout the literature.
The continuous Hochschild cohomology of dual normal modules over a von Neumann algebra is the subject of this book. The necessary technical results are developed assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into two types, but no prior knowledge of cohomology theory is required and the theory of completely bounded and multilinear operators is given fully. Central to this book are those cases when the continuous Hochschild cohomology H(superscript n)(M, M) of the von Neumann algebra M over itself is zero. The material in this book lies in the area common to Banach algebras, operator algebras and homological algebra, and will be of interest to researchers from these fields.
This is a self-contained textbook of the theory of Besov spaces and Triebel-Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel-Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy-Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces-Hardy spaces, bounded mean oscillation spaces, and Hoelder continuous spaces-are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel-Lizorkin spaces.
This monograph serves as a much-needed, self-contained reference on the topic of modulation spaces. By gathering together state-of-the-art developments and previously unexplored applications, readers will be motivated to make effective use of this topic in future research. Because modulation spaces have historically only received a cursory treatment, this book will fill a gap in time-frequency analysis literature, and offer readers a convenient and timely resource. Foundational concepts and definitions in functional, harmonic, and real analysis are reviewed in the first chapter, which is then followed by introducing modulation spaces. The focus then expands to the many valuable applications of modulation spaces, such as linear and multilinear pseudodifferential operators, and dispersive partial differential equations. Because it is almost entirely self-contained, these insights will be accessible to a wide audience of interested readers. Modulation Spaces will be an ideal reference for researchers in time-frequency analysis and nonlinear partial differential equations. It will also appeal to graduate students and seasoned researchers who seek an introduction to the time-frequency analysis of nonlinear dispersive partial differential equations.
This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography. This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.
This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.
This volume is a thorough and comprehensive treatise on vector measures. The functions to be integrated can be either [0, infinity]- or real- or complex-valued and the vector measure can take its values in arbitrary locally convex Hausdorff spaces. Moreover, the domain of the vector measure does not have to be a sigma-algebra: it can also be a delta-ring. The book contains not only a large amount of new material but also corrects various errors in well-known results available in the literature. It will appeal to a wide audience of mathematical analysts.
Over the past six decades, several extremely important fields in mathematics have been developed. Among these are Ito calculus, Gaussian measures on Banach spaces, Malliavan calculus, and white noise distribution theory. These subjects have many applications, ranging from finance and economics to physics and biology. Unfortunately, the background information required to conduct research in these subjects presents a tremendous roadblock. The background material primarily stems from an abstract subject known as infinite dimensional topological vector spaces. While this information forms the backdrop for these subjects, the books and papers written about topological vector spaces were never truly written for researchers studying infinite dimensional analysis. Thus, the literature for topological vector spaces is dense and difficult to digest, much of it being written prior to the 1960s. Tools for Infinite Dimensional Analysis aims to address these problems by providing an introduction to the background material for infinite dimensional analysis that is friendly in style and accessible to graduate students and researchers studying the above-mentioned subjects. It will save current and future researchers countless hours and promote research in these areas by removing an obstacle in the path to beginning study in areas of infinite dimensional analysis. Features Focused approach to the subject matter Suitable for graduate students as well as researchers Detailed proofs of primary results
Good data analytics is the basis for effective decisions. Whoever has the data, has the ability to extract information promptly and effectively to make pertinent decisions. The premise of this handbook is to empower users and tool developers with the appropriate collection of formulas and techniques for data analytics and to serve as a quick reference to keep pertinent formulas within fingertip reach of readers. This handbook includes formulas that will appeal to mathematically inclined readers. It discusses how to use data analytics to improve decision-making and is ideal for those new to using data analytics to show how to expand their usage horizon. It provides quantitative techniques for modeling pandemics, such as COVID-19. It also adds to the suite of mathematical tools for emerging technical areas. This handbook is a handy reference for researchers, practitioners, educators, and students in areas such as industrial engineering, production engineering, project management, civil engineering, mechanical engineering, technology management, and business management worldwide.
This book provides an introduction to functional analysis for non-experts in mathematics. As such, it is distinct from most other books on the subject that are intended for mathematicians. Concepts are explained concisely with visual materials, making it accessible for those unfamiliar with graduate-level mathematics. Topics include topology, vector spaces, tensor spaces, Lebesgue integrals, and operators, to name a few. Each chapter explains, concisely, the purpose of the specific topic and the benefit of understanding it. Researchers and graduate students in physics, mechanical engineering, and information science will benefit from this view of functional analysis.
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramer and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.
The book discusses basic concepts of functional analysis, measure and integration theory, calculus of variations and duality and its applications to variational problems of non-convex nature, such as the Ginzburg-Landau system in superconductivity, shape optimization models, dual variational formulations for micro-magnetism and others. Numerical Methods for such and similar problems, such as models in flight mechanics and the Navier-Stokes system in fluid mechanics have been developed through the generalized method of lines, including their matrix finite dimensional approximations. It concludes with a review of recent research on Riemannian geometry applied to Quantum Mechanics and Relativity. The book will be of interest to applied mathematicians and graduate students in applied mathematics. Physicists, engineers and researchers in related fields will also find the book useful in providing a mathematical background applicable to their respective professional areas.
Functional analysis and operator theory are widely used in the description, understanding and control of dynamical systems and natural processes in physics, chemistry, medicine and the engineering sciences. Advanced Functional Analysis is a self-contained and comprehensive reference for advanced functional analysis and can serve as a guide for related research. The book can be used as a textbook in advanced functional analysis, which is a modern and important field in mathematics, for graduate and postgraduate courses and seminars at universities. At the same time, it enables the interested readers to do their own research. Features Written in a concise and fluent style Covers a broad range of topics Includes related topics from research
Geometry and Martingales in Banach Spaces provides a compact exposition of the results explaining the interrelations existing between the metric geometry of Banach spaces and the theory of martingales, and general random vectors with values in those Banach spaces. Geometric concepts such as dentability, uniform smoothness, uniform convexity, Beck convexity, etc. turn out to characterize asymptotic behavior of martingales with values in Banach spaces.
Model theory is one of the central branches of mathematical logic. The field has evolved rapidly in the last few decades. This book is an introduction to current trends in model theory, and contains a collection of articles authored by top researchers in the field. It is intended as a reference for students as well as senior researchers.
This monograph has two main purposes, first to act as a companion volume to more advanced texts by gathering together the principal mathematical topics commonly used in developing scattering theories and, in so doing, provide a reasonable, self-contained introduction to linear and nonlinear scattering theory for those who might wish to begin working in the area. Secondly, to indicate how these various aspects might be applied to problems in mathematical physics and the applied sciences. Of particular interest will be the influence of boundary conditions.
The equations of mathematical physics are the mathematical models of the large class of phenomenon of physics, chemistry, biology, economics, etc. In Sequential Models of Mathematical Physics, the author considers the justification of the process of constructing mathematical models. The book seeks to determine the classic, generalized and sequential solutions, the relationship between these solutions, its direct physical sense, the methods of its practical finding, and its existence. Features Describes a sequential method based on the construction of space completion, as well as its applications in number theory, the theory of distributions, the theory of extremum, and mathematical physics Presentation of the material is carried out on the simplest example of a one-dimensional stationary heat transfer process; all necessary concepts and constructions are introduced and illustrated with elementary examples, which makes the material accessible to a wide area of readers The solution of a specific mathematical problem is obtained as a result of the joint application of methods and concepts from completely different mathematical directions |
You may like...
Sampling Theory in Fourier and Signal…
J.R. Higgins, R.L. Stens
Hardcover
R6,169
Discovery Miles 61 690
Hardy Operators On Euclidean Spaces And…
Shanzhen Lu, Zunwei Fu, …
Hardcover
R1,914
Discovery Miles 19 140
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R1,892
Discovery Miles 18 920
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,319
Discovery Miles 33 190
Bloch-type Periodic Functions: Theory…
Yong-kui Chang, Gaston Mandata N'G'Uerekata, …
Hardcover
R1,907
Discovery Miles 19 070
Theory of Approximate Functional…
Madjid Eshaghi Gordji, Sadegh Abbaszadeh
Hardcover
R1,379
Discovery Miles 13 790
|