![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
Incomplete second order linear differential equations in Banach spaces as well as first order equations have become a classical part of functional analysis. This monograph is an attempt to present a unified systematic theory of second order equations y" (t) ] Ay' (t) + By (t) = 0 including well-posedness of the Cauchy problem as well as the Dirichlet and Neumann problems. Exhaustive yet clear answers to all posed questions are given. Special emphasis is placed on new surprising effects arising for complete second order equations which do not take place for first order and incomplete second order equations. For this purpose, some new results in the spectral theory of pairs of operators and the boundary behavior of integral transforms have been developed. The book serves as a self-contained introductory course and a reference book on this subject for undergraduate and post- graduate students and research mathematicians in analysis. Moreover, users will welcome having a comprehensive study of the equations at hand, and it gives insight into the theory of complete second order linear differential equations in a general context - a theory which is far from being fully understood.
For many, modern functional analysis dates back to Banach's book [Ba32]. Here, such powerful results as the Hahn-Banach theorem, the open-mapping theorem and the uniform boundedness principle were developed in the setting of complete normed and complete metrizable spaces. When analysts realized the power and applicability of these methods, they sought to generalize the concept of a metric space and to broaden the scope of these theorems. Topological methods had been generally available since the appearance of Hausdorff's book in 1914. So it is surprising that it took so long to recognize that they could provide the means for this generalization. Indeed, the theory of topo- logical vector spaces was developed systematically only after 1950 by a great many different people, induding Bourbaki, Dieudonne, Grothendieck, Kothe, Mackey, Schwartz and Treves. The resulting body of work produced a whole new area of mathematics and generalized Banach's results. One of the great successes here was the development of the theory of distributions. While the not ion of a convergent sequence is very old, that of a convergent fil- ter dates back only to Cartan [Ca]. And while sequential convergence structures date back to Frechet [Fr], filter convergence structures are much more recent: [Ch], [Ko] and [Fi]. Initially, convergence spaces and convergence vector spaces were used by [Ko], [Wl], [Ba], [Ke64], [Ke65], [Ke74], [FB] and in particular [Bz] for topology and analysis.
The study of qualitative aspects of PDE's has always attracted much attention from the early beginnings. More recently, once basic issues about PDE's, such as existence, uniqueness and stability of solutions, have been understood quite well, research on topological and/or geometric properties of their solutions has become more intense. The study of these issues is attracting the interest of an increasing number of researchers and is now a broad and well-established research area, with contributions that often come from experts from disparate areas of mathematics, such as differential and convex geometry, functional analysis, calculus of variations, mathematical physics, to name a few. This volume collects a selection of original results and informative surveys by a group of international specialists in the field, analyzes new trends and techniques and aims at promoting scientific collaboration and stimulating future developments and perspectives in this very active area of research.
The study of shape optimization problems encompasses a wide spectrum of academic research with numerous applications to the real world. In this work these problems are treated from both the classical and modern perspectives and target a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems. Key topics and features: * Presents foundational introduction to shape optimization theory * Studies certain classical problems: the isoperimetric problem and the Newton problem involving the best aerodynamical shape, and optimization problems over classes of convex domains * Treats optimal control problems under a general scheme, giving a topological framework, a survey of "gamma"-convergence, and problems governed by ODE * Examines shape optimization problems with Dirichlet and Neumann conditions on the free boundary, along with the existence of classical solutions * Studies optimization problems for obstacles and eigenvalues of elliptic operators * Poses several open problems for further research * Substantial bibliography and index Driven by good examples and illustrations and requiring only a standard knowledge in the calculus of variations, differential equations, and functional analysis, the book can serve as a text for a graduate course in computational methods of optimal design and optimization, as well as an excellent reference for applied mathematicians addressing functional shape optimization problems.
This volume is dedicated to Leonid Lerer on the occasion of his seventieth birthday. The main part presents recent results in Lerer's research area of interest, which includes Toeplitz, Toeplitz plus Hankel, and Wiener-Hopf operators, Bezout equations, inertia type results, matrix polynomials, and related areas in operator and matrix theory. Biographical material and Lerer's list of publications complete the volume.
This book should be accessible to students who have had a first course in matrix theory. The existence and uniqueness theorem of Chapter 4 requires the implicit function theorem, but we give a self-contained constructive proof ofthat theorem. The reader willing to accept the implicit function theorem can read the book without an advanced calculus background. Chapter 8 uses the Moore-Penrose pseudo-inverse, but is accessible to students who have facility with matrices. Exercises are placed at those points in the text where they are relevant. For U. S. universities, we intend for the book to be used at the senior undergraduate level or beginning graduate level. Chapter 2, which is on continued fractions, is not essential to the material of the remaining chapters, but is intimately related to the remaining material. Continued fractions provide closed form representations of the extreme solutions of some discrete matrix Riccati equations. Continued fractions solution methods for Riccati difference equations provide an approach analogous to series solution methods for linear differential equations. The book develops several topics which have not been available at this level. In particular, the material of the chapters on continued fractions (Chapter 2), symplectic systems (Chapter 3), and discrete variational theory (Chapter 4) summarize recent literature. Similarly, the material on transforming Riccati equations presented in Chapter 3 gives a self-contained unification of various forms of Riccati equations. Motivation for our approach to difference equations came from the work of Harris, Vaughan, Hartman, Reid, Patula, Hooker, Erbe & Van, and Bohner.
The twentieth-century view of the analysis of functions is dominated by the study of classes of functions. This volume of the Encyclopaedia covers the origins, development and applications of linear functional analysis, explaining along the way how one is led naturally to the modern approach.
This book describes the inferential and modeling advantages that this distribution, together with its generalizations and modifications, offers. The exposition systematically unfolds with many examples, tables, illustrations, and exercises. A comprehensive index and extensive bibliography also make this book an ideal text for a senior undergraduate and graduate seminar on statistical distributions, or for a short half-term academic course in statistics, applied probability, and finance.
This book contains almost 450 exercises, all with complete solutions; it provides supplementary examples, counter-examples, and applications for the basic notions usually presented in an introductory course in Functional Analysis. Three comprehensive sections cover the broad topic of functional analysis. A large number of exercises on the weak topologies is included.
Blaschke Products and Their Applications presents a collection of survey articles that examine Blaschke products and several of its applications to fields such as approximation theory, differential equations, dynamical systems, harmonic analysis, to name a few. Additionally, this volume illustrates the historical roots of Blaschke products and highlights key research on this topic. For nearly a century, Blaschke products have been researched. Their boundary behaviour, the asymptomatic growth of various integral means and their derivatives, their applications within several branches of mathematics, and their membership in different function spaces and their dynamics, are a few examples of where Blaschke products have shown to be important. The contributions written by experts from various fields of mathematical research will engage graduate students and researches alike, bringing the reader to the forefront of research in the topic. The readers will also discover the various open problems, enabling them to better pursue their own research."
This volume collects contributions from the speakers at an INdAM Intensive period held at the University of Bari in 2017. The contributions cover several aspects of partial differential equations whose development in recent years has experienced major breakthroughs in terms of both theory and applications. The topics covered include nonlocal equations, elliptic equations and systems, fully nonlinear equations, nonlinear parabolic equations, overdetermined boundary value problems, maximum principles, geometric analysis, control theory, mean field games, and bio-mathematics. The authors are trailblazers in these topics and present their work in a way that is exhaustive and clearly accessible to PhD students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research.
The history of martingale theory goes back to the early fifties when Doob [57] pointed out the connection between martingales and analytic functions. On the basis of Burkholder's scientific achievements the mar tingale theory can perfectly well be applied in complex analysis and in the theory of classical Hardy spaces. This connection is the main point of Durrett's book [60]. The martingale theory can also be well applied in stochastics and mathematical finance. The theories of the one-parameter martingale and the classical Hardy spaces are discussed exhaustively in the literature (see Garsia [83], Neveu [138], Dellacherie and Meyer [54, 55], Long [124], Weisz [216] and Duren [59], Stein [193, 194], Stein and Weiss [192], Lu [125], Uchiyama [205]). The theory of more-parameter martingales and martingale Hardy spaces is investigated in Imkeller [107] and Weisz [216]. This is the first mono graph which considers the theory of more-parameter classical Hardy spaces. The methods of proofs for one and several parameters are en tirely different; in most cases the theorems stated for several parameters are much more difficult to verify. The so-called atomic decomposition method that can be applied both in the one-and more-parameter cases, was considered for martingales by the author in [216].
This is the first thorough examination of weakly nonlocal solitary waves, which are just as important in applications as their classical counterparts. The book describes a class of waves that radiate away from the core of the disturbance but are nevertheless very long-lived nonlinear disturbances.
This volume is based on the proceedings of the Toeplitz Lectures 1999 and of the Workshop in Operator Theory held in March 1999 at Tel-Aviv University and at the Weizmann Institute of Science. The workshop was held on the occasion of the 60th birthday of Harry Dym, and the Toeplitz lecturers were Harry Dym and Jim Rovnyak. The papers in the volume reflect Harry's influence on the field of operator theory and its applications through his insights, his writings, and his personality. The volume begins with an autobiographical sketch, followed by the list ofpublications ofHarry Dym and the paper ofIsrael Gohberg: On Joint Work with Harry Dym. The following paper by Jim Rovnyak: Methods of Krdn Space Operator The- ory, is based on his Toeplitz lectures. It gives a survey ofold and recents methods of KreIn space operator theory along with examples from function theory, espe- cially substitution operators on indefinite Dirichlet spaces and their relation to coefficient problems for univalent functions, an idea pioneered by 1. de Branges and underlying his proof of the Bieberbach conjecture (see [9]). The remaining papers (arranged in the alphabetical order) can be divided into the following categories. Schur analysis and interpolation In Notes on Interpolation in the Generalized Schur Class. I, D. Alpay, T. Con- stantinescu, A. Dijksma, and J. Rovnyak use realization theory for operator colli- gations in Pontryagin spaces to study interpolation and factorization problems in generalized Schur classes.
Introduction to Large Truncated Toeplitz Matrices is a text on the application of functional analysis and operator theory to some concrete asymptotic problems of linear algebra. The book contains results on the stability of projection methods, deals with asymptotic inverses and Moore-Penrose inversion of large Toeplitz matrices, and embarks on the asymptotic behavoir of the norms of inverses, the pseudospectra, the singular values, and the eigenvalues of large Toeplitz matrices. The approach is heavily based on Banach algebra techniques and nicely demonstrates the usefulness of C*-algebras and local principles in numerical analysis. The book includes classical topics as well as results obtained and methods developed only in the last few years. Though employing modern tools, the exposition is elementary and aims at pointing out the mathematical background behind some interesting phenomena one encounters when working with large Toeplitz matrices. The text is accessible to readers with basic knowledge in functional analysis. It is addressed to graduate students, teachers, and researchers with some inclination to concrete operator theory and should be of interest to everyone who has to deal with infinite matrices (Toeplitz or not) and their large truncations.
Special functions are pervasive in all fields of science and industry. The most well-known application areas are in physics, engineering, chemistry, computer science and statistics. Because of their importance, several books and websites (see for instance http: functions.wolfram.com) and a large collection of papers have been devoted to these functions. Of the standard work on the subject, namely the Handbook of Mathematical Functions with formulas, graphs and mathematical tables edited by Milton Abramowitz and Irene Stegun, the American National Institute of Standards claims to have sold over 700.000 copies But so far no project has been devoted to the systematic study of continued fraction representations for these functions. This handbook is the result of such an endeavour. We emphasise that only 10% of the continued fractions contained in this book, can also be found in the Abramowitz and Stegun project or at the Wolfram website
With the groundwork laid in the first volume (EMS 15) of the Commutative Harmonic Analysis subseries of the Encyclopaedia, the present volume takes up four advanced topics in the subject: Littlewood-Paley theory for singular integrals, exceptional sets, multiple Fourier series and multiple Fourier integrals.
This volume is the first in the series devoted to the commutative harmonic analysis, a fundamental part of the contemporary mathematics. The fundamental nature of this subject, however, has been determined so long ago, that unlike in other volumes of this publication, we have to start with simple notions which have been in constant use in mathematics and physics. Planning the series as a whole, we have assumed that harmonic analysis is based on a small number of axioms, simply and clearly formulated in terms of group theory which illustrate its sources of ideas. However, our subject cannot be completely reduced to those axioms. This part of mathematics is so well developed and has so many different sides to it that no abstract scheme is able to cover its immense concreteness completely. In particular, it relates to an enormous stock of facts accumulated by the classical "trigonometric" harmonic analysis. Moreover, subjected to a general mathematical tendency of integration and diffusion of conventional intersubject borders, harmonic analysis, in its modem form, more and more rests on non-translation invariant constructions. For example, one ofthe most signifi cant achievements of latter decades, which has substantially changed the whole shape of harmonic analysis, is the penetration in this subject of subtle techniques of singular integral operators."
One service mathematics has rendered the "Et moi, "'f si favait su comment en revenir. je n 'y serais point alleC human raoe. It hat put common sense back where it belongs. on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded non. The series is divergent; therefore we may be smse'. Eric T. Bell able to do something with it. O. H eaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'elre of this series."
In volume I we developed the tools of "Multivalued Analysis. " In this volume we examine the applications. After all, the initial impetus for the development of the theory of set-valued functions came from its applications in areas such as control theory and mathematical economics. In fact, the needs of control theory, in particular the study of systems with a priori feedback, led to the systematic investigation of differential equations with a multi valued vector field (differential inclusions). For this reason, we start this volume with three chapters devoted to set-valued differential equations. However, in contrast to the existing books on the subject (i. e. J. -P. Aubin - A. Cellina: "Differential Inclusions," Springer-Verlag, 1983, and Deimling: "Multivalued Differential Equations," W. De Gruyter, 1992), here we focus on "Evolution Inclusions," which are evolution equations with multi valued terms. Evolution equations were raised to prominence with the development of the linear semigroup theory by Hille and Yosida initially, with subsequent im portant contributions by Kato, Phillips and Lions. This theory allowed a successful unified treatment of some apparently different classes of nonstationary linear par tial differential equations and linear functional equations. The needs of dealing with applied problems and the natural tendency to extend the linear theory to the nonlinear case led to the development of the nonlinear semigroup theory, which became a very effective tool in the analysis of broad classes of nonlinear evolution equations."
This book explains the nature and computation of mathematical wavelets, which provide a framework and methods for the analysis and the synthesis of signals, images, and other arrays of data. The material presented here addresses the au dience of engineers, financiers, scientists, and students looking for explanations of wavelets at the undergraduate level. It requires only a working knowledge or memories of a first course in linear algebra and calculus. The first part of the book answers the following two questions: What are wavelets? Wavelets extend Fourier analysis. How are wavelets computed? Fast transforms compute them. To show the practical significance of wavelets, the book also provides transitions into several applications: analysis (detection of crashes, edges, or other events), compression (reduction of storage), smoothing (attenuation of noise), and syn thesis (reconstruction after compression or other modification). Such applications include one-dimensional signals (sounds or other time-series), two-dimensional arrays (pictures or maps), and three-dimensional data (spatial diffusion). The ap plications demonstrated here do not constitute recipes for real implementations, but aim only at clarifying and strengthening the understanding of the mathematics of wavelets."
This volume is a collection of papers devoted to the 70th birthday of Professor Vladimir Rabinovich. The opening article (by Stefan Samko) includes a short biography of Vladimir Rabinovich, along with some personal recollections and bibliography of his work. It is followed by twenty research and survey papers in various branches of analysis (pseudodifferential operators and partial differential equations, Toeplitz, Hankel, and convolution type operators, variable Lebesgue spaces, etc.) close to Professor Rabinovich's research interests. Many of them are written by participants of the International workshop Analysis, Operator Theory, and Mathematical Physics (Ixtapa, Mexico, January 23 27, 2012) having a long history of scientific collaboration with Vladimir Rabinovich, and are partially based on the talks presented there.The volume will be of great interest to researchers and graduate students in differential equations, operator theory, functional and harmonic analysis, and mathematical physics. "
The present book is a monograph including some recent results of mea sure and integration theory. It concerns three main ideas. The first idea deals with some ordering structures such as Riesz spaces and lattice or dered groups, and their relation to measure and integration theory. The second is the idea of fuzzy sets, quite new in general, and in measure theory particularly. The third area concerns some models of quantum mechanical systems. We study mainly models based on fuzzy set theory. Some recent results are systematically presented along with our suggestions for further development. The first chapter has an introductory character, where we present basic definitions and notations. Simultaneously, this chapter can be regarded as an elementary introduction to fuzzy set theory. Chapter 2 contains an original approach to the convergence of sequences of measurable functions. While the notion of a null set can be determined uniquely, the notion of a set of "small" measure has a fuzzy character. It is interesting that the notion of fuzzy set and the notion of a set of small measure (described mathematically by so-called small systems) were introduced independently at almost the same time. Although the axiomatic systems in both theories mentioned are quite different, we show that the notion of a small system can be considered from the point of view of fuzzy sets."
Topics of this volume are close to scientific interests of Professor Maz'ya and use, directly or indirectly, the fundamental influential Maz'ya's works penetrating, in a sense, the theory of PDEs. In particular, recent advantages in the study of semilinear elliptic equations, stationary Navier-Stokes equations, the Stokes system in convex polyhedra, periodic scattering problems, problems with perturbed boundary at a conic point, singular perturbations arising in elliptic shells and other important problems in mathematical physics are presented.
The present volume contains the proceedings of the workshop on "Minimax Theory and Applications" that was held during the week 30 September - 6 October 1996 at the "G. Stampacchia" International School of Mathematics of the "E. Majorana" Centre for Scientific Cul ture in Erice (Italy) . The main theme of the workshop was minimax theory in its most classical meaning. That is to say, given a real-valued function f on a product space X x Y, one tries to find conditions that ensure the validity of the equality sup inf f(x, y) = inf sup f(x, y). yEY xEX xEX yEY This is not an appropriate place to enter into the technical details of the proofs of minimax theorems, or into the history of the contribu tions to the solution of this basic problem in the last 7 decades. But we do want to stress its intrinsic interest and point out that, in spite of its extremely simple formulation, it conceals a great wealth of ideas. This is clearly shown by the large variety of methods and tools that have been used to study it. The applications of minimax theory are also extremely interesting. In fact, the need for the ability to "switch quantifiers" arises in a seemingly boundless range of different situations. So, the good quality of a minimax theorem can also be judged by its applicability. We hope that this volume will offer a rather complete account of the state of the art of the subject." |
You may like...
Sampling Theory in Fourier and Signal…
J.R. Higgins, R.L. Stens
Hardcover
R6,169
Discovery Miles 61 690
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R2,920
Discovery Miles 29 200
Hardy Operators On Euclidean Spaces And…
Shanzhen Lu, Zunwei Fu, …
Hardcover
R1,914
Discovery Miles 19 140
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,319
Discovery Miles 33 190
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R1,892
Discovery Miles 18 920
Bloch-type Periodic Functions: Theory…
Yong-kui Chang, Gaston Mandata N'G'Uerekata, …
Hardcover
R1,907
Discovery Miles 19 070
|