![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
Category theory is a branch of abstract algebra with incredibly
diverse applications. This text and reference book is aimed not
only at mathematicians, but also researchers and students of
computer science, logic, linguistics, cognitive science,
philosophy, and any of the other fields in which the ideas are
being applied. Containing clear definitions of the essential
concepts, illuminated with numerous accessible examples, and
providing full proofs of all important propositions and theorems,
this book aims to make the basic ideas, theorems, and methods of
category theory understandable to this broad readership.
This book provides an in-depth account of modern methods used to bound the supremum of stochastic processes. Starting from first principles, it takes the reader to the frontier of current research. This second edition has been completely rewritten, offering substantial improvements to the exposition and simplified proofs, as well as new results. The book starts with a thorough account of the generic chaining, a remarkably simple and powerful method to bound a stochastic process that should belong to every probabilist's toolkit. The effectiveness of the scheme is demonstrated by the characterization of sample boundedness of Gaussian processes. Much of the book is devoted to exploring the wealth of ideas and results generated by thirty years of efforts to extend this result to more general classes of processes, culminating in the recent solution of several key conjectures. A large part of this unique book is devoted to the author's influential work. While many of the results presented are rather advanced, others bear on the very foundations of probability theory. In addition to providing an invaluable reference for researchers, the book should therefore also be of interest to a wide range of readers.
"Optimization on Metric and Normed Spaces" is devoted to the recent progress in optimization on Banach spaces and complete metric spaces. Optimization problems are usually considered on metric spaces satisfying certain compactness assumptions which guarantee the existence of solutions and convergence of algorithms. This book considers spaces that do not satisfy such compactness assumptions. In order to overcome these difficulties, the book uses the Baire category approach and considers approximate solutions. Therefore, it presents a number of new results concerning penalty methods in constrained optimization, existence of solutions in parametric optimization, well-posedness of vector minimization problems, and many other results obtained in the last ten years. The book is intended for mathematicians interested in optimization and applied functional analysis.
Fixed point theory in probabilistic metric spaces can be considered as a part of Probabilistic Analysis, which is a very dynamic area of mathematical research. A primary aim of this monograph is to stimulate interest among scientists and students in this fascinating field. The text is self-contained for a reader with a modest knowledge of the metric fixed point theory. Several themes run through this book. The first is the theory of triangular norms (t-norms), which is closely related to fixed point theory in probabilistic metric spaces. Its recent development has had a strong influence upon the fixed point theory in probabilistic metric spaces. In Chapter 1 some basic properties of t-norms are presented and several special classes of t-norms are investigated. Chapter 2 is an overview of some basic definitions and examples from the theory of probabilistic metric spaces. Chapters 3, 4, and 5 deal with some single-valued and multi-valued probabilistic versions of the Banach contraction principle. In Chapter 6, some basic results in locally convex topological vector spaces are used and applied to fixed point theory in vector spaces. Audience: The book will be of value to graduate students, researchers, and applied mathematicians working in nonlinear analysis and probabilistic metric spaces.
This book provides an introduction to Hilbert space theory, Fourier transform and wavelets, linear operators, generalized functions and quantum mechanics. Although quantum mechanics has been developed between 1925 and 1930 in the last twenty years a large number of new aspect and techniques have been introduced. The book also covers these new fields in quantum mechanics. In quantum mechanics the basic mathematical tools are the theory of Hilbert spaces, the theory of linear operators, the theory of generalized functions and Lebesgue inte- gration theory. Many excellent textbooks have been written on Hilbert space theory and linear operators in Hilbert spaces. Comprehensive surveys of this subject are given by Weidmann [68], Prugovecki [47], Yosida [69], Kato [31], Richtmyer [49], Sewell [54] and others. The theory of generalized functions is also well covered in good textbooks (Gelfand and Shilov [25], Vladimirov [67]. Furthermore numerous textbooks on quantum mechanics exist (Dirac [17], Landau and Lifshitz [36], Mes- siah [41], Gasiorowicz [24], Schiff [51], Eder [18] and others). Besides these books there are several problem books on quantum mechanics (Fliigge [22], Constantinescu and Magyari [15], ter Haar [64], Mavromatis [39], Steeb [59], Steeb [60], Steeb [61]) and others). Computer algebra implementations of quantum mechanical problems are described by Steeb [59]. Unfortunately, many standard textbooks on quantum mechanics neglect the math- ematical background. The basic mathematical tools to understand quantum me- chanics should be fully integrated into an education in quantum mechanics.
This book presents a new theory for evolution operators and a new method for defining fractional powers of vector operators. This new approach allows to define new classes of fractional diffusion and evolution problems. These innovative methods and techniques, based on the concept of S-spectrum, can inspire researchers from various areas of operator theory and PDEs to explore new research directions in their fields. This monograph is the natural continuation of the book: Spectral Theory on the S-Spectrum for Quaternionic Operators by Fabrizio Colombo, Jonathan Gantner, and David P. Kimsey (Operator Theory: Advances and Applications, Vol. 270).
In this easily-accessible textbook, the authors integrate the ill-posed problem theory and its underlying mathematical apparatus. This comprehensive work includes descriptions of recent results and a presentation of actual applications of the ill-posed problem theory. The first part of the book describes the differentiation of normed space mappings, the integration of the functions of abstract variables, and the theory of linear operators. The second section deals with the mathematical physics connected to integral equations of the first type, and with the bases of operator equation theory.
Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.
The authors present functional analytical methods for solving a class of partial differential equations. The results have important applications to the numerical treatment of rheology (specific examples are the behaviour of blood or print colours) and to other applications in fluid mechanics. A class of methods for solving problems in hydrodynamics is presented.
A collection of articles emphasizing modern interpolation theory, a topic which has seen much progress in recent years. These ideas and problems in operator theory, often arising from systems and control theories, bring the reader to the forefront of current research in this area.
This book discusses recent developments in and contemporary research on summability theory, including general summability methods, direct theorems on summability, absolute and strong summability, special methods of summability, functional analytic methods in summability, and related topics and applications. All contributing authors are eminent scientists, researchers and scholars in their respective fields, and hail from around the world. The book can be used as a textbook for graduate and senior undergraduate students, and as a valuable reference guide for researchers and practitioners in the fields of summability theory and functional analysis. Summability theory is generally used in analysis and applied mathematics. It plays an important part in the engineering sciences, and various aspects of the theory have long since been studied by researchers all over the world.
This book is related to the theory of functions of a-bounded type in the ha- plane of the complex plane. I constructed this theory by application of the Li- ville integro-differentiation. To some extent, it is similar to M.M.Djrbashian's factorization theory of the classes Na of functions of a-bounded type in the disc, as much as the well known results on different classes and spaces of regular functions in the half-plane are similar to those in the disc. Besides, the book contains improvements of several results such as the Phragmen-Lindelof Principle and Nevanlinna Factorization in the Half-Plane and offers a new, equivalent definition of the classical Hardy spaces in the half-plane. The last chapter of the book presents author's united work with G.M. Gubreev (Odessa). It gives an application of both a-theories in the disc and in the half-plane in the spectral theory of linear operators. This is a solution of a problem repeatedly stated by M.G.Krein and being of special interest for a long time. The book is proposed for a wide range of readers. Some of its parts are comprehensible for graduate students, while the book in the whole is intended for young researchers and qualified specialists in the field.
This book consists of research papers that cover the scientific areas of the International Workshop on Operator Theory, Operator Algebras and Applications, held in Lisbon in September 2012. The volume particularly focuses on (i) operator theory and harmonic analysis (singular integral operators with shifts; pseudodifferential operators, factorization of almost periodic matrix functions; inequalities; Cauchy type integrals; maximal and singular operators on generalized Orlicz-Morrey spaces; the Riesz potential operator; modification of Hadamard fractional integro-differentiation), (ii) operator algebras (invertibility in groupoid C*-algebras; inner endomorphisms of some semi group, crossed products; C*-algebras generated by mappings which have finite orbits; Folner sequences in operator algebras; arithmetic aspect of C*_r SL(2); C*-algebras of singular integral operators; algebras of operator sequences) and (iii) mathematical physics (operator approach to diffraction from polygonal-conical screens; Poisson geometry of difference Lax operators).
Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincare-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online."
The intention of this book is to explain to a mathematician having no previous knowledge in this domain, what "noncommutative probability" is. So the first decision was not to concentrate on a special topic. For different people, the starting points of such a domain may be different. In what concerns this question, different variants are not discussed. One such variant comes from Quantum Physics. The motivations in this book are mainly mathematical; more precisely, they correspond to the desire of developing a probability theory in a new set-up and obtaining results analogous to the classical ones for the newly defined mathematical objects. Also different mathematical foundations of this domain were proposed. This book concentrates on one variant, which may be described as "von Neumann algebras." This is true also for the last chapter, if one looks at its ultimate aim. In the references there are some papers corresponding to other variants; we mention Gudder, S.P. &al (1978). Segal, I.E. (1965) also discusses "basic ideas."
This volume contains contributions from international experts in the fields of constructive approximation. This area has reached out to encompass the computational and approximation-theoretical aspects of various interesting fields in applied mathematics such as (multivariate) approximation methods, quasi-interpolation, and approximation by (orthogonal) polynomials, as well as the modern mathematical developments in neuro fuzzy approximation, RBF-networks, industrial and engineering applications.
The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including most recent developments. Besides that, the collection of articles also serves as an up-to-date handbook of available algorithms/software that are commonly used or might be useful in the fields of mathematics, physics or other sciences.
Algebras of bounded operators are familiar, either as C*-algebras
or as von Neumann algebras. A first generalization is the notion of
algebras of unbounded operators (O*-algebras), mostly developed by
the Leipzig school and in Japan (for a review, we refer to the
monographs of K. SchmA1/4dgen [1990] and A. Inoue [1998]). This
volume goes one step further, by considering systematically partial
*-algebras of unbounded operators (partial O*-algebras) and the
underlying algebraic structure, namely, partial *-algebras. It is
the first textbook on this topic.
This monograph explores a dual variational formulation of solutions to nonlinear diffusion equations with general nonlinearities as null minimizers of appropriate energy functionals. The author demonstrates how this method can be utilized as a convenient tool for proving the existence of these solutions when others may fail, such as in cases of evolution equations with nonautonomous operators, with low regular data, or with singular diffusion coefficients. By reducing it to a minimization problem, the original problem is transformed into an optimal control problem with a linear state equation. This procedure simplifies the proof of the existence of minimizers and, in particular, the determination of the first-order conditions of optimality. The dual variational formulation is illustrated in the text with specific diffusion equations that have general nonlinearities provided by potentials having various stronger or weaker properties. These equations can represent mathematical models to various real-world physical processes. Inverse problems and optimal control problems are also considered, as this technique is useful in their treatment as well.
This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date bibliography and a detailed subject index help the interested reader. The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus.
For those who have a background in advanced calculus, elementary
topology and functional analysis - from applied mathematicians and
engineers to physicists - researchers and graduate students alike -
this work provides a comprehensive analysis of the many important
integral transforms and renders particular attention to all of the
technical aspects of the subject. The author presents the last two
decades of research and includes important results from other
works.
In this volume selected papers delivered at the special session on "Spectral and scattering theory" are published. This session was organized by A. G. Ramm at the first international congress ofISAAC (International Society for Analysis, Applications and Computing) which was held at the University of Delaware, June 3-7, 1997. The papers in this volume deal with a wide va riety of problems including some nonlinear problems (Schechter, Trenogin), control theory (Shubov), fundamental problems of physics (Kitada), spectral and scattering theory in waveg uides and shallow ocean (Ramm and Makrakis), inverse scattering with incomplete data (Ramm), spectral theory for Sturm-Liouville operators with singular coefficients (Yurko) and with energy-dependent coefficients (Aktosun, Klaus, and van der Mee), spectral theory of SchrOdinger operators with periodic coefficients (Kuchment, Vainberg), resolvent estimates for SchrOdinger-type and Maxwell's operators (Ben-Artzi and Nemirovsky), SchrOdinger oper ators with von Neumann-Wignertype potentials (Rejto and Taboada), principal eigenvalues for indefinite-weight elliptic operators (pinchover), and symmetric solutions of Ginzburg-Landau equations (Gustafson). These papers will be of interest to a wide audience including mathematicians, physicists, and theoretically oriented engineers. A. G. Ramm Manhattan, KS v CONTENTS 1. Wave Scattering in 1-0 Nonconservative Media . . . . . . . . . . . . . . . . . . . Tuncay Aktosun, Martin Klaus, and Comelis van der Mee 2. Resolvent Estimates for SchrOdinger-type and Maxwell Equations with Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Matania Ben-Artzi and Jonathan Nemirovsky 3. Symmetric Solutions of Ginzburg-Landau Equations 33 S. Gustafson 4. Quantum Mechanics and Relativity: Their Unification by Local Time . . . . . . . 39 Hitoshi Kitada 5."
First works related to the topics covered in this book belong to J. Delsarte and B. M. Le vitan and appeared since 1938. In these works, the families of operators that generalize usual translation operators were investigated and the corresponding harmonic analysis was constructed. Later, starting from 1950, it was noticed that, in such constructions, an important role is played by the fact that the kernels of the corresponding convolutions of functions are nonnegative and by the properties of the normed algebras generated by these convolutions. That was the way the notion of hypercomplex system with continu ous basis appeared. A hypercomplex system is a normed algebra of functions on a locally compact space Q-the "basis" of this hypercomplex system. Later, similar objects, hypergroups, were introduced, which have complex-valued measures on Q as elements and convolution defined to be essentially the convolution of functionals and dual to the original convolution (if measures are regarded as functionals on the space of continuous functions on Q). However, until 1991, the time when this book was written in Russian, there were no monographs containing fundamentals of the theory (with an exception of a short section in the book by Yu. M. Berezansky and Yu. G. Kondratiev BeKo]). The authors wanted to give an introduction to the theory and cover the most important subsequent results and examples."
This volume is essentially a self-contained presentation of the theory of reproducing kernels in connection with integral transforms in the framework of Hilbert spaces. It is a general and fundamental concept and a potentially powerful theory combined with the integral transforms. A variety of concrete results of its application are given systematically for isometrical identities and inversion formulas for various typical integral transforms, best approximation theories of functions, analytic extension formulas, real inversion formulas for the Laplace transform, inverse source problems, representationbs of inverse functions, natural norm inequalities in nonlinear transforms and stability of Lipschitz type in determintion of initial heat distribution.
Frechet spaces have been studied since the days of Banach. These spaces, their inductive limits and their duals played a prominent role in the development of the theory of locally convex spaces. Also they are natural tools in many areas of real and complex analysis. The pioneering work of Grothendieck in the fifties has been one of the important sources of inspiration for research in the theory of Frechet spaces. A structure theory of nuclear Frechet spaces emerged and some important questions posed by Grothendieck were settled in the seventies. In particular, subspaces and quotient spaces of stable nuclear power series spaces were completely characterized. In the last years it has become increasingly clear that the methods used in the structure theory of nuclear Frechet spaces actually provide new insight to linear problems in diverse branches of analysis and lead to solutions of some classical problems. The unifying theme at our Workshop was the recent developments in the theory of the projective limit functor. This is appropriate because of the important role this theory had in the recent research. The main results of the structure theory of nuclear Frechet spaces can be formulated and proved within the framework of this theory. A major area of application of the theory of the projective limit functor is to decide when a linear operator is surjective and, if it is, to determine whether it has a continuous right inverse. |
You may like...
|