![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date bibliography and a detailed subject index help the interested reader. The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus.
This book gathers contributions on analytical, numerical, and application aspects of time-delay systems, under the paradigm of control theory, and discusses recent advances in these different contexts, also highlighting the interdisciplinary connections. The book will serve as a useful tool for graduate students and researchers in the fields of dynamical systems, automatic control, numerical methods, and functional analysis.
The authors present functional analytical methods for solving a class of partial differential equations. The results have important applications to the numerical treatment of rheology (specific examples are the behaviour of blood or print colours) and to other applications in fluid mechanics. A class of methods for solving problems in hydrodynamics is presented.
Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.
The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including most recent developments. Besides that, the collection of articles also serves as an up-to-date handbook of available algorithms/software that are commonly used or might be useful in the fields of mathematics, physics or other sciences.
Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincare-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online."
This book is related to the theory of functions of a-bounded type in the ha- plane of the complex plane. I constructed this theory by application of the Li- ville integro-differentiation. To some extent, it is similar to M.M.Djrbashian's factorization theory of the classes Na of functions of a-bounded type in the disc, as much as the well known results on different classes and spaces of regular functions in the half-plane are similar to those in the disc. Besides, the book contains improvements of several results such as the Phragmen-Lindelof Principle and Nevanlinna Factorization in the Half-Plane and offers a new, equivalent definition of the classical Hardy spaces in the half-plane. The last chapter of the book presents author's united work with G.M. Gubreev (Odessa). It gives an application of both a-theories in the disc and in the half-plane in the spectral theory of linear operators. This is a solution of a problem repeatedly stated by M.G.Krein and being of special interest for a long time. The book is proposed for a wide range of readers. Some of its parts are comprehensible for graduate students, while the book in the whole is intended for young researchers and qualified specialists in the field.
This book discusses recent developments in and contemporary research on summability theory, including general summability methods, direct theorems on summability, absolute and strong summability, special methods of summability, functional analytic methods in summability, and related topics and applications. All contributing authors are eminent scientists, researchers and scholars in their respective fields, and hail from around the world. The book can be used as a textbook for graduate and senior undergraduate students, and as a valuable reference guide for researchers and practitioners in the fields of summability theory and functional analysis. Summability theory is generally used in analysis and applied mathematics. It plays an important part in the engineering sciences, and various aspects of the theory have long since been studied by researchers all over the world.
In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function. This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization. The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants. This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory.
A collection of articles emphasizing modern interpolation theory, a topic which has seen much progress in recent years. These ideas and problems in operator theory, often arising from systems and control theories, bring the reader to the forefront of current research in this area.
The intention of this book is to explain to a mathematician having no previous knowledge in this domain, what "noncommutative probability" is. So the first decision was not to concentrate on a special topic. For different people, the starting points of such a domain may be different. In what concerns this question, different variants are not discussed. One such variant comes from Quantum Physics. The motivations in this book are mainly mathematical; more precisely, they correspond to the desire of developing a probability theory in a new set-up and obtaining results analogous to the classical ones for the newly defined mathematical objects. Also different mathematical foundations of this domain were proposed. This book concentrates on one variant, which may be described as "von Neumann algebras." This is true also for the last chapter, if one looks at its ultimate aim. In the references there are some papers corresponding to other variants; we mention Gudder, S.P. &al (1978). Segal, I.E. (1965) also discusses "basic ideas."
This volume contains contributions from international experts in the fields of constructive approximation. This area has reached out to encompass the computational and approximation-theoretical aspects of various interesting fields in applied mathematics such as (multivariate) approximation methods, quasi-interpolation, and approximation by (orthogonal) polynomials, as well as the modern mathematical developments in neuro fuzzy approximation, RBF-networks, industrial and engineering applications.
This volume consists of contributions spanning a wide spectrum of harmonic analysis and its applications written by speakers at the February Fourier Talks from 2002 - 2016. Containing cutting-edge results by an impressive array of mathematicians, engineers, and scientists in academia, industry and government, it will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, physics, and engineering. Topics covered include: Theoretical harmonic analysis Image and signal processing Quantization Algorithms and representations The February Fourier Talks are held annually at the Norbert Wiener Center for Harmonic Analysis and Applications. Located at the University of Maryland, College Park, the Norbert Wiener Center provides a state-of- the-art research venue for the broad emerging area of mathematical engineering.
This book collects applications of nonstandard methods to the theory of vector lattices. Primary attention is paid to combining infinitesimal and Boolean-valued constructions of use in the classical problems of representing abstract analytical objects, such as Banach-Kantorovich spaces, vector measures, and dominated and integral operators. This book is a complement to Volume 358 of "Mathematics and Its Applications": Vector Lattices and Integral Operators, printed in 1996. Audience: The book is intended for the reader interested in the modern tools of nonstandard models of set theory as applied to problems of contemporary functional analysis. It will also be of use to mathematicians, students and postgraduates interested in measure and integration, operator theory, and mathematical logic and foundation.
Algebras of bounded operators are familiar, either as C*-algebras
or as von Neumann algebras. A first generalization is the notion of
algebras of unbounded operators (O*-algebras), mostly developed by
the Leipzig school and in Japan (for a review, we refer to the
monographs of K. SchmA1/4dgen [1990] and A. Inoue [1998]). This
volume goes one step further, by considering systematically partial
*-algebras of unbounded operators (partial O*-algebras) and the
underlying algebraic structure, namely, partial *-algebras. It is
the first textbook on this topic.
This book develops integral identities, mostly involving multidimensional functions and infinite limits of integration, whose evaluations are intractable by common means. It exposes a methodology based on the multivariate power substitution and its variants, assisted by the software tool Mathematica. The approaches introduced comprise the generalized method of exhaustion, the multivariate power substitution and its variants, and the use of permutation symmetry to evaluate definite integrals, which are very important both in their own right, and as necessary intermediate steps towards more involved computation. A key tenet is that such approaches work best when applied to integrals having certain characteristics as a starting point. Most integrals, if used as a starting point, will lead to no result at all, or will lead to a known result. However, there is a special class of integrals (i.e., innovative integrals) which, if used as a starting point for such approaches, will lead to new and useful results, and can also enable the reader to generate many other new results that are not in the book. The reader will find a myriad of novel approaches for evaluating integrals, with a focus on tools such as Mathematica as a means of obtaining useful results, and also checking whether they are already known. Results presented involve the gamma function, the hypergeometric functions, the complementary error function, the exponential integral function, the Riemann zeta function, and others that will be introduced as they arise. The book concludes with selected engineering applications, e.g., involving wave propagation, antenna theory, non-Gaussian and weighted Gaussian distributions, and other areas. The intended audience comprises junior and senior sciences majors planning to continue in the pure and applied sciences at the graduate level, graduate students in mathematics and the sciences, and junior and established researchers in mathematical physics, engineering, and mathematics. Indeed, the pedagogical inclination of the exposition will have students work out, understand, and efficiently use multidimensional integrals from first principles.
First works related to the topics covered in this book belong to J. Delsarte and B. M. Le vitan and appeared since 1938. In these works, the families of operators that generalize usual translation operators were investigated and the corresponding harmonic analysis was constructed. Later, starting from 1950, it was noticed that, in such constructions, an important role is played by the fact that the kernels of the corresponding convolutions of functions are nonnegative and by the properties of the normed algebras generated by these convolutions. That was the way the notion of hypercomplex system with continu ous basis appeared. A hypercomplex system is a normed algebra of functions on a locally compact space Q-the "basis" of this hypercomplex system. Later, similar objects, hypergroups, were introduced, which have complex-valued measures on Q as elements and convolution defined to be essentially the convolution of functionals and dual to the original convolution (if measures are regarded as functionals on the space of continuous functions on Q). However, until 1991, the time when this book was written in Russian, there were no monographs containing fundamentals of the theory (with an exception of a short section in the book by Yu. M. Berezansky and Yu. G. Kondratiev BeKo]). The authors wanted to give an introduction to the theory and cover the most important subsequent results and examples."
For those who have a background in advanced calculus, elementary
topology and functional analysis - from applied mathematicians and
engineers to physicists - researchers and graduate students alike -
this work provides a comprehensive analysis of the many important
integral transforms and renders particular attention to all of the
technical aspects of the subject. The author presents the last two
decades of research and includes important results from other
works.
In this volume selected papers delivered at the special session on "Spectral and scattering theory" are published. This session was organized by A. G. Ramm at the first international congress ofISAAC (International Society for Analysis, Applications and Computing) which was held at the University of Delaware, June 3-7, 1997. The papers in this volume deal with a wide va riety of problems including some nonlinear problems (Schechter, Trenogin), control theory (Shubov), fundamental problems of physics (Kitada), spectral and scattering theory in waveg uides and shallow ocean (Ramm and Makrakis), inverse scattering with incomplete data (Ramm), spectral theory for Sturm-Liouville operators with singular coefficients (Yurko) and with energy-dependent coefficients (Aktosun, Klaus, and van der Mee), spectral theory of SchrOdinger operators with periodic coefficients (Kuchment, Vainberg), resolvent estimates for SchrOdinger-type and Maxwell's operators (Ben-Artzi and Nemirovsky), SchrOdinger oper ators with von Neumann-Wignertype potentials (Rejto and Taboada), principal eigenvalues for indefinite-weight elliptic operators (pinchover), and symmetric solutions of Ginzburg-Landau equations (Gustafson). These papers will be of interest to a wide audience including mathematicians, physicists, and theoretically oriented engineers. A. G. Ramm Manhattan, KS v CONTENTS 1. Wave Scattering in 1-0 Nonconservative Media . . . . . . . . . . . . . . . . . . . Tuncay Aktosun, Martin Klaus, and Comelis van der Mee 2. Resolvent Estimates for SchrOdinger-type and Maxwell Equations with Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Matania Ben-Artzi and Jonathan Nemirovsky 3. Symmetric Solutions of Ginzburg-Landau Equations 33 S. Gustafson 4. Quantum Mechanics and Relativity: Their Unification by Local Time . . . . . . . 39 Hitoshi Kitada 5."
Frechet spaces have been studied since the days of Banach. These spaces, their inductive limits and their duals played a prominent role in the development of the theory of locally convex spaces. Also they are natural tools in many areas of real and complex analysis. The pioneering work of Grothendieck in the fifties has been one of the important sources of inspiration for research in the theory of Frechet spaces. A structure theory of nuclear Frechet spaces emerged and some important questions posed by Grothendieck were settled in the seventies. In particular, subspaces and quotient spaces of stable nuclear power series spaces were completely characterized. In the last years it has become increasingly clear that the methods used in the structure theory of nuclear Frechet spaces actually provide new insight to linear problems in diverse branches of analysis and lead to solutions of some classical problems. The unifying theme at our Workshop was the recent developments in the theory of the projective limit functor. This is appropriate because of the important role this theory had in the recent research. The main results of the structure theory of nuclear Frechet spaces can be formulated and proved within the framework of this theory. A major area of application of the theory of the projective limit functor is to decide when a linear operator is surjective and, if it is, to determine whether it has a continuous right inverse.
This book is a self-contained advanced monograph on inequalities involving the numerical radius of bounded linear operators acting on complex Hilbert spaces. The study of numerical range and numerical radius has a long and distinguished history starting from the Rayleigh quotients used in the 19th century to nowadays applications in quantum information theory and quantum computing. This monograph is intended for use by both researchers and graduate students of mathematics, physics, and engineering who have a basic background in functional analysis and operator theory. The book provides several challenging problems and detailed arguments for the majority of the results. Each chapter ends with some notes about historical views or further extensions of the topics. It contains a bibliography of about 180 items, so it can be used as a reference book including many classical and modern numerical radius inequalities.
In the third and final book of his iconic piano etudes Gyoergy Ligeti charts a new path relative to the rest of his musical output, representing a significant arrival in a composer's oeuvre known for its stylistic transformations. This monograph is the first dedicated study of these capstone works, investigating them through a novel lens of statistical-graphical analysis that illuminates their compositional uniqueness as well as broader questions regarding the perception of stability in musical texture. With nearly 200 graphical illustrations and a detailed commentary, this examination reveals the unique manner in which Ligeti treads between tonality and atonality-a key idea in his late style-and the centrality of processes related to broader scale areas (or "macroharmony") in articulating structures and narratives. The analytical techniques developed here are a powerful tool for investigating macroharmonic stability that can be applied to a wide range of repertoire beyond these works. This book is intended for graduate-level and professional music theorists, musicologists, performers and mathematicians.
This volume is essentially a self-contained presentation of the theory of reproducing kernels in connection with integral transforms in the framework of Hilbert spaces. It is a general and fundamental concept and a potentially powerful theory combined with the integral transforms. A variety of concrete results of its application are given systematically for isometrical identities and inversion formulas for various typical integral transforms, best approximation theories of functions, analytic extension formulas, real inversion formulas for the Laplace transform, inverse source problems, representationbs of inverse functions, natural norm inequalities in nonlinear transforms and stability of Lipschitz type in determintion of initial heat distribution.
The aim of this work is to initiate a systematic study of those properties of Banach space complexes that are stable under certain perturbations. A Banach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every continuous linear operator S : X ..... Y, where X, Yare Banach spaces, may be regarded as a complex: O ..... X ~ Y ..... O. The already existing Fredholm theory for linear operators suggested the possibility to extend its concepts and methods to the study of Banach space complexes. The basic stability properties valid for (semi-) Fredholm operators have their counterparts in the more general context of Banach space complexes. We have in mind especially the stability of the index (i.e., the extended Euler characteristic) under small or compact perturbations, but other related stability results can also be successfully extended. Banach (or Hilbert) space complexes have penetrated the functional analysis from at least two apparently disjoint directions. A first direction is related to the multivariable spectral theory in the sense of J. L.
This contributed volume features chapters based on talks given at the second international conference titled Aspects of Time-Frequency Analysis (ATFA 19), held at Politecnico di Torino from June 25th to June 27th, 2019. Written by experts in harmonic analysis and its applications, these chapters provide a valuable overview of the state-of-the-art of this active area of research. New results are collected as well, making this a valuable resource for readers seeking to be brought up-to-date. Topics covered include: Signal analysis Quantum theory Modulation space theory Applications to the medical industry Wavelet transform theory Anti-Wick operators Landscapes of Time-Frequency Analysis: ATFA 2019 will be of particular interest to researchers and advanced students working in time-frequency analysis and other related areas of harmonic analysis. |
![]() ![]() You may like...
People of Vision - A History of the…
James J. Megivern, Marjorie L. Megivern
Hardcover
R1,101
Discovery Miles 11 010
Kids - Child Protection in Britain: The…
Camila Batmanghelidjh
Hardcover
Notes on Nursing - What It Is, and What…
Florence Nightingale
Hardcover
|