![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
Explaining and comparing the various standard types of generalised
functions which have been developed during the 20th Century, this
text also contains accounts of recent non-standard theories of
distributions, ultradistributions and Stato-hyperfunctions. The
book could readily be used as a main text on generalised functions
for mathematical undergraduates in final year analysis courses, as
it presupposes little more than a general mathematical background.
It also makes a valuable reference text for non-specific applied
mathematics students, such as physicists or electrical engineers,
needing to gain expertise in the application of generalised
functions to physical problems, without any prior acquaintance of
the specialised subject matter. An ideal companion book to Delta
Functions, also by Professor Hoskins.
Intended a both a textbook and a reference, Fourier Acoustics
develops the theory of sound radiation uniquely from the viewpoint
of Fourier Analysis. This powerful perspective of sound radiation
provides the reader with a comprehensive and practical
understanding which will enable him or her to diagnose and solve
sound and vibration problems in the 21st Century. As a result of
this perspective, Fourier Acoustics is able to present thoroughly
and simply, for the first time in book form, the theory of
nearfield acoustical holography, an important technique which has
revolutionised the measurement of sound. Relying little on material
outside the book, Fourier Acoustics will be invaluable as a
graduate level text as well as a reference for researchers in
academia and industry.
Hilbert-type inequalities, including Hilbert's inequalities proved in 1908, Hardy-Hilbert-type inequalities proved in 1934, and Yang-Hilbert-type inequalities first proved around 1998, play an important role in analysis and its applications. These inequalities are mainly divided in three classes: integral, discrete and half-discrete. During the last twenty years, there have been many research advances on Hilbert-type inequalities, and especially on Yang-Hilbert-type inequalities.In the present monograph, applying weight functions, the idea of parametrization as well as techniques of real analysis and functional analysis, we prove some new Hilbert-type integral inequalities as well as their reverses with parameters. These inequalities constitute extensions of the well-known Hardy-Hilbert integral inequality. The equivalent forms and some equivalent statements of the best possible constant factors associated with several parameters are considered. Furthermore, we also obtain the operator expressions with the norm and some particular inequalities involving the Riemann-zeta function and the Hurwitz-zeta function. In the form of applications, by means of the beta function and the gamma function, we use the extended Hardy-Hilbert integral inequalities to consider several Hilbert-type integral inequalities involving derivative functions and upper limit functions. In the last chapter, we consider the case of Hardy-type integral inequalities. The lemmas and theorems within provide an extensive account of these kinds of integral inequalities and operators.Efforts have been made for this monograph hopefully to be useful, especially to graduate students of mathematics, physics and engineering, as well as researchers in these domains.
In many branches of mathematical analysis and mathematical physics, the Hardy operator and Hardy inequality are fundamentally important and have been intensively studied ever since the pioneer researches. This volume presents new properties of higher-dimensional Hardy operators obtained by the authors and their collaborators over the last decade. Its prime focus is on higher-dimensional Hardy operators that are based on the spherical average form.The key motivation for this monograph is based on the fact that the Hardy operator is generally smaller than the Hardy-Littlewood maximal operator, which leads to, on the one hand, the operator norm of the Hardy operator itself being smaller than the latter. On the other hand, the former characterizing the weight function class or function spaces is greater than the latter.
Extremum Seeking through Delays and PDEs, the first book on the topic, expands the scope of applicability of the extremum seeking method, from static and finite-dimensional systems to infinite-dimensional systems. Readers will find: Numerous algorithms for model-free real-time optimization are developed and their convergence guaranteed. Extensions from single-player optimization to noncooperative games, under delays and pdes, are provided. The delays and pdes are compensated in the control designs using the pde backstepping approach, and stability is ensured using infinite-dimensional versions of averaging theory. Accessible and powerful tools for analysis. This book is intended for control engineers in all disciplines (electrical, mechanical, aerospace, chemical), mathematicians, physicists, biologists, and economists. It is appropriate for graduate students, researchers, and industrial users.
This book presents a collection of problems and solutions in functional analysis with applications to quantum mechanics. Emphasis is given to Banach spaces, Hilbert spaces and generalized functions.The material of this volume is self-contained, whereby each chapter comprises an introduction with the relevant notations, definitions, and theorems. The approach in this volume is to provide students with instructive problems along with problem-solving strategies. Programming problems with solutions are also included.
This monograph aims to provide for the first time a unified and homogenous presentation of the recent works on the theory of Bloch periodic functions, their generalizations, and their applications to evolution equations. It is useful for graduate students and beginning researchers as seminar topics, graduate courses and reference text in pure and applied mathematics, physics, and engineering.
Presently no other book deals with the stability problem of functional equations in Banach algebras, inner product spaces and amenable groups. Moreover, in most stability theorems for functional equations, the completeness of the target space of the unknown functions contained in the equation is assumed. Recently, the question, whether the stability of a functional equation implies this completeness, has been investigated by several authors. In this book the authors investigate these developments in the theory of approximate functional equations.
Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms.
This proceedings volume collects select contributions presented at the International Conference in Operator Theory held at Hammamet, Tunisia, on April 30 May 3, 2018. Edited and refereed by well-known experts in the field, this wide-ranging collection of survey and research articles presents the state of the art in the field of operator theory, covering topics such as operator and spectral theory, fixed point theory, functional analysis etc.
This book is the second edition of the first complete study and monograph dedicated to singular traces. The text offers, due to the contributions of Albrecht Pietsch and Nigel Kalton, a complete theory of traces and their spectral properties on ideals of compact operators on a separable Hilbert space. The second edition has been updated on the fundamental approach provided by Albrecht Pietsch. For mathematical physicists and other users of Connes' noncommutative geometry the text offers a complete reference to traces on weak trace class operators, including Dixmier traces and associated formulas involving residues of spectral zeta functions and asymptotics of partition functions.
Applied Dimensional Analysis and Modeling provides the full
mathematical background and step-by-step procedures for employing
dimensional analyses, along with a wide range of applications to
problems in engineering and applied science, such as fluid
dynamics, heat flow, electromagnetics, astronomy and economics.
This new edition offers additional worked-out examples in
mechanics, physics, geometry, hydrodynamics, and biometry.
The book is of interest to graduate students in functional
analysis, numerical analysis, and ill-posed and inverse problems
especially. The book presents a general method for solving operator
equations, especially nonlinear and ill-posed. It requires a fairly
modest background and is essentially self-contained. All the
results are proved
This volume includes contributions originating from a conference held at Chapman University during November 14-19, 2017. It presents original research by experts in signal processing, linear systems, operator theory, complex and hypercomplex analysis and related topics.
Functional analysis is a powerful tool when applied to mathematical
problems arising from physical situations. The present book
provides, by careful selection of material, a collection of
concepts and techniques essential for the modern practitioner.
Emphasis is placed on the solution of equations (including
nonlinear and partial differential equations). The assumed
background is limited to elementary real variable theory and
finite-dimensional vector spaces.
This book introduces the fundamental concepts, methods, and applications of Hausdorff calculus, with a focus on its applications in fractal systems. Topics such as the Hausdorff diffusion equation, Hausdorff radial basis function, Hausdorff derivative nonlinear systems, PDE modeling, statistics on fractals, etc. are discussed in detail. It is an essential reference for researchers in mathematics, physics, geomechanics, and mechanics.
Recent years have witnessed a growth of interest in the special functions called ridge functions. These functions appear in various fields and under various guises. They appear in partial differential equations (where they are called plane waves), in computerized tomography, and in statistics. Ridge functions are also the underpinnings of many central models in neural network theory. In this book various approximation theoretic properties of ridge functions are described. This book also describes properties of generalized ridge functions, and their relation to linear superpositions and Kolmogorov's famous superposition theorem. In the final part of the book, a single and two hidden layer neural networks are discussed. The results obtained in this part are based on properties of ordinary and generalized ridge functions. Novel aspects of the universal approximation property of feedforward neural networks are revealed. This book will be of interest to advanced graduate students and researchers working in functional analysis, approximation theory, and the theory of real functions, and will be of particular interest to those wishing to learn more about neural network theory and applications and other areas where ridge functions are used.
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of which has been established within a very general framework, so that the method using Carleman estimates for inverse problems is misunderstood as being very difficult. The main purpose of the book is to provide an accessible approach to the methodology. To accomplish that goal, the authors include a direct derivation of Carleman estimates, the derivation being based essentially on elementary calculus working flexibly for various equations. Because the inverse problem depends heavily on respective equations, too general and abstract an approach may not be balanced. Thus a direct and concrete means was chosen not only because it is friendly to readers but also is much more relevant. By practical necessity, there is surely a wide range of inverse problems and the method delineated here can solve them. The intention is for readers to learn that method and then apply it to solving new inverse problems.
This is the second of a two-volume series on sampling theory. The mathematical foundations were laid in the first volume, and this book surveys the many applications of sampling theory both within mathematics and in other areas of science. Many of the topics covered here are not found in other books, and all are given an up to date treatment bringing the reader's knowledge up to research level. This book consists of ten chapters, written by ten different teams of authors, and the contents range over a wide variety of topics including combinatorial analysis, number theory, neural networks, derivative sampling, wavelets, stochastic signals, random fields, and abstract harmonic analysis. There is a comprehensive, up to date bibliography.
This book presents 29 invited articles written by participants of the International Workshop on Operator Theory and its Applications held in Chemnitz in 2017. The contributions include both expository essays and original research papers illustrating the diversity and beauty of insights gained by applying operator theory to concrete problems. The topics range from control theory, frame theory, Toeplitz and singular integral operators, Schroedinger, Dirac, and Kortweg-de Vries operators, Fourier integral operator zeta-functions, C*-algebras and Hilbert C*-modules to questions from harmonic analysis, Monte Carlo integration, Fibonacci Hamiltonians, and many more. The book offers researchers in operator theory open problems from applications that might stimulate their work and shows those from various applied fields, such as physics, engineering, or numerical mathematics how to use the potential of operator theory to tackle interesting practical problems.
This book features a selection of articles based on the XXXV Bialowieza Workshop on Geometric Methods in Physics, 2016. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Bialowieza Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.
This book focuses on the theory of the Gibbs semigroups, which originated in the 1970s and was motivated by the study of strongly continuous operator semigroups with values in the trace-class ideal. The book offers an up-to-date, exhaustive overview of the advances achieved in this theory after half a century of development. It begins with a tutorial introduction to the necessary background material, before presenting the Gibbs semigroups and then providing detailed and systematic information on the Trotter-Kato product formulae in the trace-norm topology. In addition to reviewing the state-of-art concerning the Trotter-Kato product formulae, the book extends the scope of exposition from the trace-class ideal to other ideals. Here, special attention is paid to results on semigroups in symmetrically normed ideals and in the Dixmier ideal. By examining the progress made in Gibbs semigroup theory and in extensions of the Trotter-Kato product formulae to symmetrically normed and Dixmier ideals, the book shares timely and valuable insights for readers interested in pursuing these subjects further. As such, it will appeal to researchers, undergraduate and graduate students in mathematics and mathematical physics.
The book contains a collection of 21 original research papers which report on recent developments in various fields of nonlinear analysis. The collection covers a large variety of topics ranging from abstract fields such as algebraic topology, functional analysis, operator theory, spectral theory, analysis on manifolds, partial differential equations, boundary value problems, geometry of Banach spaces, measure theory, variational calculus, and integral equations, to more application-oriented fields like control theory, numerical analysis, mathematical physics, mathematical economy, and financial mathematics. The book is addressed to all specialists interested in nonlinear functional analysis and its applications, but also to postgraduate students who want to get in touch with this important field of modern analysis. It is dedicated to Alfonso Vignoli who has essentially contributed to the field, on the occasion of his sixtieth birthday. |
You may like...
Knowing God - The Trilogy - Knowing…
Christopher J.H. Wright
Hardcover
R1,089
Discovery Miles 10 890
|