![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This textbook describes selected topics in functional analysis as powerful tools of immediate use in many fields within applied mathematics, physics and engineering. It follows a very reader-friendly structure, with the presentation and the level of exposition especially tailored to those who need functional analysis but don't have a strong background in this branch of mathematics. For every tool, this work emphasizes the motivation, the justification for the choices made, and the right way to employ the techniques. Proofs appear only when necessary for the safe use of the results. The book gently starts with a road map to guide reading. A subsequent chapter recalls definitions and notation for abstract spaces and some function spaces, while Chapter 3 enters dual spaces. Tools from Chapters 2 and 3 find use in Chapter 4, which introduces distributions. The Linear Functional Analysis basic triplet makes up Chapter 5, followed by Chapter 6, which introduces the concept of compactness. Chapter 7 brings a generalization of the concept of derivative for functions defined in normed spaces, while Chapter 8 discusses basic results about Hilbert spaces that are paramount to numerical approximations. The last chapter brings remarks to recent bibliographical items. Elementary examples included throughout the chapters foster understanding and self-study. By making key, complex topics more accessible, this book serves as a valuable resource for researchers, students, and practitioners alike that need to rely on solid functional analysis but don't need to delve deep into the underlying theory.
First works related to the topics covered in this book belong to J. Delsarte and B. M. Le vitan and appeared since 1938. In these works, the families of operators that generalize usual translation operators were investigated and the corresponding harmonic analysis was constructed. Later, starting from 1950, it was noticed that, in such constructions, an important role is played by the fact that the kernels of the corresponding convolutions of functions are nonnegative and by the properties of the normed algebras generated by these convolutions. That was the way the notion of hypercomplex system with continu ous basis appeared. A hypercomplex system is a normed algebra of functions on a locally compact space Q-the "basis" of this hypercomplex system. Later, similar objects, hypergroups, were introduced, which have complex-valued measures on Q as elements and convolution defined to be essentially the convolution of functionals and dual to the original convolution (if measures are regarded as functionals on the space of continuous functions on Q). However, until 1991, the time when this book was written in Russian, there were no monographs containing fundamentals of the theory (with an exception of a short section in the book by Yu. M. Berezansky and Yu. G. Kondratiev BeKo]). The authors wanted to give an introduction to the theory and cover the most important subsequent results and examples."
In this volume selected papers delivered at the special session on "Spectral and scattering theory" are published. This session was organized by A. G. Ramm at the first international congress ofISAAC (International Society for Analysis, Applications and Computing) which was held at the University of Delaware, June 3-7, 1997. The papers in this volume deal with a wide va riety of problems including some nonlinear problems (Schechter, Trenogin), control theory (Shubov), fundamental problems of physics (Kitada), spectral and scattering theory in waveg uides and shallow ocean (Ramm and Makrakis), inverse scattering with incomplete data (Ramm), spectral theory for Sturm-Liouville operators with singular coefficients (Yurko) and with energy-dependent coefficients (Aktosun, Klaus, and van der Mee), spectral theory of SchrOdinger operators with periodic coefficients (Kuchment, Vainberg), resolvent estimates for SchrOdinger-type and Maxwell's operators (Ben-Artzi and Nemirovsky), SchrOdinger oper ators with von Neumann-Wignertype potentials (Rejto and Taboada), principal eigenvalues for indefinite-weight elliptic operators (pinchover), and symmetric solutions of Ginzburg-Landau equations (Gustafson). These papers will be of interest to a wide audience including mathematicians, physicists, and theoretically oriented engineers. A. G. Ramm Manhattan, KS v CONTENTS 1. Wave Scattering in 1-0 Nonconservative Media . . . . . . . . . . . . . . . . . . . Tuncay Aktosun, Martin Klaus, and Comelis van der Mee 2. Resolvent Estimates for SchrOdinger-type and Maxwell Equations with Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Matania Ben-Artzi and Jonathan Nemirovsky 3. Symmetric Solutions of Ginzburg-Landau Equations 33 S. Gustafson 4. Quantum Mechanics and Relativity: Their Unification by Local Time . . . . . . . 39 Hitoshi Kitada 5."
Frechet spaces have been studied since the days of Banach. These spaces, their inductive limits and their duals played a prominent role in the development of the theory of locally convex spaces. Also they are natural tools in many areas of real and complex analysis. The pioneering work of Grothendieck in the fifties has been one of the important sources of inspiration for research in the theory of Frechet spaces. A structure theory of nuclear Frechet spaces emerged and some important questions posed by Grothendieck were settled in the seventies. In particular, subspaces and quotient spaces of stable nuclear power series spaces were completely characterized. In the last years it has become increasingly clear that the methods used in the structure theory of nuclear Frechet spaces actually provide new insight to linear problems in diverse branches of analysis and lead to solutions of some classical problems. The unifying theme at our Workshop was the recent developments in the theory of the projective limit functor. This is appropriate because of the important role this theory had in the recent research. The main results of the structure theory of nuclear Frechet spaces can be formulated and proved within the framework of this theory. A major area of application of the theory of the projective limit functor is to decide when a linear operator is surjective and, if it is, to determine whether it has a continuous right inverse.
For those who have a background in advanced calculus, elementary
topology and functional analysis - from applied mathematicians and
engineers to physicists - researchers and graduate students alike -
this work provides a comprehensive analysis of the many important
integral transforms and renders particular attention to all of the
technical aspects of the subject. The author presents the last two
decades of research and includes important results from other
works.
The aim of this work is to initiate a systematic study of those properties of Banach space complexes that are stable under certain perturbations. A Banach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every continuous linear operator S : X ..... Y, where X, Yare Banach spaces, may be regarded as a complex: O ..... X ~ Y ..... O. The already existing Fredholm theory for linear operators suggested the possibility to extend its concepts and methods to the study of Banach space complexes. The basic stability properties valid for (semi-) Fredholm operators have their counterparts in the more general context of Banach space complexes. We have in mind especially the stability of the index (i.e., the extended Euler characteristic) under small or compact perturbations, but other related stability results can also be successfully extended. Banach (or Hilbert) space complexes have penetrated the functional analysis from at least two apparently disjoint directions. A first direction is related to the multivariable spectral theory in the sense of J. L.
This new edition of an indispensable text provides a clear treatment of Fourier Series, Fourier Transforms, and FFTs. The unique software, included with the book and newly updated for this edition, allows the reader to generate, firsthand, images of all aspects of Fourier analysis described in the text. Topics covered include applications to vibrating strings, heat conduction, removal of noise and frequency detection, filtering of Fourier Series and improvement of convergence, and much more.
This volume is essentially a self-contained presentation of the theory of reproducing kernels in connection with integral transforms in the framework of Hilbert spaces. It is a general and fundamental concept and a potentially powerful theory combined with the integral transforms. A variety of concrete results of its application are given systematically for isometrical identities and inversion formulas for various typical integral transforms, best approximation theories of functions, analytic extension formulas, real inversion formulas for the Laplace transform, inverse source problems, representationbs of inverse functions, natural norm inequalities in nonlinear transforms and stability of Lipschitz type in determintion of initial heat distribution.
This book is devoted to a new aspect of linear and nonlinear non-Fredholm operators and its applications. The domain of applications of theory developed here is potentially much wider than that presented in the book. Therefore, a goal of this book is to invite readers to make contributions to this fascinating area of mathematics. First, it is worth noting that linear Fredholm operators, one of the most important classes of linear maps in mathematics, were introduced around 1900 in the study of integral operators. These linear Fredholm operators between Banach spaces share, in some sense, many properties with linear maps between finite dimensional spaces. Since the end of the previous century there has been renewed interest in linear - nonlinear Fredholm maps from a topological degree point of view and its applications, following a period of "stagnation" in the mid-1960s. Now, linear and nonlinear Fredholm operator theory and the solvability of corresponding equations both from the analytical and topological points of view are quite well understood. Also noteworthy is, that as a by-product of our results, we have obtained an important tool for modelers working in mathematical biology and mathematical medicine, namely, the necessary conditions for preserving positive cones for systems of equations without Fredholm property containing local - nonlocal diffusion as well as terms for transport and nonlinear interactions.
Combining both classical and current methods of analysis, this text present discussions on the application of functional analytic methods in partial differential equations. It furnishes a simplified, self-contained proof of Agmon-Douglis-Niremberg's Lp-estimates for boundary value problems, using the theory of singular integrals and the Hilbert transform.
Absolute values and their completions -like the p-adic number fields- play an important role in number theory. Krull's generalization of absolute values to valuations made applications in other branches of mathematics, such as algebraic geometry, possible. In valuation theory, the notion of a completion has to be replaced by that of the so-called Henselization. In this book, the theory of valuations as well as of Henselizations is developed. The presentation is based on the knowledge acquired in a standard graduate course in algebra. The last chapter presents three applications of the general theory -for instance to Artin's Conjecture on the p-adic number fields- that could not be obtained by the use of absolute values alone.
The work of Hans Lewy (1904--1988) has had a profound influence in the direction of applied mathematics and partial differential equations, in particular, from the late 1920s. Two of the particulars are well known. The Courant--Friedrichs--Lewy condition (1928), or CFL condition, was devised to obtain existence and approximation results. This condition, relating the time and spatial discretizations for finite difference schemes, is now universally employed in the simulation of solutions of equations describing propagation phenomena. Lewy's example of a linear equation with no solution (1957), with its attendant consequence that most equations have no solution, was not merely an unexpected fact, but changed the viewpoint of the entire field. Lewy made pivotal contributions in many other areas, for example, the regularity theory of elliptic equations and systems, the Monge-- AmpSre Equation, the Minkowski Problem, the asymptotic analysis of boundary value problems, and several complex variables. He was among the first to study variational inequalities. In much of his work, his underlying philosophy was that simple tools of function theory could help one understand the essential concepts embedded in an issue, although at a cost in generality. This approach was extremely successful. In this two-volume work, most all of Lewy's papers are presented, in chronological order. They are preceded by several short essays about Lewy himself, prepared by Helen Lewy, Constance Reid, and David Kinderlehrer, and commentaries on his work by Erhard Heinz, Peter Lax, Jean Leray, Richard MacCamy, Fran?ois Treves, and Louis Nirenberg. Additionally, there are Lewy's own remarks on the occasion of his honorary degree from the University of Bonn.
This monograph offers the reader a treatment of the theory of evolution PDEs with nonstandard growth conditions. This class includes parabolic and hyperbolic equations with variable or anisotropic nonlinear structure. We develop methods for the study of such equations and present a detailed account of recent results. An overview of other approaches to the study of PDEs of this kind is provided. The presentation is focused on the issues of existence and uniqueness of solutions in appropriate function spaces and on the study of the specific qualitative properties of solutions, such as localization in space and time, extinction in a finite time and blow-up, or nonexistence of global in time solutions. Special attention is paid to the study of the properties intrinsic to solutions of equations with nonstandard growth.
One service mathematics has rendered the 'Et moi, "0' si j'avait su oomment en revenir. human race. It has put common sense back je n'y serais point aile: ' Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'el: re of this series."
The work of Hans Lewy (1904--1988) has had a profound influence in the direction of applied mathematics and partial differential equations, in particular, from the late 1920s. Two of the particulars are well known. The Courant--Friedrichs--Lewy condition (1928), or CFL condition, was devised to obtain existence and approximation results. This condition, relating the time and spatial discretizations for finite difference schemes, is now universally employed in the simulation of solutions of equations describing propagation phenomena. Lewy's example of a linear equation with no solution (1957), with its attendant consequence that most equations have no solution, was not merely an unexpected fact, but changed the viewpoint of the entire field. Lewy made pivotal contributions in many other areas, for example, the regularity theory of elliptic equations and systems, the Monge--AmpA]re Equation, the Minkowski Problem, the asymptotic analysis of boundary value problems, and several complex variables. He was among the first to study variational inequalities. In much of his work, his underlying philosophy was that simple tools of function theory could help one understand the essential concepts embedded in an issue, although at a cost in generality. This approach was extremely successful. In this two-volume work, most all of Lewy's papers are presented, in chronological order. They are preceded by several short essays about Lewy himself, prepared by Helen Lewy, Constance Reid, and David Kinderlehrer, and commentaries on his work by Erhard Heinz, Peter Lax, Jean Leray, Richard MacCamy, FranAois Treves, and Louis Nirenberg. Additionally, there are Lewy's own remarks on the occasion of his honorarydegree from the University of Bonn.
We have considered writing the present book for a long time, since the lack of a sufficiently complete textbook about complex analysis in infinite dimensional spaces was apparent. There are, however, some separate topics on this subject covered in the mathematical literature. For instance, the elementary theory of holomorphic vector- functions.and mappings on Banach spaces is presented in the monographs of E. Hille and R. Phillips [1] and L. Schwartz [1], whereas some results on Banach algebras of holomorphic functions and holomorphic operator-functions are discussed in the books of W. Rudin [1] and T. Kato [1]. Apparently, the need to study holomorphic mappings in infinite dimensional spaces arose for the first time in connection with the development of nonlinear anal- ysis. A systematic study of integral equations with an analytic nonlinear part was started at the end ofthe 19th and the beginning ofthe 20th centuries by A. Liapunov, E. Schmidt, A. Nekrasov and others. Their research work was directed towards the theory of nonlinear waves and used mainly the undetermined coefficients and the majorant power series methods. The most complete presentation of these methods comes from N. Nazarov. In the forties and fifties the interest in Liapunov's and Schmidt's analytic methods diminished temporarily due to the appearence of variational calculus meth- ods (M. Golomb, A. Hammerstein and others) and also to the rapid development of the mapping degree theory (J. Leray, J. Schauder, G. Birkhoff, O. Kellog and others).
This book is an easy-to-read reference providing a link between functional analysis and diffusion processes. More precisely, the book takes readers to a mathematical crossroads of functional analysis (macroscopic approach), partial differential equations (mesoscopic approach), and probability (microscopic approach) via the mathematics needed for the hard parts of diffusion processes. This work brings these three fields of analysis together and provides a profound stochastic insight (microscopic approach) into the study of elliptic boundary value problems. The author does a massive study of diffusion processes from a broad perspective and explains mathematical matters in a more easily readable way than one usually would find. The book is amply illustrated; 14 tables and 141 figures are provided with appropriate captions in such a fashion that readers can easily understand powerful techniques of functional analysis for the study of diffusion processes in probability. The scope of the author's work has been and continues to be powerful methods of functional analysis for future research of elliptic boundary value problems and Markov processes via semigroups. A broad spectrum of readers can appreciate easily and effectively the stochastic intuition that this book conveys. Furthermore, the book will serve as a sound basis both for researchers and for graduate students in pure and applied mathematics who are interested in a modern version of the classical potential theory and Markov processes. For advanced undergraduates working in functional analysis, partial differential equations, and probability, it provides an effective opening to these three interrelated fields of analysis. Beginning graduate students and mathematicians in the field looking for a coherent overview will find the book to be a helpful beginning. This work will be a major influence in a very broad field of study for a long time.
There seems to be two types of books on inequalities. On the one hand there are treatises that attempt to cover all or most aspects of the subject, and where an attempt is made to give all results in their best possible form, together with either a full proof or a sketch of the proof together with references to where a full proof can be found. Such books, aimed at the professional pure and applied mathematician, are rare. The first such, that brought some order to this untidy field, is the classical "Inequalities" of Hardy, Littlewood & P6lya, published in 1934. Important as this outstanding work was and still is, it made no attempt at completeness; rather it consisted of the total knowledge of three front rank mathematicians in a field in which each had made fundamental contributions. Extensive as this combined knowledge was there were inevitably certain lacunre; some important results, such as Steffensen's inequality, were not mentioned at all; the works of certain schools of mathematicians were omitted, and many important ideas were not developed, appearing as exercises at the ends of chapters. The later book "Inequalities" by Beckenbach & Bellman, published in 1961, repairs many of these omissions. However this last book is far from a complete coverage of the field, either in depth or scope.
This monograph is devoted to the systematic presentation of the method of singular quadratic forms in the perturbation theory of self-adjoint operators. The concept of a singular (nowhere closable) quadratic form, a key notion of the present volume, is treated from different points of view such as definition, properties, relations with regular (closable) quadratic forms, operator representation, classification in the scale of Hilbert spaces and especially as an object carrying a singular perturbation for Hamiltonians. The main idea is to interpret singular quadratic form in the role of an abstract boundary condition for self-adjoint extension. Various aspects of the singularity principle are investigated, such as the construction of singularly perturbed operators, higher powers of perturbed operators, the transition to a new orthogonally extended state space, as well as approximation and regularization. Furthermore, applications dealing with singular Wick monomials in the Fock space and mathematical scattering theory are included. Audience: This book will be of interest to students and researchers whose work involves functional analysis, operator theory and quantum field theory.
One service mathematics has rendered the l moil ..., Ii j'avait su comment en revenir, je n'y serais point aUe.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'(ftre of this series."
This textbook introduces the study of partial differential equations using both analytical and numerical methods. By intertwining the two complementary approaches, the authors create an ideal foundation for further study. Motivating examples from the physical sciences, engineering, and economics complete this integrated approach. A showcase of models begins the book, demonstrating how PDEs arise in practical problems that involve heat, vibration, fluid flow, and financial markets. Several important characterizing properties are used to classify mathematical similarities, then elementary methods are used to solve examples of hyperbolic, elliptic, and parabolic equations. From here, an accessible introduction to Hilbert spaces and the spectral theorem lay the foundation for advanced methods. Sobolev spaces are presented first in dimension one, before being extended to arbitrary dimension for the study of elliptic equations. An extensive chapter on numerical methods focuses on finite difference and finite element methods. Computer-aided calculation with Maple (TM) completes the book. Throughout, three fundamental examples are studied with different tools: Poisson's equation, the heat equation, and the wave equation on Euclidean domains. The Black-Scholes equation from mathematical finance is one of several opportunities for extension. Partial Differential Equations offers an innovative introduction for students new to the area. Analytical and numerical tools combine with modeling to form a versatile toolbox for further study in pure or applied mathematics. Illuminating illustrations and engaging exercises accompany the text throughout. Courses in real analysis and linear algebra at the upper-undergraduate level are assumed.
This monograph is devoted to the study of K the Bochner function spaces, an active area of research at the intersection of Banach space theory, harmonic analysis, probability, and operator theory. A number of significant results---many scattered throughout the literature---are distilled and presented here, giving readers a comprehensive view of the subject from its origins in functional analysis to its connections to other disciplines. Considerable background material is provided, and the theory of K the Bochner spaces is rigorously developed, with a particular focus on open problems. Extensive historical information, references, and questions for further study are included; instructive examples and many exercises are incorporated throughout. Both expansive and precise, this book 's unique approach and systematic organization will appeal to advanced graduate students and researchers in functional analysis, probability, operator theory, and related fields.
Spline functions entered Approximation Theory as solutions of natural extremal problems. A typical example is the problem of drawing a function curve through given n + k points that has a minimal norm of its k-th derivative. Isolated facts about the functions, now called splines, can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J. Favard, L. Tschakaloff. However, the Theory of Spline Functions has developed in the last 30 years by the effort of dozens of mathematicians. Recent fundamental results on multivariate polynomial interpolation and multivari ate splines have initiated a new wave of theoretical investigations and variety of applications. The purpose of this book is to introduce the reader to the theory of spline functions. The emphasis is given to some new developments, such as the general Birkoff's type interpolation, the extremal properties of the splines and their prominant role in the optimal recovery of functions, multivariate interpolation by polynomials and splines. The material presented is based on the lectures of the authors, given to the students at the University of Sofia and Yerevan University during the last 10 years. Some more elementary results are left as excercises and detailed hints are given."
This volume presents the refereed proceedings of the Conference in Operator The ory in Honour of Moshe Livsic 80th Birthday, held June 29 to July 4, 1997, at the Ben-Gurion University of the Negev (Beer-Sheva, Israel) and at the Weizmann In stitute of Science (Rehovot, Israel). The volume contains papers in operator theory and its applications (understood in a very wide sense), many of them reflecting, 1 directly or indirectly, a profound impact of the work of Moshe Livsic. Moshe (Mikhail Samuilovich) Livsic was born on July 4, 1917, in the small town of Pokotilova near Uman, in the province of Kiev in the Ukraine; his family moved to Odessa when he was four years old. In 1933 he enrolled in the Department of Physics and Mathematics at the Odessa State University, where he became a student of M. G. Krein and an active participant in Krein's seminar - one of the centres where the ideas and methods of functional analysis and operator theory were being developed. Besides M. G. Krein, M. S. Livsic was strongly influenced B. Va. Levin, an outstanding specialist in the theory of analytic functions. A by deep understanding of operator theory as well as function theory and a penetrating search of connections between the two, were to become one of the landmarks of M. S. Livsic's work. M. S. Livsic defended his Ph. D. |
You may like...
The Environmental Ethics and Policy Book…
Christine Pierce, Donald VanDeVeer
Paperback
R1,198
Discovery Miles 11 980
Machine Vision and Navigation
Oleg Sergiyenko, Wendy Flores-Fuentes, …
Hardcover
R7,142
Discovery Miles 71 420
Optically Amplified WDM Networks
John Zyskind, Atul Srivastava
Paperback
Multiobjective Linear and Integer…
Carlos Henggeler Antunes, Maria Joao Alves, …
Hardcover
R3,622
Discovery Miles 36 220
|