![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This volume presents the lectures given during the second French-Uzbek Colloquium on Algebra and Operator Theory which took place in Tashkent in 1997, at the Mathematical Institute of the Uzbekistan Academy of Sciences. Among the algebraic topics discussed here are deformation of Lie algebras, cohomology theory, the algebraic variety of the laws of Lie algebras, Euler equations on Lie algebras, Leibniz algebras, and real K-theory. Some contributions have a geometrical aspect, such as supermanifolds. The papers on operator theory deal with the study of certain types of operator algebras. This volume also contains a detailed introduction to the theory of quantum groups. Audience: This book is intended for graduate students specialising in algebra, differential geometry, operator theory, and theoretical physics, and for researchers in mathematics and theoretical physics.
This volume contains contributions written by participants of the 4th Workshop on Operator Theory in Krein Spaces and Applications, held at the TU Berlin, Germany, December 17 to 19, 2004. The workshop covered topics from spectral, perturbation, and extension theory of linear operators and relations in inner product spaces.
This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, ( , R, )-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscil lation of n-th order functional differential equations with deviating argu ments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differ ential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved."
to the English Translation This is a concise guide to basic sections of modern functional analysis. Included are such topics as the principles of Banach and Hilbert spaces, the theory of multinormed and uniform spaces, the Riesz-Dunford holomorphic functional calculus, the Fredholm index theory, convex analysis and duality theory for locally convex spaces. With standard provisos the presentation is self-contained, exposing about a h- dred famous "named" theorems furnished with complete proofs and culminating in the Gelfand-Nalmark-Segal construction for C*-algebras. The first Russian edition was printed by the Siberian Division of "Nauka" P- lishers in 1983. Since then the monograph has served as the standard textbook on functional analysis at the University of Novosibirsk. This volume is translated from the second Russian edition printed by the Sobolev Institute of Mathematics of the Siberian Division of the Russian Academy of Sciences. in 1995. It incorporates new sections on Radon measures, the Schwartz spaces of distributions, and a supplementary list of theoretical exercises and problems. This edition was typeset using AMS-'lEX, the American Mathematical Society's 'lEX system. To clear my conscience completely, I also confess that: = stands for the definor, the assignment operator, signifies the end of the proof."
This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative theory of dynamical systems - most importantly bifurcation theory, which describes the dependence of a system on the parameters. This approach allows one to find general patterns of behavior that are expected to be observed in ecological models. Of special interest is the reaction of a given model to disturbances of its present state, as well as to changes in the external conditions. This leads to the general idea of "dangerous boundaries" in the state and parameter space of an ecological system. The study of these boundaries allows one to analyze and predict qualitative and often sudden changes of the dynamics - a much-needed tool, given the increasing antropogenic load on the biosphere.As a spin-off from this approach, the book can be used as a guided tour of bifurcation theory from the viewpoint of application. The interested reader will find a wealth of intriguing examples of how known bifurcations occur in applications. The book can in fact be seen as bridging the gap between mathematical biology and bifurcation theory.
This book presents the basic algorithms, the main theoretical results, and some applications of spectral methods. Particular attention is paid to the applications of spectral methods to nonlinear problems arising in fluid dynamics, quantum mechanics, weather prediction, heat conduction and other fields.The book consists of three parts. The first part deals with orthogonal approximations in Sobolev spaces and the stability and convergence of approximations for nonlinear problems, as the mathematical foundation of spectral methods. In the second part, various spectral methods are described, with some applications. It includes Fourier spectral method, Legendre spectral method, Chebyshev spectral method, spectral penalty method, spectral vanishing viscosity method, spectral approximation of isolated solutions, multi-dimensional spectral method, spectral method for high-order equations, spectral-domain decomposition method and spectral multigrid method. The third part is devoted to some recent developments of spectral methods, such as mixed spectral methods, combined spectral methods and spectral methods on the surface.
The present book is the second of the two volume Proceedings of the Mark Krein International Conference on Operator Theory and Applications. This conference, which was dedicated to the 90th Anniversary of the prominent mathematician Mark Krein, was held in Odessa, Ukraine from 18-22 August, 1997. The conference focused on the main ideas, methods, results, and achievements of M. G. Krein. This second volume is devoted to operator theory and related topics. It opens with the bibliography of M. G. Krein and a number of survey papers about his work. The main part of the book consists of original research papers presenting the state of the art in operator theory and its applications. The first volume of these proceedings, entitled Differential Operators and related Topics, concerns the other aspects of the conference. The two volumes will be of interest to a wide-range of readership in pure and applied mathematics, physics and engineering sciences. Table of Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Bibliography of Mark Grigorevich Krein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Review papers: M. G. Krein's Contributions to Prediction Theory H. Dym M. G. Krein's Contribution to the Moment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 AA Nudelman Research Papers: Solution of the Truncated Matrix Hamburger Moment Problem according to M. G. Krein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Y. M. Adamyan and I. M. Tkachenko Extreme Points of a Positive Operator Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 T. Ando M-accretive Extensions of Sectorial Operators and Krein Spaces . . . . . . . . . 67 Y. M. Arlinskii A Simple Proof of the Continuous Commutant Lifting Theorem . . . . . . . . . . 83 R. Bruzual and M.
This book contains a collection of research articles and surveys on recent developments on operator theory as well as its applications covered in the IWOTA 2011 conference held at Sevilla University in the summer of 2011. The topics include spectral theory, differential operators, integral operators, composition operators, Toeplitz operators, and more. The book also presents a large number of techniques in operator theory.
Written by a distinguished specialist in functional analysis, this book presents a comprehensive treatment of the history of Banach spaces and (abstract bounded) linear operators. Banach space theory is presented as a part of a broad mathematics context, using tools from such areas as set theory, topology, algebra, combinatorics, probability theory, logic, etc. Equal emphasis is given to both spaces and operators. The book may serve as a reference for researchers and as an introduction for graduate students who want to learn Banach space theory with some historical flavor.
The notion of a dominated or rnajorized operator rests on a simple idea that goes as far back as the Cauchy method of majorants. Loosely speaking, the idea can be expressed as follows. If an operator (equation) under study is dominated by another operator (equation), called a dominant or majorant, then the properties of the latter have a substantial influence on the properties of the former . Thus, operators or equations that have "nice" dominants must possess "nice" properties. In other words, an operator with a somehow qualified dominant must be qualified itself. Mathematical tools, putting the idea of domination into a natural and complete form, were suggested by L. V. Kantorovich in 1935-36. He introduced the funda mental notion of a vector space normed by elements of a vector lattice and that of a linear operator between such spaces which is dominated by a positive linear or monotone sublinear operator. He also applied these notions to solving functional equations. In the succeedingyears many authors studied various particular cases of lattice normed spaces and different classes of dominated operators. However, research was performed within and in the spirit of the theory of vector and normed lattices. So, it is not an exaggeration to say that dominated operators, as independent objects of investigation, were beyond the reach of specialists for half a century. As a consequence, the most important structural properties and some interesting applications of dominated operators have become available since recently."
This reference work deals with important topics in general topology and their role in functional analysis and axiomatic set theory, for graduate students and researchers working in topology, functional analysis, set theory and probability theory. It provides a guide to recent research findings, with three contributions by Arhangel'skii and Choban.
This and the previous volume of the OT series contain the proceedings of the Workshop on Operator Theory and its Applications, IWOTA 95, which was held at the University of Regensburg, Germany, July 31 to August 4, 1995. It was the eigth workshop of this kind. Following is a list of the seven previous workshops with reference to their proceedings: 1981 Operator Theory (Santa Monica, California, USA) 1983 Applications of Linear Operator Theory to Systems and Networks (Rehovot, Israel), OT 12 1985 Operator Theory and its Applications (Amsterdam, The Netherlands), OT 19 1987 Operator Theory and Functional Analysis (Mesa, Arizona, USA), OT 35 1989 Matrix and Operator Theory (Rotterdam, The Netherlands), OT 50 1991 Operator Theory and Complex Analysis (Sapporo, Japan), OT 59 1993 Operator Theory and Boundary Eigenvalue Problems (Vienna, Austria), OT 80 IWOTA 95 offered a rich programme on a wide range of latest developments in operator theory and its applications. The programme consisted of 6 invited plenary lectures, 54 invited special topic lectures and more than 100 invited session talks. About 180 participants from 25 countries attended the workshop, more than a third came from Eastern Europe. The conference covered different aspects of linear and nonlinear spectral prob lems, starting with problems for abstract operators up to spectral theory of ordi nary and partial differential operators, pseudodifferential operators, and integral operators. The workshop was also focussed on operator theory in spaces with indefinite metric, operator functions, interpolation and extension problems."
Functional Equations, Inequalities and Applications provides an extensive study of several important equations and inequalities, useful in a number of problems in mathematical analysis. Subjects dealt with include the generalized Cauchy functional equation, the Ulam stability theory in the geometry of partial differential equations, stability of a quadratic functional equation in Banach modules, functional equations and mean value theorems, isometric mappings, functional inequalities of iterative type, related to a Cauchy functional equation, the median principle for inequalities and applications, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions and approximate algebra homomorphisms. Also included are applications to some problems of pure and applied mathematics. This book will be of particular interest to mathematicians and graduate students whose work involves functional equations, inequalities and applications.
By a Hilbert-space operator we mean a bounded linear transformation be tween separable complex Hilbert spaces. Decompositions and models for Hilbert-space operators have been very active research topics in operator theory over the past three decades. The main motivation behind them is the in variant subspace problem: does every Hilbert-space operator have a nontrivial invariant subspace? This is perhaps the most celebrated open question in op erator theory. Its relevance is easy to explain: normal operators have invariant subspaces (witness: the Spectral Theorem), as well as operators on finite dimensional Hilbert spaces (witness: canonical Jordan form). If one agrees that each of these (i. e. the Spectral Theorem and canonical Jordan form) is important enough an achievement to dismiss any further justification, then the search for nontrivial invariant subspaces is a natural one; and a recalcitrant one at that. Subnormal operators have nontrivial invariant subspaces (extending the normal branch), as well as compact operators (extending the finite-dimensional branch), but the question remains unanswered even for equally simple (i. e. simple to define) particular classes of Hilbert-space operators (examples: hyponormal and quasinilpotent operators). Yet the invariant subspace quest has certainly not been a failure at all, even though far from being settled. The search for nontrivial invariant subspaces has undoubtly yielded a lot of nice results in operator theory, among them, those concerning decompositions and models for Hilbert-space operators. This book contains nine chapters."
Boolean algebras underlie many central constructions of analysis, logic, probability theory, and cybernetics. This book concentrates on the analytical aspects of their theory and application, which distinguishes it among other sources. Boolean Algebras in Analysis consists of two parts. The first concerns the general theory at the beginner's level. Presenting classical theorems, the book describes the topologies and uniform structures of Boolean algebras, the basics of complete Boolean algebras and their continuous homomorphisms, as well as lifting theory. The first part also includes an introductory chapter describing the elementary to the theory. The second part deals at a graduate level with the metric theory of Boolean algebras at a graduate level. The covered topics include measure algebras, their sub algebras, and groups of automorphisms. Ample room is allotted to the new classification theorems abstracting the celebrated counterparts by D.Maharam, A.H. Kolmogorov, and V.A.Rokhlin. Boolean Algebras in Analysis is an exceptional definitive source on Boolean algebra as applied to functional analysis and probability. It is intended for all who are interested in new and powerful tools for hard and soft mathematical analysis.
This book presents an operator theoretic approach to robust control analysis for linear time-varying systems. It emphasizes the conceptual similarity with the H control theory for time-invariant systems and at the same time clarifies the major difficulties confronted in the time varying case. The necessary operator theory is developed from first principles and the book is as self-contained as possible. After presenting the necessary results from the theories of Toeplitz operators and nest algebras, linear systems are defined as input- output operators and the relationship between stabilization and the existance of co-prime factorizations is described. Uniform optimal control problems are formulated as model-matching problems and are reduced to four block problems. Robustness is considered both from the point of view of fractional representations and the "time varying gap" metric, and the relationship between these types of uncertainties is clarified. The book closes with the solution of the orthogonal embedding problem for time varying contractive systems. This book will be useful to both mathematicians interested in the potential applications of operator theory in control and control engineers who wish to deal with some of the more mathematically sophisticated extension of their work.
This book was undertaken to provide a text and reference on the theory and practice of the FFT and its common usage. This book is organized in only four chapters, and is intended as a tutorial on the use of the FFf and its trade space. The trade space of the FFT is the parameters in its usage and the relationships between them - the sampie rate, the total number of points or the interval over which processing occurs in a single FFf, the selectivity of tuning to a given frequency over signals out-of-band, and the bandwidth over which a signal appears. The examples given in this text are in FORTRAN 9512003. FORTRAN 2003 was frozen as a standard while this work was in progress. The listings given here are intended as an aid in understanding the FFT and associated algorithms such as spectral window weightings, with the goal of making the best of them more accessible to the reader. The code I use here provides a simple bridge between the material in the text and implementation in FORTRAN 2003, C++, Java, MATLAB (c), and other modem languages. The examples are sufficiently simple to be translated into older languages such as C and FORTRAN 77 if desired.
Functional Equations andInequalities provides an extensive studyofsome of the most important topics of current interest in functional equations and inequalities. Subjects dealt with include: a Pythagorean functional equation, a functional definition oftrigonometric functions, the functional equation ofthe square root spiral, a conditional Cauchy functional equation, an iterative functional equation, the Hille-type functional equation, the polynomial-like iterative functional equation, distribution ofzeros and inequalities for zeros of algebraic polynomials, a qualitative study ofLobachevsky's complex functional equation, functional inequalities in special classesoffunctions, replicativity and function spaces, normal distributions, some difference equations, finite sums decompositions of functions, harmonic functions, set-valued quasiconvex functions, the problem of expressibility in some extensions of free groups, Aleksandrov problem and mappings which preserve distances, Ulam's problem, stability of some functional equation for generalized trigonometric functions, Hyers-Ulam stability of Hosszil's equation, superstability of a functional equation, and some demand functions in a duopoly market with advertising. It is a pleasureto express my deepest appreciationto all the mathematicians who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staffofKluwer Academic Publishers. June 2000 Themistocles M. Rassias xi ON THE STABILITY OF A FUNCTIONAL EQUATION FOR GENERALIZED TRIGONOMETRIC FUNCTIONS ROMAN BADORA lnstytut Matematyki, Uniwersytet Sli;ski, ul. Bankowa 14, PL-40-007 Katowice, Poland, e-mail: robadora@gate. math. us. edu. pl Abstract. In the present paper the stability result concerning a functional equation for generalized trigonometric functions is presented. Z.
This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC'2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23-24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.
Spectral theoryis an important part of functional analysis.It has numerousapp- cations in many parts of mathematics and physics including matrix theory, fu- tion theory, complex analysis, di?erential and integral equations, control theory and quantum physics. In recent years, spectral theory has witnessed an explosive development. There are many types of spectra, both for one or several commuting operators, with important applications, for example the approximate point spectrum, Taylor spectrum, local spectrum, essential spectrum, etc. The present monograph is an attempt to organize the available material most of which exists only in the form of research papers scattered throughout the literature. The aim is to present a survey of results concerning various types of spectra in a uni?ed, axiomatic way. The central unifying notion is that of a regularity, which in a Banach algebra isasubsetofelementsthatareconsideredtobe nice .AregularityRinaBanach algebraA de?nes the corresponding spectrum ? (a)={ C: a / ? R} in R the same wayas the ordinaryspectrum is de?ned by means of invertible elements, ?(a)={ C: a / ? Inv(A)}. Axioms of a regularity are chosen in such a way that there are many natural interesting classes satisfying them. At the same time they are strong enough for non-trivial consequences, for example the spectral mapping theorem. Spectra ofn-tuples ofcommuting elements ofa Banachalgebraaredescribed similarly by means of a notion of joint regularity. This notion is closely related to ? the axiomatic spectral theory of Zelazko and S lodkowski."
The subject of the book is Diophantine approximation and Nevanlinna theory. Not only does the text provide new results and directions, it also challenges open problems and collects latest research activities on these subjects made by the authors over the past eight years. Some of the significant findings are the proof of the Green-Griffiths conjecture by using meromorphic connections and Jacobian sections, and a generalized abc-conjecture. The book also presents the state of the art in the studies of the analogues between Diophantine approximation (in number theory) and value distribution theory (in complex analysis), with a method based on Vojta's dictionary for the terms of these two fields. The approaches are relatively natural and more effective than existing methods. The book is self-contained and appended with a comprehensive and up-to-date list of references. It is of interest to a broad audience of graduate students and researchers specialized in pure mathematics.
On February 15-17, 1993, a conference on Large Scale Optimization, hosted by the Center for Applied Optimization, was held at the University of Florida. The con ference was supported by the National Science Foundation, the U. S. Army Research Office, and the University of Florida, with endorsements from SIAM, MPS, ORSA and IMACS. Forty one invited speakers presented papers on mathematical program ming and optimal control topics with an emphasis on algorithm development, real world applications and numerical results. Participants from Canada, Japan, Sweden, The Netherlands, Germany, Belgium, Greece, and Denmark gave the meeting an important international component. At tendees also included representatives from IBM, American Airlines, US Air, United Parcel Serice, AT & T Bell Labs, Thinking Machines, Army High Performance Com puting Research Center, and Argonne National Laboratory. In addition, the NSF sponsored attendance of thirteen graduate students from universities in the United States and abroad. Accurate modeling of scientific problems often leads to the formulation of large scale optimization problems involving thousands of continuous and/or discrete vari ables. Large scale optimization has seen a dramatic increase in activities in the past decade. This has been a natural consequence of new algorithmic developments and of the increased power of computers. For example, decomposition ideas proposed by G. Dantzig and P. Wolfe in the 1960's, are now implement able in distributed process ing systems, and today many optimization codes have been implemented on parallel machines."
Survey on Classical Inequalities provides a study of some of the well known inequalities in classical mathematical analysis. Subjects dealt with include: Hardy-Littlewood-type inequalities, Hardy's and Carleman's inequalities, Lyapunov inequalities, Shannon's and related inequalities, generalized Shannon functional inequality, operator inequalities associated with Jensen's inequality, weighted Lp -norm inequalities in convolutions, inequalities for polynomial zeros as well as applications in a number of problems of pure and applied mathematics. It is my pleasure to express my appreciation to the distinguished mathematicians who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staff of Kluwer Academic Publishers. June 2000 Themistocles M. Rassias Vll LYAPUNOV INEQUALITIES AND THEIR APPLICATIONS RICHARD C. BROWN Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA. email address: [email protected] DON B. HINTON Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA. email address: [email protected] Abstract. For nearly 50 years Lyapunov inequalities have been an important tool in the study of differential equations. In this survey, building on an excellent 1991 historical survey by Cheng, we sketch some new developments in the theory of Lyapunov inequalities and present some recent disconjugacy results relating to second and higher order differential equations as well as Hamiltonian systems. 1. Introduction Lyapunov's inequality has proved useful in the study of spectral properties of ordinary differential equations. Typical applications include bounds for eigenvalues, stability criteria for periodic differential equations, and estimates for intervals of disconjugacy.
The articles in this volume are an outgrowth of an international conference entitled Variational and Topological Methods in the Study of Nonlinear Phe- nomena, held in Pisa in January-February 2000. Under the framework of the research project Differential Equations and the Calculus of Variations, the conference was organized to celebrate the 60th birthday of Antonio Marino, one of the leaders of the research group and a significant contrib- utor to the mathematical activity in this area of nonlinear analysis. The volume highlights recent advances in the field of nonlinear functional analysis and its applications to nonlinear partial and ordinary differential equations, with particular emphasis on variational and topological meth- ods. A broad range of topics is covered, including: concentration phenomena in PDEs, variational methods with applications to PDEs and physics, pe- riodic solutions of ODEs, computational aspects in topological methods, and mathematical models in biology. Though well-differentiated, the topics covered are unified through a com- mon perspective and approach. Unique to the work are several chapters on computational aspects and applications to biology, not usually found with such basic studies on PDEs and ODEs. The volume is an excellent reference text for researchers and graduate students in the above mentioned fields. Contributors are M. Clapp, M.J. Esteban, P. Felmer, A. Ioffe, W. Marzan- towicz, M. Mrozek, M. Musso, R. Ortega, P. Pilarczyk, M. del Pino, E. Sere, E. Schwartzman, P. Sintzoff, R. Turner, and I\f. Willem. |
You may like...
Computer Systems and Software…
Information Reso Management Association
Hardcover
R8,929
Discovery Miles 89 290
Hardware/Software Co-Design and…
Jean-Michel Berge, Oz Levia, …
Hardcover
R5,240
Discovery Miles 52 400
Sustainability Analysis and…
Mariia Kozlova, Julian Scott Yeomans
Hardcover
Software Architecture: System Design…
Jan Bosch, Morven Gentleman, …
Hardcover
R4,145
Discovery Miles 41 450
|