![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
The spectral theory of ordinary differential operators L and of the equations (0.1) Ly= AY connected with such operators plays an important role in a number of problems both in physics and in mathematics. Let us give some examples of differential operators and equations, the spectral theory of which is well developed. Example 1. The Sturm-Liouville operator has the form (see 6]) 2 d y (0.2) Ly = - dx + u(x)y = Ay. 2 In quantum mechanics the Sturm-Liouville operator L is known as the one-dimen sional Schrodinger operator. The behaviour of a quantum particle is described in terms of spectral characteristics of the operator L. Example 2. The vibrations of a nonhomogeneous string are described by the equa tion (see 59]) p(x) o. (0.3) The first results connected with equation (0.3) were obtained by D. Bernoulli and L. Euler. The investigation of this equation and of its various generalizations continues to be a very active field (see, e.g., 18], 19]). The spectral theory of the equation (0.3) has also found important applications in probability theory 20]. Example 3. Dirac-type systems of the form (0.4) } where a(x) = a(x), b(x) = b(x), are also well studied. Among the works devoted to the spectral theory of the system (0.4) the well-known article of M. G. KreIn 48] deserves special mention."
Starting with a simple formulation accessible to all mathematicians, this second edition is designed to provide a thorough introduction to nonstandard analysis. Nonstandard analysis is now a well-developed, powerful instrument for solving open problems in almost all disciplines of mathematics; it is often used as a 'secret weapon' by those who know the technique. This book illuminates the subject with some of the most striking applications in analysis, topology, functional analysis, probability and stochastic analysis, as well as applications in economics and combinatorial number theory. The first chapter is designed to facilitate the beginner in learning this technique by starting with calculus and basic real analysis. The second chapter provides the reader with the most important tools of nonstandard analysis: the transfer principle, Keisler's internal definition principle, the spill-over principle, and saturation. The remaining chapters of the book study different fields for applications; each begins with a gentle introduction before then exploring solutions to open problems. All chapters within this second edition have been reworked and updated, with several completely new chapters on compactifications and number theory. Nonstandard Analysis for the Working Mathematician will be accessible to both experts and non-experts, and will ultimately provide many new and helpful insights into the enterprise of mathematics.
The aim of this volume is to make available to a large audience recent material in nonlinear functional analysis that has not been covered in book format before. Here, several topics of current and growing interest are systematically presented, such as fixed point theory, best approximation, the KKM-map principle, and results related to optimization theory, variational inequalities and complementarity problems. Illustrations of suitable applications are given, the links between results in various fields of research are highlighted, and an up-to-date bibliography is included to assist readers in further studies. Audience: This book will be of interest to graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations and expansions, convex sets and related geometric topics and game theory.
This book offers a comprehensive treatment of the theory of measures of noncompactness. It discusses various applications of the theory of measures of noncompactness, in particular, by addressing the results and methods of fixed-point theory. The concept of a measure of noncompactness is very useful for the mathematical community working in nonlinear analysis. Both these theories are especially useful in investigations connected with differential equations, integral equations, functional integral equations and optimization theory. Thus, one of the book's central goals is to collect and present sufficient conditions for the solvability of such equations. The results are established in miscellaneous function spaces, and particular attention is paid to fractional calculus.
A unique synthesis of the three existing Fourier-analytic
treatments of quadratic reciprocity.
01/07 This title is now available from Walter de Gruyter. Please see www.degruyter.com for more information. This book is devoted to stochastic operators in Hilbert space. A number of models in modern probability theory apply the notion of a stochastic operator in explicit or latent form. In this book, objects from the Gaussian case are considered. Therefore, it is useful to consider all random variables and elements as functionals from the Wiener process or its formal derivative, i.e. white noise. The book consists of five chapters. The first chapter is devoted to stochastic calculus and its main goal is to prepare the tools for solving stochastic equations. In the second chapter the structure of stochastic equations, mainly the structure of Gaussian strong linear operators, is studied. In chapter 3 the definition of the action of the stochastic operator on random elements in considered. Chapter 4 deals with the mathematical models in which the notions of stochastic calculus arise and in the final chapter the equation with random operators is considered.
Thisbook introduces the reader the theory of nonlinear inclusions and hemivariational inequalities with emphasison the study of contact mechanics. The work covers both abstract results in thearea of nonlinear inclusions, hemivariational inequalities as well as the study of specific contact problems, including their modelling and their variational analysis. Provided results are based on original research on the existence, uniqueness, regularity and behavior of the solution for various classes of nonlinear stationary and evolutionary inclusions. In carrying out the variational analysis of various contact models, onesystematically uses results of hemivariational inequalities and, in this way, illustrates the applications of nonlinear analysis in contact mechanics. New mathematical methods are introduced and applied in the study of nonlinear problems, which describe the contact between a deformable body and a foundation. Contact problems arise in industry, engineering and geophysics. Their variational analysis presented in this book lies the background for their numerical analysis. This volume will interest mathematicians, applied mathematicians, engineers, and scientists as well as advanced graduate students."
Dimensional analysis is an essential scientific method and a powerful tool for solving problems in physics and engineering. This book starts by introducing the Pi Theorem, which is the theoretical foundation of dimensional analysis. It also provides ample and detailed examples of how dimensional analysis is applied to solving problems in various branches of mechanics. The book covers the extensive findings on explosion mechanics and impact dynamics contributed by the author 's research group over the past forty years at the Chinese Academy of Sciences. The book is intended for research scientists and engineers working in the fields of physics and engineering, as well as graduate students and advanced undergraduates of the related fields. Qing-Ming Tan is a former Professor at the Institute of Mechanics, the Chinese Academy of Sciences, China. Qing-Ming Tan is a former Professor at the Institute of Mechanics, the Chinese Academy of Sciences, China.
This book is a systematic presentation of the theory of Hankel operators. It covers the many different areas of Hankel operators and presents a broad range of applications, such as approximation theory, prediction theory, and control theory. The author has gathered the various aspects of Hankel operators and presents their applications to other parts of analysis. This book contains numerous recent results which have never before appeared in book form. The author has created a useful reference tool by pulling this material together and unifying it with a consistent notation, in some cases even simplifying the original proofs of theorems. Hankel Operators and their Applications will be used by graduate students as well as by experts in analysis and operator theory and will become the standard reference on Hankel operators. Vladimir Peller is Professor of Mathematics at Michigan State University. He is a leading researcher in the field of Hankel operators and he has written over 50 papers on operator theory and functional analysis.
For many years, digital signal processing has been governed by the theory of Fourier transform and its numerical implementation. The main disadvantage of Fourier theory is the underlying assumption that the signals have time-wise or space-wise invariant statistical properties. In many applications the deviation from a stationary behavior is precisely the information to be extracted from the signals. Wavelets were developed to serve the purpose of analysing such instationary signals. The book gives an introduction to wavelet theory both in the continuous and the discrete case. After developing the theoretical fundament, typical examples of wavelet analysis in the Geosciences are presented. The book has developed from a graduate course held at The University of Calgary and is directed to graduate students who are interested in digital signal processing. The reader is assumed to have a mathematical background on the graduate level.
The book offers a direct and up-to-date introduction to the theory of one-parameter semigroups of linear operators on Banach spaces. It contains the fundamental results of the theory such as the Hille-Yoshida generation theorem, the bounded perturbation theorem, and the Trotter-Kato approximation theorem. It also treats the spectral theory of semigroups and its consequences for the qualitative behavior. The book is intended for students and researchers who want to become acquainted with the concept of semigroups in order to work with it in fields like partial and functional differential equations. Exercises are provided at the end of the chapters.
Understanding Real Analysis, Second Edition offers substantial coverage of foundational material and expands on the ideas of elementary calculus to develop a better understanding of crucial mathematical ideas. The text meets students at their current level and helps them develop a foundation in real analysis. The author brings definitions, proofs, examples and other mathematical tools together to show how they work to create unified theory. These helps students grasp the linguistic conventions of mathematics early in the text. The text allows the instructor to pace the course for students of different mathematical backgrounds. Key Features: Meets and aligns with various student backgrounds Pays explicit attention to basic formalities and technical language Contains varied problems and exercises Drives the narrative through questions
This book is based upon my monograph Index Theory for Hamiltonian Systems with Applications published in 1993 in Chinese, and my notes for lectures and courses given at Nankai University, Brigham Young University, ICTP-Trieste, and the Institute of Mathematics of Academia Sinica during the last ten years. The aim of this book is twofold: (1) to give an introduction to the index theory for symplectic matrix paths and its iteration theory, which form a basis for the Morse theoretical study on Hamilto nian systems, and to give applications of this theory to periodic boundary value problems of nonlinear Hamiltonian systems. Here the iteration theory means the index theory of iterations of periodic solutions and symplectic matrix paths. (2) to serve as a reference book on these topics. There are many different ways to introduce the index theory for symplectic paths in order to establish Morse type index theory of Hamiltonian systems. In this book, I have chosen a relatively elementary way, i.e., the homotopy classification method of symplectic matrix paths. It depends only on linear algebra, point set topology, and certain basic parts of linear functional analysis. I have tried to make this part of the book self-contained and at the same time include all of the major results on these topics so that researchers and students interested in them can read it without substantial difficulties, and can learn the main results in this area for their possible applications."
This volume comprises the proceedings of the International Workshop on Operator Theory and Its Applications held at the University of Connecticut in July 2005.
The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.
The Plancherel formula says that the "L" DEGREES2 norm of the function is equal to the "L" DEGREES2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an "L" DEGREES2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original "L" DEGREES2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.
This book features original research and survey articles on the topics of function spaces and inequalities. It focuses on (variable/grand/small) Lebesgue spaces, Orlicz spaces, Lorentz spaces, and Morrey spaces and deals with mapping properties of operators, (weighted) inequalities, pointwise multipliers and interpolation. Moreover, it considers Sobolev-Besov and Triebel-Lizorkin type smoothness spaces. The book includes papers by leading international researchers, presented at the International Conference on Function Spaces and Inequalities, held at the South Asian University, New Delhi, India, on 11-15 December 2015, which focused on recent developments in the theory of spaces with variable exponents. It also offers further investigations concerning Sobolev-type embeddings, discrete inequalities and harmonic analysis. Each chapter is dedicated to a specific topic and written by leading experts, providing an overview of the subject and stimulating future research.
In view of the eminent importance of spectral theory of linear operators in many fields of mathematics and physics, it is not surprising that various attempts have been made to define and study spectra also for nonlinear operators. This book provides a comprehensive and self-contained treatment of the theory, methods, and applications of nonlinear spectral theory. The first chapter briefly recalls the definition and properties of the spectrum and several subspectra for bounded linear operators. Then some numerical characteristics for nonlinear operators are introduced which are useful for describing those classes of operators for which there exists a spectral theory. Since spectral values are closely related to solvability results for operator equations, various conditions for the local or global invertibility of a nonlinear operator are collected in the third chapter. The following two chapters are concerned with spectra for certain classes of continuous, Lipschitz continuous, or differentiable operators. These spectra, however, simply adapt the corresponding definitions from the linear theory which somehow restricts their applicability. Other spectra which are defined in a completely different way, but seem to have useful applications, are defined and studied in the following four chapters. The remaining three chapters are more application-oriented and deal with nonlinear eigenvalue problems, numerical ranges, and selected applications to nonlinear problems. The only prerequisite for understanding this book is a modest background in functional analysis and operator theory. It is addressed to non-specialists who want to get an idea of the development of spectral theory for nonlinear operators in the last 30 years, as well as a glimpse of the diversity of the directions in which current research is moving.
Over the past ten years, the asymptotic theory of one-parameter semigroups of operators has witnessed an explosive development. A number oflong-standing open problems have recently been solved and the theory seems to have obtained a certain degree of maturity. These notes, based on a course delivered at the University of Tiibingen in the academic year 1994-1995, represent a first attempt to organize the available material, most of which exists only in the form of research papers. If A is a bounded linear operator on a complex Banach space X, then it is an easy consequence of the spectral mapping theorem exp(tO"(A)) = O"(exp(tA)), t E JR, and Gelfand's formula for the spectral radius that the uniform growth bound of the wt family {exp(tA)h~o, i. e. the infimum of all wE JR such that II exp(tA)II :::: Me for some constant M and all t 2: 0, is equal to the spectral bound s(A) = sup{Re A : A E O"(A)} of A. This fact is known as Lyapunov's theorem. Its importance resides in the fact that the solutions of the initial value problem du(t) =A () dt u t , u(O) = x, are given by u(t) = exp(tA)x. Thus, Lyapunov's theorem implies that the expo- nential growth of the solutions of the initial value problem associated to a bounded operator A is determined by the location of the spectrum of A.
These two volumes contain eighteen invited papers by distinguished mathematicians in honor of the eightieth birthday of Israel M. Gelfand, one of the most remarkable mathematicians of our time. Gelfand has played a crucial role in the development of functional analysis during the last half-century. His work and his philosophy have in fact helped shape our understanding of the term 'functional analysis'. The papers in these volumes largely concern areas in which Gelfand has a very strong interest today, including geometric quantum field theory, representation theory, combinatorial structures underlying various 'continuous' constructions, quantum groups and geometry.
These two volumes contain eighteen invited papers by distinguished mathematicians in honor of the eightieth birthday of Israel M. Gelfand, one of the most remarkable mathematicians of our time. Gelfand has played a crucial role in the development of functional analysis during the last half-century. His work and his philosophy have in fact helped shape our understanding of the term 'functional analysis'. The papers in these volumes largely concern areas in which Gelfand has a very strong interest today, including geometric quantum field theory, representation theory, combinatorial structures underlying various 'continuous' constructions, quantum groups and geometry.
The aim of this book is to develop a new approach which we called the hyper geometric one to the theory of various integral transforms, convolutions, and their applications to solutions of integro-differential equations, operational calculus, and evaluation of integrals. We hope that this simple approach, which will be explained below, allows students, post graduates in mathematics, physicists and technicians, and serious mathematicians and researchers to find in this book new interesting results in the theory of integral transforms, special functions, and convolutions. The idea of this approach can be found in various papers of many authors, but systematic discussion and development is realized in this book for the first time. Let us explain briefly the basic points of this approach. As it is known, in the theory of special functions and its applications, the hypergeometric functions play the main role. Besides known elementary functions, this class includes the Gauss's, Bessel's, Kummer's, functions et c. In general case, the hypergeometric functions are defined as a linear combinations of the Mellin-Barnes integrals. These ques tions are extensively discussed in Chapter 1. Moreover, the Mellin-Barnes type integrals can be understood as an inversion Mellin transform from the quotient of products of Euler's gamma-functions. Thus we are led to the general construc tions like the Meijer's G-function and the Fox's H-function."
Functional Analysis is based on the lecture notes of distinguished authors and is designed to cater to the needs of students who are yet to be exposed to the subject, as well as senior undergraduate- and graduate-level students at universities the world over. The text begins with a preliminary chapter that establishes uniform notations and covers background material in real analysis, linear algebra, and metric spaces. It is followed by chapters on Normed and Banach Spaces, Bounded Linear Operators and Bounded Linear Functional. This text also deals with the concept and specific geometry of Hilbert Spaces, Functional and Operators on Hilbert Spaces, and an Introduction to Spectral Theory. The appendix provides an introduction to Schauder Bases. This is a second edition, written in a more simple and lucid language and illustrated with familiar examples. It is an ideal textbook for easy comprehension of the subject. The clear explanations, numerous examples, problems and illustrative figures also make the text invaluable for self-study and as a reference book.
This book deals with the constructive Weierstrassian approach to the theory of function spaces and various applications. The first chapter is devoted to a detailed study of quarkonial (subatomic) decompositions of functions and distributions on euclidean spaces, domains, manifolds and fractals. This approach combines the advantages of atomic and wavelet representations. It paves the way to sharp inequalities and embeddings in function spaces, spectral theory of fractal elliptic operators, and a regularity theory of some semi-linear equations. The book is self-contained, although some parts may be considered as a continuation of the author's book "Fractals and Spectra" (MMA 91). It is directed to mathematicians and (theoretical) physicists interested in the topics indicated and, in particular, how they are interrelated. |
![]() ![]() You may like...
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Vladislav V. Kravchenko, …
Hardcover
R6,433
Discovery Miles 64 330
Bloch-type Periodic Functions: Theory…
Yong-kui Chang, Gaston Mandata N'G'Uerekata, …
Hardcover
R2,064
Discovery Miles 20 640
The Diversity and Beauty of Applied…
Albrecht Boettcher, Daniel Potts, …
Hardcover
R5,753
Discovery Miles 57 530
Direct and Inverse Finite-Dimensional…
Manfred Moeller, Vyacheslav Pivovarchik
Hardcover
R3,663
Discovery Miles 36 630
Fuzzy Operator Theory in Mathematical…
Yeol Je Cho, Themistocles M. Rassias, …
Hardcover
R3,433
Discovery Miles 34 330
The Rademacher System in Function Spaces
Sergey V. Astashkin
Hardcover
R4,277
Discovery Miles 42 770
A Mathematical Journey to Quantum…
Salvatore Capozziello, Wladimir-Georges Boskoff
Hardcover
R2,531
Discovery Miles 25 310
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,596
Discovery Miles 35 960
|