![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This self-contained textbook discusses all major topics in functional analysis. Combining classical materials with new methods, it supplies numerous relevant solved examples and problems and discusses the applications of functional analysis in diverse fields. The book is unique in its scope, and a variety of applications of functional analysis and operator-theoretic methods are devoted to each area of application. Each chapter includes a set of problems, some of which are routine and elementary, and some of which are more advanced. The book is primarily intended as a textbook for graduate and advanced undergraduate students in applied mathematics and engineering. It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization. It introduces emerging topics like wavelets, Gabor system, inverse problems and application to signal and image processing.
Spaces of holomorphic functions have been a prominent theme in analysis since early in the twentieth century. Of interest to complex analysts, functional analysts, operator theorists, and systems theorists, their study is now flourishing. This volume, an outgrowth of a 1995 program at the Mathematical Sciences Research Institute, contains expository articles by program participants describing the present state of the art. Here researchers and graduate students will encounter Hardy spaces, Bergman spaces, Dirichlet spaces, Hankel and Toeplitz operators, and a sampling of the role these objects play in modern analysis.
This multidisciplinary volume is the second in the STEAM-H series to feature invited contributions on mathematical applications in naval engineering. Seeking a more holistic approach that transcends current scientific boundaries, leading experts present interdisciplinary instruments and models on a broad range of topics. Each chapter places special emphasis on important methods, research directions, and applications of analysis within the field. Fundamental scientific and mathematical concepts are applied to topics such as microlattice materials in structural dynamics, acoustic transmission in low Mach number liquid flow, differential cavity ventilation on a symmetric airfoil, Kalman smoother, metallic foam metamaterials for vibration damping and isolation, seal whiskers as a bio-inspired model for the reduction of vortex-induced vibrations, multidimensional integral for multivariate weighted generalized Gaussian distributions, minimum uniform search track placement for rectangular regions, antennas in the maritime environment, the destabilizing impact of non-performers in multi-agent groups, inertial navigation accuracy with bias modeling. Carefully peer-reviewed and pedagogically presented for a broad readership, this volume is perfect to graduate and postdoctoral students interested in interdisciplinary research. Researchers in applied mathematics and sciences will find this book an important resource on the latest developments in naval engineering. In keeping with the ideals of the STEAM-H series, this volume will certainly inspire interdisciplinary understanding and collaboration.
Introduction to Functional Equations grew out of a set of class notes from an introductory graduate level course at the University of Louisville. This introductory text communicates an elementary exposition of valued functional equations where the unknown functions take on real or complex values. In order to make the presentation as manageable as possible for students from a variety of disciplines, the book chooses not to focus on functional equations where the unknown functions take on values on algebraic structures such as groups, rings, or fields. However, each chapter includes sections highlighting various developments of the main equations treated in that chapter. For advanced students, the book introduces functional equations in abstract domains like semigroups, groups, and Banach spaces. Functional equations covered include: Cauchy Functional Equations and Applications The Jensen Functional Equation Pexider's Functional Equation Quadratic Functional Equation D'Alembert Functional Equation Trigonometric Functional Equations Pompeiu Functional Equation Hosszu Functional Equation Davison Functional Equation Abel Functional Equation Mean Value Type Functional Equations Functional Equations for Distance Measures The innovation of solving functional equations lies in finding the right tricks for a particular equation. Accessible and rooted in current theory, methods, and research, this book sharpens mathematical competency and prepares students of mathematics and engineering for further work in advanced functional equations.
Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature.
Heun's equation is a second-order differential equation which crops up in a variety of forms in a wide range of problems in applied mathematics. These include integral equations of potential theory, wave propogation, electrostatic oscillation, and Schrodinger's equation. This volume brings together important research work for the first time, providing an important resource for all those interested in this mathematical topic. Both the current theory and the main areas of application are surveyed, and includes contributions from authoritative researchers such as Felix Arscott (Canada), P. Maroni (France), and Gerhard Wolf (Germany).
This book provides a broad introduction to the generalized inverses, Moore-Penrose inverses, Drazin inverses and T-S outer generalized inverses and their perturbation analyses in the spaces of infinite-dimensional. This subject has many applications in operator theory, operator algebras, global analysis and approximation theory and so on. Stable Perturbations of Operators and Related Topics is self- contained and unified in presentation. It may be used as an advanced textbook by graduate students. It is also suitable for researchers as a reference. The proofs of statements and explanations in the book are detailed enough that interested readers can study it by themselves.
This book is devoted to the qualitative theory of functional dynamic equations on time scales, providing an overview of recent developments in the field as well as a foundation to time scales, dynamic systems, and functional dynamic equations. It discusses functional dynamic equations in relation to mathematical physics applications and problems, providing useful tools for investigation for oscillations and nonoscillations of the solutions of functional dynamic equations on time scales. Practice problems are presented throughout the book for use as a graduate-level textbook and as a reference book for specialists of several disciplines, such as mathematics, physics, engineering, and biology.
This book provides the first systematic critique of the concept of climate change adaptation within the field of international development. Drawing on a reworked political ecology framework, it argues that climate is not something 'out there' that we adapt to. Instead, it is part of the social and biophysical forces through which our lived environments are actively yet unevenly produced. From this original foundation, the book challenges us to rethink the concepts of climate change, vulnerability, resilience and adaptive capacity in transformed ways. With case studies drawn from Pakistan, India and Mongolia, it demonstrates concretely how climatic change emerges as a dynamic force in the ongoing transformation of contested rural landscapes. In crafting this synthesis, the book recalibrates the frameworks we use to envisage climatic change in the context of contemporary debates over development, livelihoods and poverty. With its unique theoretical contribution and case study material, this book will appeal to researchers and students in environmental studies, sociology, geography, politics and development studies.
This second edition of The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance has been fully updated and revised to reflect recent developments in the theory and practical applications of wavelet transform methods. The book is designed specifically for the applied reader in science, engineering, medicine and finance. Newcomers to the subject will find an accessible and clear account of the theory of continuous and discrete wavelet transforms, while readers already acquainted with wavelets can use the book to broaden their perspective. One of the many strengths of the book is its use of several hundred illustrations, some in colour, to convey key concepts and their varied practical uses. Chapters exploring these practical applications highlight both the similarities and differences in wavelet transform methods across different disciplines and also provide a comprehensive list of over 1000 references that will serve as a valuable resource for further study. Paul Addison is a Technical Fellow with Medtronic, a global medical technology company. Previously, he was co-founder and CEO of start-up company, CardioDigital Ltd (and later co-founded its US subsidiary, CardioDigital Inc) - a company concerned with the development of novel wavelet-based methods for biosignal analysis. He has a master's degree in engineering and a PhD in fluid mechanics, both from the University of Glasgow, Scotland (founded 1451). His former academic life as a tenured professor of fluids engineering included the output of a large number of technical papers, covering many aspects of engineering and bioengineering, and two textbooks: Fractals and Chaos: An Illustrated Course and the first edition of The Illustrated Wavelet Transform Handbook. At the time of publication, the author has over 100 issued US patents concerning a wide range of medical device technologies, many of these concerning the wavelet transform analysis of biosignals. He is both a Chartered Engineer and Chartered Physicist.
Written by a leading scholar in mathematics, this monograph discusses the Radon transform. This topic has wide ranging applications, in particular X-ray technology, partial differential equations, nuclear magnetic resonance scanning, and tomography.
This book helps students explore Fourier analysis and its related topics, helping them appreciate why it pervades many fields of mathematics, science, and engineering. This introductory textbook was written with mathematics, science, and engineering students with a background in calculus and basic linear algebra in mind. It can be used as a textbook for undergraduate courses in Fourier analysis or applied mathematics, which cover Fourier series, orthogonal functions, Fourier and Laplace transforms, and an introduction to complex variables. These topics are tied together by the application of the spectral analysis of analog and discrete signals, and provide an introduction to the discrete Fourier transform. A number of examples and exercises are provided including implementations of Maple, MATLAB, and Python for computing series expansions and transforms. After reading this book, students will be familiar with: * Convergence and summation of infinite series * Representation of functions by infinite series * Trigonometric and Generalized Fourier series * Legendre, Bessel, gamma, and delta functions * Complex numbers and functions * Analytic functions and integration in the complex plane * Fourier and Laplace transforms. * The relationship between analog and digital signals Dr. Russell L. Herman is a professor of Mathematics and Professor of Physics at the University of North Carolina Wilmington. A recipient of several teaching awards, he has taught introductory through graduate courses in several areas including applied mathematics, partial differential equations, mathematical physics, quantum theory, optics, cosmology, and general relativity. His research interests include topics in nonlinear wave equations, soliton perturbation theory, fluid dynamics, relativity, chaos and dynamical systems.
This book presents an extensive collection of state-of-the-art results and references in nonlinear functional analysis demonstrating how the generic approach proves to be very useful in solving many interesting and important problems. Nonlinear analysis plays an ever-increasing role in theoretical and applied mathematics, as well as in many other areas of science such as engineering, statistics, computer science, economics, finance, and medicine. The text may be used as supplementary material for graduate courses in nonlinear functional analysis, optimization theory and approximation theory, and is a treasure trove for instructors, researchers, and practitioners in mathematics and in the mathematical sciences. Each chapter is self-contained; proofs are solid and carefully communicated. "Genericity in Nonlinear Analysis" is the first book to systematically present the generic approach to nonlinear analysis. Topics presented include convergence analysis of powers and infinite products via the Baire Category Theorem, fixed point theory of both single- and set-valued mappings, best approximation problems, discrete and continuous descent methods for minimization in a general Banach space, and the structure of minimal energy configurations with rational numbers in the Aubry Mather theory."
This careful selection of participant contributions reflects the focus of the 14th International Conference on Operator Theory, held in Timisoara (Romania) in June 1992, centering on the problems of extensions of operators and their connections with interpolation of analytic functions and with the spectral theory of differential operators. Other topics concern operator inequalities, spectral theory in general spaces and operator theory in Krein spaces.
This monograph presents necessary and sufficient conditions for completeness of the linear span of eigenvectors and generalized eigenvectors of operators that admit a characteristic matrix function in a Banach space setting. Classical conditions for completeness based on the theory of entire functions are further developed for this specific class of operators. The classes of bounded operators that are investigated include trace class and Hilbert-Schmidt operators, finite rank perturbations of Volterra operators, infinite Leslie operators, discrete semi-separable operators, integral operators with semi-separable kernels, and period maps corresponding to delay differential equations. The classes of unbounded operators that are investigated appear in a natural way in the study of infinite dimensional dynamical systems such as mixed type functional differential equations, age-dependent population dynamics, and in the analysis of the Markov semigroup connected to the recently introduced zig-zag process.
This book is intended as an introduction to classical Fourier analysis, Fourier series, and the Fourier transform. The topics are developed slowly for the reader who has never seen them before, with a preference for clarity of exposition in stating and proving results. More recent developments, such as the discrete and fast Fourier transforms and wavelets, are covered in the last two chapters. The first three, short, chapters present requisite background material, and these could be read as a short course in functional analysis. The text includes many historical notes to place the material in a cultural and mathematical context; from the fact that Jean Baptiste Joseph Fourier was the nineteenth, but not the last, child in his family to the impact that Fourier series have had on the evolution of the concept of the integral.
This monograph consists of three parts: - the abstract theory of Hilbert spaces, leading up to the spectral theory of unbounded self-adjoined operators; - the application to linear Hamiltonian systems, giving the details of the spectral resolution; - further applications such as to orthogonal polynomials and Sobolev differential operators. Written in textbook style this up-to-date volume is geared towards graduate and postgraduate students and researchers interested in boundary value problems of linear differential equations or in orthogonal polynomials.
Modern local spectral theory is built on the classical spectral theorem, a fundamental result in single-operator theory and Hilbert spaces. This book provides an in-depth introduction to the natural expansion of this fascinating topic of Banach space operator theory, whose pioneers include Dunford, Bishop, Foias, and others. Assuming only modest prerequisites of its readership, it gives complete coverage of the field, including the fundamental recent work by Albrecht and Eschmeier which provides the full duality theory for Banach space operators. It is highlighted by many characterizations of decomposable operators, and of other related, important classes of operators, as well as an in-depth study of their spectral properties, including identifications of distinguished parts, and results on permanence properties of spectra with respect to several types of similarity. Also found is a thorough and quite elementary treatment of the modern single- operator duality theory; this theory has many applications, both to general issues of classification and to such celebrated problems as the invariant subspace problems. A long chapter - almost a book in itself - is devoted to the use of local spectral theory in the study of spectral properties of multipliers and convolution operators. Another one describes its connections to automatic continuity theory. Written in a careful and detailed style, it contains numerous examples, many simplified proofs of classical results, and extensive references. It concludes with a list of interesting open problems, suitable for continued research.
This volume consists of the proofs of 391 problems in Real Analysis: Theory of Measure and Integration (3rd Edition).Most of the problems in Real Analysis are not mere applications of theorems proved in the book but rather extensions of the proven theorems or related theorems. Proving these problems tests the depth of understanding of the theorems in the main text.This volume will be especially helpful to those who read Real Analysis in self-study and have no easy access to an instructor or an advisor.
This book presents a detailed and contemporary account of the classical theory of convergence of semigroups and its more recent development treating the case where the limit semigroup, in contrast to the approximating semigroups, acts merely on a subspace of the original Banach space (this is the case, for example, with singular perturbations). The author demonstrates the far-reaching applications of this theory using real examples from various branches of pure and applied mathematics, with a particular emphasis on mathematical biology. The book may serve as a useful reference, containing a significant number of new results ranging from the analysis of fish populations to signaling pathways in living cells. It comprises many short chapters, which allows readers to pick and choose those topics most relevant to them, and it contains 160 end-of-chapter exercises so that readers can test their understanding of the material as they go along.
On November 12-14, 1997 a workshop was held at the Vrije Universiteit Amsterdam on the occasion of the sixtieth birthday ofM. A. Kaashoek. The present volume contains the proceedings of this workshop. The workshop was attended by 44 participants from all over the world: partici pants came from Austria, Belgium, Canada, Germany, Ireland, Israel, Italy, The Netherlands, South Africa, Switzerland, Ukraine and the USA. The atmosphere at the workshop was very warm and friendly. There where 21 plenary lectures, and each lecture was followed by a lively discussion. The workshop was supported by: the Vakgroep Wiskunde of the Vrije Univer siteit, the department of Mathematics and Computer Science of the Vrije Univer siteit, the Stichting VU Computer Science & Mathematics Research Centre, the Thomas Stieltjes Institute for Mathematics, and the department of Economics of the Erasmus University Rotterdam. The organizers would like to take this opportunity to express their gratitude for the support. Without it the workshop would not have been so successful as it was. Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Photograph of M. A. Kaashoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Curriculum Vitae of M. A. Kaashoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv List of Publications of M. A. Kaashoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix l. Gohberg Opening Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxi H. Bart, A. C. M. Ran and H. I. Woerdeman Personal Reminiscences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxv V. Adamyan and R. Mennicken On the Separation of Certain Spectral Components of Selfadjoint Operator Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Conditions for the Separation of Spectral Components . . . . . . . 4 3. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This book provides an introduction to functional analysis for non-experts in mathematics. As such, it is distinct from most other books on the subject that are intended for mathematicians. Concepts are explained concisely with visual materials, making it accessible for those unfamiliar with graduate-level mathematics. Topics include topology, vector spaces, tensor spaces, Lebesgue integrals, and operators, to name a few. Each chapter explains, concisely, the purpose of the specific topic and the benefit of understanding it. Researchers and graduate students in physics, mechanical engineering, and information science will benefit from this view of functional analysis.
This book is not a text devoted to a pedagogical presentation of a specialized topic nor is it a monograph focused on the author's area of research. It accomplishes both these things while providing a rationale for why the reader ought to be interested in learning about fractional calculus. This book is for researchers who has heard about many of these scientifically exotic activities, but could not see how they fit into their own scientific interests, or how they could be made compatible with the way they understand science. It is also for beginners who have not yet decided where their scientific talents could be most productively applied. The book provides insight into the long-term direction of science and show how to develop the skills necessary to successfully do research in the twenty-first century.
This text is designed both for students of probability and stochastic processes, and for students of functional analysis. For the reader not familiar with functional analysis a detailed introduction to necessary notions and facts is provided. However, this is not a straight textbook in functional analysis; rather, it presents some chosen parts of functional analysis that can help understand ideas from probability and stochastic processes. The subjects range from basic Hilbert and Banach spaces, through weak topologies and Banach algebras, to the theory of semigroups of bounded linear operators. Numerous standard and non-standard examples and exercises make the book suitable as a course textbook or for self-study.
One service mathematic;., has Jcndcml the 'Et moi, .. si j'avait su comment CD revcnir, human race. It has put COIDDlOJI SCIISC back je n'y scrais point allC.' whc: rc it belongs, on the topmost shell next Jules Verne to the dusty canister labc1lcd 'dilcardcd nOD- The series is divergent; tbcre(on: we may be sense'. Eric T. Bcll able to do something with it o. Hcavisidc Mathematics is a tool for thought. A highly necessary tooll in a world where both feedbaclt and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other paJts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series." |
![]() ![]() You may like...
Semantic Web Services
Dieter Fensel, Federico Michele Facca, …
Hardcover
R1,574
Discovery Miles 15 740
IoT and Cloud Computing Advancements in…
Ram Shringar Rao, Vishal Jain, …
Hardcover
R6,405
Discovery Miles 64 050
Smart Innovation of Web of Things
Aarti Jain, Ruben Gonzalez Crespo, …
Hardcover
R4,779
Discovery Miles 47 790
Rules and Rule Markup Languages for the…
Asaf Adi, Suzette Stoutenburg, …
Paperback
R1,581
Discovery Miles 15 810
Woman Evolve - Break Up With Your Fears…
Sarah Jakes Roberts
Paperback
![]()
|