![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
The chapters on Clifford algebra and differential geometry can be used as an introduction to the topics, and are suitable for senior undergraduates and graduates. The other chapters are also accessible at this level.; This self-contained book requires very little previous knowledge of the domains covered, although the reader will benefit from knowledge of complex analysis, which gives the basic example of a Dirac operator.; The more advanced reader will appreciate the fresh approach to the theory, as well as the new results on boundary value theory.; Concise, but self-contained text at the introductory grad level. Systematic exposition.; Clusters well with other Birkhauser titles in mathematical physics.; Appendix. General Manifolds * List of Symbols * Bibliography * Index
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y se.rais point aile.' human race. It has put common sense back Jules Verne where it belongs, on be topmost shelf next to the dusty canister labelled 'disc: arded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
Many problems of the engineering sciences, physics, and mathematics lead to con volution equations and their various modifications. Convolution equations on a half-line can be studied by having recourse to the methods and results of the theory of Toeplitz and Wiener-Hopf operators. Convolutions by integrable kernels have continuous symbols and the Cauchy singular integral operator is the most prominent example of a convolution operator with a piecewise continuous symbol. The Fredholm theory of Toeplitz and Wiener-Hopf operators with continuous and piecewise continuous (matrix) symbols is well presented in a series of classical and recent monographs. Symbols beyond piecewise continuous symbols have discontinuities of oscillating type. Such symbols emerge very naturally. For example, difference operators are nothing but convolution operators with almost periodic symbols: the operator defined by (A
For the past several decades, the study of free boundary problems has been a very active subject of research occurring in a variety of applied sciences. What these problems have in common is their formulation in terms of suitably posed initial and boundary value problems for nonlinear partial differential equations. Such problems arise, for example, in the mathematical treatment of the processes of heat conduction, filtration through porous media, flows of non-Newtonian fluids, boundary layers, chemical reactions, semiconductors, and so on. The growing interest in these problems is reflected by the series of meetings held under the title "Free Boundary Problems: Theory and Applications" (Ox ford 1974, Pavia 1979, Durham 1978, Montecatini 1981, Maubuisson 1984, Irsee 1987, Montreal 1990, Toledo 1993, Zakopane 1995, Crete 1997, Chiba 1999). From the proceedings of these meetings, we can learn about the different kinds of mathematical areas that fall within the scope of free boundary problems. It is worth mentioning that the European Science Foundation supported a vast research project on free boundary problems from 1993 until 1999. The recent creation of the specialized journal Interfaces and Free Boundaries: Modeling, Analysis and Computation gives us an idea of the vitality of the subject and its present state of development. This book is a result of collaboration among the authors over the last 15 years.
In September 2000 a Summer School on "Factorization and
Integrable Systems" was held at the University of Algarve in
Portugal. The main aim of the school was to review the modern
factorization theory and its application to classical and quantum
integrable systems. The program consisted of a number of short
courses given by leading experts in the field. The lecture notes of
the courses have been specially prepared for publication in this
volume.
The aim of the book is to present the state of the art of the theory of symmetric (Hermitian) matrix Riccati equations and to contribute to the development of the theory of non-symmetric Riccati equations as well as to certain classes of coupled and generalized Riccati equations occurring in differential games and stochastic control. The volume offers a complete treatment of generalized and coupled Riccati equations. It deals with differential, discrete-time, algebraic or periodic symmetric and non-symmetric equations, with special emphasis on those equations appearing in control and systems theory. Extensions to Riccati theory allow to tackle robust control problems in a unified approach. The book is intended to make available classical and recent results to engineers and mathematicians alike. It is accessible to graduate students in mathematics, applied mathematics, control engineering, physics or economics. Researchers working in any of the fields where Riccati equations are used can find the main results with the proper mathematical background.
The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy 2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin l, 2, 3]. In 1931, Kolmogorov l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman 1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals)."
The Third International Conference on Non-associative Algebra and its Applications was held in Oviedo (Spain) from July 12th to July 17th, 1993. The two previous Conferences were held in Novosibirsk and Tashkent respectively. The OrganisingCommittee ofthe Conference was composed ofSantos Gonzalez Jimenez from Oviedo University and Alberto Elduque and Consuelo Martinez from Zaragoza University. The Scientific Committee was made up of the following members: G. Benkart, University of Wisconsin, USA C. Burgueiio, University of La Frontera, CHILE A. Galindo, University of Madrid, SPAIN S. Gonzalez, University of Oviedo, SPAIN P. Holgate, University of London, ENGLAND N. Jacobson, University of Yale, USA W. Kaup, University of Tiibingen . GER IANY E. Kleinfeld, Univesity of Iowa. USA A. J. Kostrikin, University of Moscow, RUSSIA K. McCrimmon, University of Virginia, USA A. Micali, University of Montpellier, FRANCE R. Moody, University of Alberta, CANADA H. C. Myung, University of Nort. hern Iowa. USA S. Okubo, University of Rochester, USA M. Osborn, University of Wisconsin. USA A. Perez de Vargas, University of Madrid. SPAIN H. Petersson, Fern-University, GERI\1AW{ M. Racine, University of Otawa, CANADA A. Rodriguez, University of Granada, SPAIN I. Shestakov, University of Novosibirsk, RUSSIA A. Slinko, University of Moscow. RUSSIA E. Taft, University of Rutgers, USA E. Zelmanov, University of Wisconsin. USA Unfortunately, one ofthem, Professor Philip Holgate, died some months before the Conference took place.
This work, consisting of expository articles as well as research papers, highlights recent developments in nonlinear analysis and differential equations. The material is largely an outgrowth of autumn school courses and seminars held at the University of Lisbon and has been thoroughly refereed. Several topics in ordinary differential equations and partial differential equations are the focus of key articles, including: * periodic solutions of systems with p-Laplacian type operators (J. Mawhin) * bifurcation in variational inequalities (K. Schmitt) * a geometric approach to dynamical systems in the plane via twist theorems (R. Ortega) * asymptotic behavior and periodic solutions for Navier--Stokes equations (E. Feireisl) * mechanics on Riemannian manifolds (W. Oliva) * techniques of lower and upper solutions for ODEs (C. De Coster and P. Habets) A number of related subjects dealing with properties of solutions, e.g., bifurcations, symmetries, nonlinear oscillations, are treated in other articles. This volume reflects rich and varied fields of research and will be a useful resource for mathematicians and graduate students in the ODE and PDE community.
One service mathematics has rendered the 'Et moi, "0' si j'avait su oomment en revenir. human race. It has put common sense back je n'y serais point aile: ' Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'el: re of this series."
This book is a comprehensive presentation of recent results and developments on several widely used transforms and their fast algorithms. In many cases, new options are provided for improved or new fast algorithms, some of which are not well known in the digital signal processing community. The book is suitable as a textbook for senior undergraduate and graduate courses in digital signal processing. It may also serve as an excellent self-study reference for electrical engineers and applied mathematicians whose work is related to the fields of electronics, signal processing, image and speech processing, or digital design and communication.
This monograph presents a complete and self-contained solution to the long-standing problem of giving a geometric description of state spaces of C*-algebras and von Neumann algebras, and of their Jordan algebraic analogs (JB-algebras and JBW-algebras). The material, which previously has appeared only in research papers and required substantial prerequisites for a reader's understanding, is made accessible here to a broad mathematical audience. Key features include: The properties used to describe state spaces are primarily of a geometric nature, but many can also be interpreted in terms of physics.There are numerous remarks discussing these connections * A quick introduction to Jordan algebras is given; no previous knowledge is assumed and all necessary background on the subject is given * A discussion of dynamical correspondences, which tie together Lie and Jordan structures, and relate the observables and the generators of time evolution in physics * The connection with Connes' notions of orientation and homogeneity in cones is explained * Chapters conclude with notes placing the material in historical context * Prerequisites are standard graduate courses in real and complex variables, measure theory, and functional analysis * Excellent bibliography and index In the authors' previous book, State Spaces of Operator Algebras: Basic Theory, Orientations and C*-products (ISBN 0-8176-3890-3), the role of orientations was examined and all the prerequisites on C*- algebras and von Neumann algebras, needed for this work, were provided in detail. These requisites, as well as all relevant definitions and results with reference back to State Spaces, are summarized in an appendix, further emphasizing the self-contained nature of this work.Geometry of State Spaces of Operator Algebras is intended for specialists in operator algebras, as well as graduate students and
This volume consists of the plenary lectures and invited talks in the special session on pseudo-differential operators given at the Fourth Congress of the International Society for Analysis, Applications and Computation (ISAAC) held at York University in Toronto, August 11-16, 2003. The theme is to look at pseudo-differential operators in a very general sense and to report recent advances in a broad spectrum of topics, such as pde, quantization, filters and localization operators, modulation spaces, and numerical experiments in wavelet transforms and orthonormal wavelet bases.
This volume focuses on recent developments in non-linear and hyperbolic equations. It will be a most valuable resource for researchers in applied mathematics, the theory of wavelets, and in mathematical and theoretical physics. Nine up-to-date contributions have been written on invitation by experts in the respective fields. The book is the third volume of the subseries "Advances in Partial Differential Equations."
This volume consists of articles contributed by participants at the fourth Ja pan-U.S. Joint Seminar on Operator Algebras. The seminar took place at the University of Pennsylvania from May 23 through May 27, 1988 under the auspices of the Mathematics Department. It was sponsored and supported by the Japan Society for the Promotion of Science and the National Science Foundation (USA). This sponsorship and support is acknowledged with gratitude. The seminar was devoted to discussions and lectures on results and prob lems concerning mappings of operator algebras (C*-and von Neumann alge bras). Among the articles contained in these proceedings, there are papers dealing with actions of groups on C* algebras, completely bounded mappings, index and subfactor theory, and derivations of operator algebras. The seminar was held in honor of the sixtieth birthday of Sh6ichir6 Sakai, one of the great leaders of Functional Analysis for many decades. This vol ume is dedicated to Professor Sakai, on the occasion of that birthday, with the respect and admiration of all the contributors and the participants at the seminar. H. Araki Kyoto, Japan R. Kadison Philadelphia, Pennsylvania, USA Contents Preface.... ..... ....... ........... ...... ......... ................ ...... ............... ... vii On Convex Combinations of Unitary Operators in C*-Algebras UFFE HAAGERUP ......................................................................... ."
This self-contained title demonstrates an important interplay between abstract and concrete operator theory. Key ideas are developed in a step-by-step approach, beginning with required background and historical material, and culminating in the final chapters with state-of-the-art topics. Good examples, bibliography and index make this text a valuable classroom or reference resource.
This volume is dedicated to our teacher and friend Hans Triebel. The core of the book is based on lectures given at the International Conference "Function Spaces, Differential Operators and Nonlinear Analysis" (FSDONA--01) held in Teistungen, Thuringia / Germany, from June 28 to July 4,2001, in honour of his 65th birthday. This was the fifth in a series of meetings organised under the same name by scientists from Finland (Helsinki, Oulu) , the Czech Republic (Prague, Plzen) and Germany (Jena) promoting the collaboration of specialists in East and West, working in these fields. This conference was a very special event because it celebrated Hans Triebel's extraordinary impact on mathematical analysis. The development of the mod ern theory of function spaces in the last 30 years and its application to various branches in both pure and applied mathematics is deeply influenced by his lasting contributions. In a series of books Hans Triebel has given systematic treatments of the theory of function spaces from different points of view, thus revealing its interdependence with interpolation theory, harmonic analysis, partial differential equations, nonlinear operators, entropy, spectral theory and, most recently, anal ysis on fractals. The presented collection of papers is a tribute to Hans Triebel's distinguished work. The book is subdivided into three parts: * Part I contains the two invited lectures by O.V. Besov (Moscow) and D.E. Edmunds (Sussex) having a survey character and honouring Hans Triebel's contributions.
Nonstandard Methods of Analysis is concerned with the main trends in this field; infinitesimal analysis and Boolean-valued analysis. The methods that have been developed in the last twenty-five years are explained in detail, and are collected in book form for the first time. Special attention is paid to general principles and fundamentals of formalisms for infinitesimals as well as to the technique of descents and ascents in a Boolean-valued universe. The book also includes various novel applications of nonstandard methods to ordered algebraic systems, vector lattices, subdifferentials, convex programming etc. that have been developed in recent years. For graduate students, postgraduates and all researchers interested in applying nonstandard methods in their work.
Boundary problems constitute an essential field of common mathematical interest. The intention of this volume is to highlight several analytic and geometric aspects of boundary problems with special emphasis on their interplay. It includes surveys on classical topics presented from a modern perspective as well as reports on current research. The collection splits into two related groups: - analysis and geometry of geometric operators and their index theory - elliptic theory of boundary value problems and the Shapiro-Lopatinsky condition
This book is a continuation of the book Green's Functions and Transfer Functions [35] written some ten years ago. However, there is no overlap whatsoever in the contents of the two books, and this book can be used quite independently of the previous one. This series of books represents a new kind of handbook, in which are collected data on the characteristics of systems with distributed and lumped parameters. The present volume covers some two hundred problems. Essentially, this book should be considered as a desktop handbook, intended, like [35], to give rapid "on-line" access to relevant data about problems. For each problem, the book lists all the main characteristics of the solution: standardising functions, Green's functions, transfer functions or matrices, eigenfunctions and eigenvalues with their asymptotics, roots of characteristic equations, and other data. In addition to systems described by a single differential equation, this volume also includes degenerate multiconnected systems, systems for which no Green's function or matrix exists, and other special cases which are important for applications.
In this volume the investigations of filtering problems, a start on which has been made in 55], are being continued and are devoted to theoretical problems of processing stochastic fields. The derivation of the theory of processing stochastic fields is similar to that of the theory extensively developed for stochastic processes ('stochastic fields with a one-dimensional domain'). Nevertheless there exist essential distinctions between these cases making a construction of the theory for the multi-dimensional case in such a way difficult. Among these are the absence of the notion of the 'past-future' in the case of fields, which plays a fundamental role in constructing stochastic processes theory. So attempts to introduce naturally the notion of the causality (non-anticipativity) when synthesising stable filters designed for processing fields have not met with success. Mathematically, principal distinctions between multi-dimensional and one-dimensional cases imply that the set of roots of a multi-variable polyno mial does not necessary consist of a finite number of isolated points. From the main theorem of algebra it follows that in the one-dimensional case every poly nomial of degree n has just n roots (considering their multiplicity) in the com plex plane. As a consequence, in particular, an arbitrary rational function cents(."
By a Hilbert-space operator we mean a bounded linear transformation be tween separable complex Hilbert spaces. Decompositions and models for Hilbert-space operators have been very active research topics in operator theory over the past three decades. The main motivation behind them is the in variant subspace problem: does every Hilbert-space operator have a nontrivial invariant subspace? This is perhaps the most celebrated open question in op erator theory. Its relevance is easy to explain: normal operators have invariant subspaces (witness: the Spectral Theorem), as well as operators on finite dimensional Hilbert spaces (witness: canonical Jordan form). If one agrees that each of these (i. e. the Spectral Theorem and canonical Jordan form) is important enough an achievement to dismiss any further justification, then the search for nontrivial invariant subspaces is a natural one; and a recalcitrant one at that. Subnormal operators have nontrivial invariant subspaces (extending the normal branch), as well as compact operators (extending the finite-dimensional branch), but the question remains unanswered even for equally simple (i. e. simple to define) particular classes of Hilbert-space operators (examples: hyponormal and quasinilpotent operators). Yet the invariant subspace quest has certainly not been a failure at all, even though far from being settled. The search for nontrivial invariant subspaces has undoubtly yielded a lot of nice results in operator theory, among them, those concerning decompositions and models for Hilbert-space operators. This book contains nine chapters."
In 1932 Norbert Wiener gave a series of lectures on Fourier analysis at the Univer sity of Cambridge. One result of Wiener's visit to Cambridge was his well-known text The Fourier Integral and Certain of its Applications; another was a paper by G. H. Hardy in the 1933 Journalofthe London Mathematical Society. As Hardy says in the introduction to this paper, This note originates from a remark of Prof. N. Wiener, to the effect that "a f and g [= j] cannot both be very small". ... The theo pair of transforms rems which follow give the most precise interpretation possible ofWiener's remark. Hardy's own statement of his results, lightly paraphrased, is as follows, in which f is an integrable function on the real line and f is its Fourier transform: x 2 m If f and j are both 0 (Ix1e- /2) for large x and some m, then each is a finite linear combination ofHermite functions. In particular, if f and j are x2 x 2 2 2 both O(e- / ), then f = j = Ae- / , where A is a constant; and if one x 2 2 is0(e- / ), then both are null.
Partial differential equations constitute an integral part of mathematics. They lie at the interface of areas as diverse as differential geometry, functional analysis, or the theory of Lie groups and have numerous applications in the applied sciences. A wealth of methods has been devised for their analysis. Over the past decades, operator algebras in connection with ideas and structures from geometry, topology, and theoretical physics have contributed a large variety of particularly useful tools. One typical example is the analysis on singular configurations, where elliptic equations have been studied successfully within the framework of operator algebras with symbolic structures adapted to the geometry of the underlying space. More recently, these techniques have proven to be useful also for studying parabolic and hyperbolic equations. Moreover, it turned out that many seemingly smooth, noncompact situations can be handled with the ideas from singular analysis. The three papers at the beginning of this volume highlight this aspect. They deal with parabolic equations, a topic relevant for many applications. The first article prepares the ground by presenting a calculus for pseudo differential operators with an anisotropic analytic parameter. In the subsequent paper, an algebra of Mellin operators on the infinite space-time cylinder is constructed. It is shown how timelike infinity can be treated as a conical singularity.
Harmonic Analysis in China is a collection of surveys and research papers written by distinguished Chinese mathematicians from within the People's Republic of China and expatriates. The book covers topics in analytic function spaces of several complex variables, integral transforms, harmonic analysis on classical Lie groups and manifolds, LP- estimates of the Cauchy-Riemann equations and wavelet transforms. The reader will also be able to trace the great influence of the late Professor Loo-keng Hua's ideas and methods on research into harmonic analysis on classical domains and the theory of functions of several complex variables. Western scientists will thus become acquainted with the unique features and future trends of harmonic analysis in China. Audience: Analysts, as well as engineers and physicists who use harmonic analysis. |
![]() ![]() You may like...
Orthogonal Polynomials: Current Trends…
Francisco Marcellan, Edmundo J. Huertas
Hardcover
R4,391
Discovery Miles 43 910
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,596
Discovery Miles 35 960
A Mathematical Journey to Quantum…
Salvatore Capozziello, Wladimir-Georges Boskoff
Hardcover
R2,531
Discovery Miles 25 310
Bloch-type Periodic Functions: Theory…
Yong-kui Chang, Gaston Mandata N'G'Uerekata, …
Hardcover
R2,064
Discovery Miles 20 640
|