![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This book considers methods of approximate analysis of mechanical, elec tromechanical, and other systems described by ordinary differential equa tions. Modern mathematical modeling of sophisticated mechanical systems consists of several stages: first, construction of a mechanical model, and then writing appropriate equations and their analytical or numerical ex amination. Usually, this procedure is repeated several times. Even if an initial model correctly reflects the main properties of a phenomenon, it de scribes, as a rule, many unnecessary details that make equations of motion too complicated. As experience and experimental data are accumulated, the researcher considers simpler models and simplifies the equations. Thus some terms are discarded, the order of the equations is lowered, and so on. This process requires time, experimentation, and the researcher's intu ition. A good example of such a semi-experimental way of simplifying is a gyroscopic precession equation. Formal mathematical proofs of its admis sibility appeared some several decades after its successful introduction in engineering calculations. Applied mathematics now has at its disposal many methods of approxi mate analysis of differential equations. Application of these methods could shorten and formalize the procedure of simplifying the equations and, thus, of constructing approximate motion models. Wide application of the methods into practice is hindered by the fol lowing. 1. Descriptions of various approximate methods are scattered over the mathematical literature. The researcher, as a rule, does not know what method is most suitable for a specific case. 2."
Small-radius tubular structures have attracted considerable attention in the last few years, and are frequently used in different areas such as Mathematical Physics, Spectral Geometry and Global Analysis. In this monograph, we analyse Laplace-like operators on thin tubular structures ("graph-like spaces''), and their natural limits on metric graphs. In particular, we explore norm resolvent convergence, convergence of the spectra and resonances. Since the underlying spaces in the thin radius limit change, and become singular in the limit, we develop new tools such as norm convergence of operators acting in different Hilbert spaces, an extension of the concept of boundary triples to partial differential operators, and an abstract definition of resonances via boundary triples. These tools are formulated in an abstract framework, independent of the original problem of graph-like spaces, so that they can be applied in many other situations where the spaces are perturbed.
These Proceedings form a record of the lectures presented at the interna tional Conference on Functional Analysis and Approximation held at the Ober wolfach Mathematical Research Institute, August 9-16, 1980. They include 33 of the 38 invited conference papers, as well as three papers subsequently submitted in writing. Further, there is a report devoted to new and unsolved problems, based on two special sessions of the conference. The present volume is the sixth Oberwolfach Conference in Birkhauser's ISNM series to be edited at Aachen *. It is once again devoted to more significant results obtained in the wide areas of approximation theory, harmonic analysis, functional analysis, and operator theory during the past three years. Many of the papers solicited not only outline fundamental advances in their fields but also focus on interconnections between the various research areas. The papers in the present volume have been grouped into nine chapters. Chapter I, on operator theory, deals with maps on positive semidefinite opera tors, spectral bounds of semigroup operators, evolution equations of diffusion type, the spectral theory of propagators, and generalized inverses. Chapter II, on functional analysis, contains papers on modular approximation, interpolation spaces, and unconditional bases."
Our book is devoted to the topological fixed point theory both for single-valued and multivalued mappings in locally convex spaces, including its application to boundary value problems for ordinary differential equations (inclusions) and to (multivalued) dynamical systems. It is the first monograph dealing with the topo- logical fixed point theory in non-metric spaces. Although the theoretical material was tendentially selected with respect to ap- plications, we wished to have a self-consistent text (see the scheme below). There- fore, we supplied three appendices concerning almost-periodic and derivo-periodic single-valued {multivalued) functions and (multivalued) fractals. The last topic which is quite new can be also regarded as a contribution to the fixed point theory in hyperspaces. Nevertheless, the reader is assumed to be at least partly famil- iar in some related sections with the notions like the Bochner integral, the Au- mann multivalued integral, the Arzela-Ascoli lemma, the Gronwall inequality, the Brouwer degree, the Leray-Schauder degree, the topological (covering) dimension, the elemens of homological algebra, ...Otherwise, one can use the recommended literature. Hence, in Chapter I, the topological and analytical background is built. Then, in Chapter II (and partly already in Chapter I), topological principles necessary for applications are developed, namely: the fixed point index theory (resp. the topological degree theory), the Lefschetz and the Nielsen theories both in absolute and relative cases, periodic point theorems, topological essentiality, continuation-type theorems.
'Et moi. ... Ii j'avait su CClIIIIIIaIt CD 1'CVCDir, ODe scmcc matbcmatK: s bas I'CIIdcRd be je D', semis paiDt . humaD mcc. It bas put common sease bact Jules Vcmc 'WIIcR it bdoDp, 011 be topmost sbdl JlCXt 10 be dully c: uista' t.bdlcd 'cIiIc: arded DOlI- The series is diverpt; therefore we may be sense'. Eric T. BcII able 10 do sometbiD& with it O. Heavilide Mathematics is a tool for thought. A highly ncceuary tool in a world where both feedback and non- 1inearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the l'Iison d'etre of this series."
In this monograph, the authors present a compact, thorough, systematic, and self-contained oscillation theory for linear, half-linear, superlinear, and sublinear second-order ordinary differential equations. An important feature of this monograph is the illustration of several results with examples of current interest. This book will stimulate further research into oscillation theory. This book is written at a graduate level, and is intended for university libraries, graduate students, and researchers working in the field of ordinary differential equations.
Contributions by three authors treat aspects of noncommutative geometry that are related to cyclic homology. The authors give rather complete accounts of cyclic theory from different points of view. The connections between (bivariant) K-theory and cyclic theory via generalized Chern-characters are discussed in detail. Cyclic theory is the natural setting for a variety of general abstract index theorems. A survey of such index theorems is given and the concepts and ideas involved in these theorems are explained.
The main topic of this work is the study of general complexes of differential operators between sections of vector bundles. Although the global situation and the local one are often similar in content, the invariant language permits the simplification of the notation and more clearly reveals the algebraic structure of some questions. Recent developments in the theory of complexes of differential operators are dealt with to some degree: formal theory; existence theory; global solvability problem; overdetermined boundary problems; generalized Lefschetz theory of fixed points; and qualitative theory of solutions of overdetermined systems. Considerable attention is paid to the theory of functions of several complex variables. Examples and exercises are included.
Research in the theory of trigonometric series has been carried out for over two centuries. The results obtained have greatly influenced various fields of mathematics, mechanics, and physics. Nowadays, the theory of simple trigonometric series has been developed fully enough (we will only mention the monographs by Zygmund [15, 16] and Bari [2]). The achievements in the theory of multiple trigonometric series look rather modest as compared to those in the one-dimensional case though multiple trigonometric series seem to be a natural, interesting and promising object of investigation. We should say, however, that the past few decades have seen a more intensive development of the theory in this field. To form an idea about the theory of multiple trigonometric series, the reader can refer to the surveys by Shapiro [1], Zhizhiashvili [16], [46], Golubov [1], D'yachenko [3]. As to monographs on this topic, only that ofYanushauskas [1] is known to me. This book covers several aspects of the theory of multiple trigonometric Fourier series: the existence and properties of the conjugates and Hilbert transforms of integrable functions; convergence (pointwise and in the LP-norm, p > 0) of Fourier series and their conjugates, as well as their summability by the Cesaro (C,a), a> -1, and Abel-Poisson methods; approximating properties of Cesaro means of Fourier series and their conjugates.
These two volumes contain eighteen invited papers by distinguished mathematicians in honor of the eightieth birthday of Israel M. Gelfand, one of the most remarkable mathematicians of our time. Gelfand has played a crucial role in the development of functional analysis during the last half-century. His work and his philosophy have in fact helped shape our understanding of the term 'functional analysis'. The papers in these volumes largely concern areas in which Gelfand has a very strong interest today, including geometric quantum field theory, representation theory, combinatorial structures underlying various 'continuous' constructions, quantum groups and geometry.
Reprinted as it originally appeared in the 1990s, this work is as an affordable textthat will be of interest to a range of researchers in geometric analysis and mathematical physics. Thebook covers avarietyof concepts fundamental tothe study and applications of the spin-c Dirac operator, making use of the heat kernels theory of Berline, Getzlet, and Vergne. True to the precision and clarity for which J.J. Duistermaat was so well known, the exposition is elegant and concise."
For many, modern functional analysis dates back to Banach's book [Ba32]. Here, such powerful results as the Hahn-Banach theorem, the open-mapping theorem and the uniform boundedness principle were developed in the setting of complete normed and complete metrizable spaces. When analysts realized the power and applicability of these methods, they sought to generalize the concept of a metric space and to broaden the scope of these theorems. Topological methods had been generally available since the appearance of Hausdorff's book in 1914. So it is surprising that it took so long to recognize that they could provide the means for this generalization. Indeed, the theory of topo- logical vector spaces was developed systematically only after 1950 by a great many different people, induding Bourbaki, Dieudonne, Grothendieck, Kothe, Mackey, Schwartz and Treves. The resulting body of work produced a whole new area of mathematics and generalized Banach's results. One of the great successes here was the development of the theory of distributions. While the not ion of a convergent sequence is very old, that of a convergent fil- ter dates back only to Cartan [Ca]. And while sequential convergence structures date back to Frechet [Fr], filter convergence structures are much more recent: [Ch], [Ko] and [Fi]. Initially, convergence spaces and convergence vector spaces were used by [Ko], [Wl], [Ba], [Ke64], [Ke65], [Ke74], [FB] and in particular [Bz] for topology and analysis.
This volume presents a unified approach to the mathematical theory of a wide class of non-additive set functions, the so called null-additive set functions, which also includes classical measure theory. It includes such important set functions as capacities, triangular set functions, some fuzzy measures, submeasures, decomposable measures, possibility measures, distorted probabilities, autocontinuous set functions, etc. The usefulness of the theory is demonstrated by applications in nonlinear differential and difference equations; fractal geometry in the theory of chaos; the approximation of functions in modular spaces by nonlinear singular integral operators; and in the theory of diagonal theorems as a universal method for proving general and fundamental theorems in functional analysis and measure theory. Audience: This book will be of value to researchers and postgraduate students in mathematics, as well as in such diverse fields as knowledge engineering, artificial intelligence, game theory, statistics, economics, sociology and industry.
One service mathematics has rendered the 'Et moi, ..., si j'avait Sil comment en revenir, je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences_ Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science .. :; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
In contrast to other books devoted to the averaging method and the method of integral manifolds, in the present book we study oscillation systems with many varying frequencies. In the process of evolution, systems of this type can pass from one resonance state into another. This fact considerably complicates the investigation of nonlinear oscillations. In the present monograph, a new approach based on exact uniform estimates of oscillation integrals is proposed. On the basis of this approach, numerous completely new results on the justification of the averaging method and its applications are obtained and the integral manifolds of resonance oscillation systems are studied. This book is intended for a wide circle of research workers, experts, and engineers interested in oscillation processes, as well as for students and post-graduate students specialized in ordinary differential equations.
This monograph on quantum wires and quantum devices is a companion vol ume to the author's Quantum Chaos and Mesoscopic Systems (Kluwer, Dordrecht, 1997). The goal of this work is to present to the reader the mathematical physics which has arisen in the study of these systems. The course which I have taken in this volume is to juxtapose the current work on the mathematical physics of quantum devices and the details behind the work so that the reader can gain an understanding of the physics, and where possible the open problems which re main in the development of a complete mathematical description of the devices. I have attempted to include sufficient background and references so that the reader can understand the limitations of the current methods and have direction to the original material for the research on the physics of these devices. As in the earlier volume, the monograph is a panoramic survey of the mathe matical physics of quantum wires and devices. Detailed proofs are kept to a min imum, with outlines of the principal steps and references to the primary sources as required. The survey is very broad to give a general development to a variety of problems in quantum devices, not a specialty volume."
Algebraic K-theory is a modern branch of algebra which has many important applications in fundamental areas of mathematics connected with algebra, topology, algebraic geometry, functional analysis and algebraic number theory. Methods of algebraic K-theory are actively used in algebra and related fields, achieving interesting results. This book presents the elements of algebraic K-theory, based essentially on the fundamental works of Milnor, Swan, Bass, Quillen, Karoubi, Gersten, Loday and Waldhausen. It includes all principal algebraic K-theories, connections with topological K-theory and cyclic homology, applications to the theory of monoid and polynomial algebras and in the theory of normed algebras. This volume will be of interest to graduate students and research mathematicians who want to learn more about K-theory.
The intention of this book is to explain to a mathematician having no previous knowledge in this domain, what "noncommutative probability" is. So the first decision was not to concentrate on a special topic. For different people, the starting points of such a domain may be different. In what concerns this question, different variants are not discussed. One such variant comes from Quantum Physics. The motivations in this book are mainly mathematical; more precisely, they correspond to the desire of developing a probability theory in a new set-up and obtaining results analogous to the classical ones for the newly defined mathematical objects. Also different mathematical foundations of this domain were proposed. This book concentrates on one variant, which may be described as "von Neumann algebras." This is true also for the last chapter, if one looks at its ultimate aim. In the references there are some papers corresponding to other variants; we mention Gudder, S.P. &al (1978). Segal, I.E. (1965) also discusses "basic ideas."
This book provides an overview of the theory of p-adic (and more general non-Archimedean) dynamical systems. The main part of the book is devoted to discrete dynamical systems. It presents a model of probabilistic thinking on p-adic mental space based on ultrametric diffusion. Coverage also details p-adic neural networks and their applications to cognitive sciences: learning algorithms, memory recalling.
These notes provide an introduction to the theory of spherical harmonics in an arbitrary dimension as well as an overview of classical and recent results on some aspects of the approximation of functions by spherical polynomials and numerical integration over the unit sphere. The notes are intended for graduate students in the mathematical sciences and researchers who are interested in solving problems involving partial differential and integral equations on the unit sphere, especially on the unit sphere in three-dimensional Euclidean space. Some related work for approximation on the unit disk in the plane is also briefly discussed, with results being generalizable to the unit ball in more dimensions.
There is almost no field in Mathematics which does not use Mathe matical Analysis. Computer methods in Applied Mathematics, too, are often based on statements and procedures of Mathematical Analysis. An important part of Mathematical Analysis is Complex Analysis because it has many applications in various branches of Mathematics. Since the field of Complex Analysis and its applications is a focal point in the Vietnamese research programme, the Hanoi University of Technology organized an International Conference on Finite or Infinite Dimensional Complex Analysis and Applications which took place in Hanoi from August 8 - 12, 2001. This conference th was the 9 one in a series of conferences which take place alternately in China, Japan, Korea and Vietnam each year. The first one took place th at Pusan University in Korea in 1993. The preceding 8 conference was th held in Shandong in China in August 2000. The 9 conference of the was the first one which took place above mentioned series of conferences in Vietnam. Present trends in Complex Analysis reflected in the present volume are mainly concentrated in the following four research directions: 1 Value distribution theory (including meromorphic funtions, mero morphic mappings, as well as p-adic functions over fields of finite or zero characteristic) and its applications, 2 Holomorphic functions in several (finitely or infinitely many) com plex variables, 3 Clifford Analysis, i.e., complex methods in higher-dimensional real Euclidian spaces, 4 Generalized analytic functions."
Overview For over a decade now, wavelets have been and continue to be an evolving subject of intense interest. Their allure in signal processing is due to many factors, not the least of which is that they offer an intuitively satisfying view of signals as being composed of little pieces of wa'ues. Making this concept mathematically precise has resulted in a deep and sophisticated wavelet theory that has seemingly limitless applications. This book and its supplementary hands-on electronic: component are meant to appeal to both students and professionals. Mathematics and en gineering students at the undergraduate and graduate levels will benefit greatly from the introductory treatment of the subject. Professionals and advanced students will find the overcomplete approach to signal represen tation and processing of great value. In all cases the electronic component of the proposed work greatly enhances its appeal by providing interactive numerical illustrations. A main goal is to provide a bridge between the theory and practice of wavelet-based signal processing. Intended to give the reader a balanced look at the subject, this book emphasizes both theoretical and practical issues of wavelet processing. A great deal of exposition is given in the beginning chapters and is meant to give the reader a firm understanding of the basics of the discrete and continuous wavelet transforms and their relationship. Later chapters promote the idea that overcomplete systems of wavelets are a rich and largely unexplored area that have demonstrable benefits to offer in many applications."
The first six chapters and Appendix 1 of this book appeared in Japanese in a book of the same title 15years aga (Jikkyo, Tokyo, 1980).At the request of some people who do not wish to learn Japanese, I decided to rewrite my old work in English. This time, I added a chapter on the arithmetic of quadratic maps (Chapter 7) and Appendix 2, A Short Survey of Subsequent Research on Congruent Numbers, by M. Kida. Some 20 years ago, while rifling through the pages of Selecta Heinz Hopj (Springer, 1964), I noticed a system of three quadratic forms in four variables with coefficientsin Z that yields the map of the 3-sphere to the 2-sphere with the Hopf invariant r =1 (cf. Selecta, p. 52). Immediately I feit that one aspect of classical and modern number theory, including quadratic forms (Pythagoras, Fermat, Euler, and Gauss) and space elliptic curves as intersection of quadratic surfaces (Fibonacci, Fermat, and Euler), could be considered as the number theory of quadratic maps-especially of those maps sending the n-sphere to the m-sphere, i.e., the generalized Hopf maps. Having these in mind, I deliveredseverallectures at The Johns Hopkins University (Topics in Number Theory, 1973-1974, 1975-1976, 1978-1979, and 1979-1980). These lectures necessarily contained the following three basic areas of mathematics: v vi Preface Theta Simple Functions Aigebras Elliptic Curves Number Theory Figure P.l.
The notion of a dominated or rnajorized operator rests on a simple idea that goes as far back as the Cauchy method of majorants. Loosely speaking, the idea can be expressed as follows. If an operator (equation) under study is dominated by another operator (equation), called a dominant or majorant, then the properties of the latter have a substantial influence on the properties of the former . Thus, operators or equations that have "nice" dominants must possess "nice" properties. In other words, an operator with a somehow qualified dominant must be qualified itself. Mathematical tools, putting the idea of domination into a natural and complete form, were suggested by L. V. Kantorovich in 1935-36. He introduced the funda mental notion of a vector space normed by elements of a vector lattice and that of a linear operator between such spaces which is dominated by a positive linear or monotone sublinear operator. He also applied these notions to solving functional equations. In the succeedingyears many authors studied various particular cases of lattice normed spaces and different classes of dominated operators. However, research was performed within and in the spirit of the theory of vector and normed lattices. So, it is not an exaggeration to say that dominated operators, as independent objects of investigation, were beyond the reach of specialists for half a century. As a consequence, the most important structural properties and some interesting applications of dominated operators have become available since recently."
It is well known that contemporary mathematics includes many disci plines. Among them the most important are: set theory, algebra, topology, geometry, functional analysis, probability theory, the theory of differential equations and some others. Furthermore, every mathematical discipline consists of several large sections in which specific problems are investigated and the corresponding technique is developed. For example, in general topology we have the following extensive chap ters: the theory of compact extensions of topological spaces, the theory of continuous mappings, cardinal-valued characteristics of topological spaces, the theory of set-valued (multi-valued) mappings, etc. Modern algebra is featured by the following domains: linear algebra, group theory, the theory of rings, universal algebras, lattice theory, category theory, and so on. Concerning modern probability theory, we can easily see that the clas sification of its domains is much more extensive: measure theory on ab stract spaces, Borel and cylindrical measures in infinite-dimensional vector spaces, classical limit theorems, ergodic theory, general stochastic processes, Markov processes, stochastical equations, mathematical statistics, informa tion theory and many others." |
You may like...
Cooperative Tracking Control and…
Hongjing Liang, Huaguang Zhang
Hardcover
R2,654
Discovery Miles 26 540
Fieldbus Systems and Their Applications…
D Dietrich, P. Neumann, …
Paperback
R2,203
Discovery Miles 22 030
Fault Detection, Supervision and Safety…
J. Chen, R.J. Patton
Paperback
R6,901
Discovery Miles 69 010
Predictor Feedback for Delay Systems…
Iasson Karafyllis, Miroslav Krstic
Hardcover
R3,741
Discovery Miles 37 410
Flow Control by Feedback - Stabilization…
Ole Morten Aamo, Miroslav Krstic
Hardcover
R4,808
Discovery Miles 48 080
Recent Results on Time-Delay Systems…
Emmanuel Witrant, Emilia Fridman, …
Hardcover
Discrete-Time Sliding Mode Control for…
Dipesh H. Shah, Axaykumar Mehta
Hardcover
R2,653
Discovery Miles 26 530
Communication and Control for Networked…
Chen Peng, Dong Yue, …
Hardcover
Fixed-Time Cooperative Control of…
Zongyu Zuo, Qinglong Han, …
Hardcover
R3,106
Discovery Miles 31 060
|