![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
The history of martingale theory goes back to the early fifties when Doob [57] pointed out the connection between martingales and analytic functions. On the basis of Burkholder's scientific achievements the mar tingale theory can perfectly well be applied in complex analysis and in the theory of classical Hardy spaces. This connection is the main point of Durrett's book [60]. The martingale theory can also be well applied in stochastics and mathematical finance. The theories of the one-parameter martingale and the classical Hardy spaces are discussed exhaustively in the literature (see Garsia [83], Neveu [138], Dellacherie and Meyer [54, 55], Long [124], Weisz [216] and Duren [59], Stein [193, 194], Stein and Weiss [192], Lu [125], Uchiyama [205]). The theory of more-parameter martingales and martingale Hardy spaces is investigated in Imkeller [107] and Weisz [216]. This is the first mono graph which considers the theory of more-parameter classical Hardy spaces. The methods of proofs for one and several parameters are en tirely different; in most cases the theorems stated for several parameters are much more difficult to verify. The so-called atomic decomposition method that can be applied both in the one-and more-parameter cases, was considered for martingales by the author in [216].
This book reflects a significant part of authors' research activity dur ing the last ten years. The present monograph is constructed on the results obtained by the authors through their direct cooperation or due to the authors separately or in cooperation with other mathematicians. All these results fit in a unitary scheme giving the structure of this work. The book is mainly addressed to researchers and scholars in Pure and Applied Mathematics, Mechanics, Physics and Engineering. We are greatly indebted to Viorica Venera Motreanu for the careful reading of the manuscript and helpful comments on important issues. We are also grateful to our Editors of Kluwer Academic Publishers for their professional assistance. Our deepest thanks go to our numerous scientific collaborators and friends, whose work was so important for us. D. Motreanu and V. Radulescu IX Introduction The present monograph is based on original results obtained by the authors in the last decade. This book provides a comprehensive expo sition of some modern topics in nonlinear analysis with applications to the study of several classes of boundary value problems. Our framework includes multivalued elliptic problems with discontinuities, variational inequalities, hemivariational inequalities and evolution problems. The treatment relies on variational methods, monotonicity principles, topo logical arguments and optimization techniques. Excepting Sections 1 and 3 in Chapter 1 and Sections 1 and 3 in Chapter 2, the material is new in comparison with any other book, representing research topics where the authors contributed. The outline of our work is the following."
Numbers ... , natural, rational, real, complex, p-adic .... What do you know about p-adic numbers? Probably, you have never used any p-adic (nonrational) number before now. I was in the same situation few years ago. p-adic numbers were considered as an exotic part of pure mathematics without any application. I have also used only real and complex numbers in my investigations in functional analysis and its applications to the quantum field theory and I was sure that these number fields can be a basis of every physical model generated by nature. But recently new models of the quantum physics were proposed on the basis of p-adic numbers field Qp. What are p-adic numbers, p-adic analysis, p-adic physics, p-adic probability? p-adic numbers were introduced by K. Hensel (1904) in connection with problems of the pure theory of numbers. The construction of Qp is very similar to the construction of (p is a fixed prime number, p = 2,3,5, ... ,127, ... ). Both these number fields are completions of the field of rational numbers Q. But another valuation 1 . Ip is introduced on Q instead of the usual real valuation 1 . I* We get an infinite sequence of non isomorphic completions of Q : Q2, Q3, ... , Q127, ... , IR = Qoo* These fields are the only possibilities to com plete Q according to the famous theorem of Ostrowsky.
Beginning with the works of N.N.Krasovskii [81, 82, 83], which clari fied the functional nature of systems with delays, the functional approach provides a foundation for a complete theory of differential equations with delays. Based on the functional approach, different aspects of time-delay system theory have been developed with almost the same completeness as the corresponding field of ODE (ordinary differential equations) the ory. The term functional differential equations (FDE) is used as a syn onym for systems with delays 1. The systematic presentation of these re sults and further references can be found in a number of excellent books [2, 15, 22, 32, 34, 38, 41, 45, 50, 52, 77, 78, 81, 93, 102, 128]. In this monograph we present basic facts of i-smooth calculus ~ a new differential calculus of nonlinear functionals, based on the notion of the invariant derivative, and some of its applications to the qualitative theory of functional differential equations. Utilization of the new calculus is the main distinction of this book from other books devoted to FDE theory. Two other distinguishing features of the volume are the following: - the central concept that we use is the separation of finite dimensional and infinite dimensional components in the structures of FDE and functionals; - we use the conditional representation of functional differential equa tions, which is convenient for application of methods and constructions of i~smooth calculus to FDE theory.
Mathematical modeling plays an essential role in science and engineering. Costly and time consuming experiments (if they can be done at all) are replaced by computational analysis. In industry, commercial codes are widely used. They are flexible and can be adjusted for solving specific problems of interest. Solving large problems with tens or hundreds of thousands unknowns becomes routine. The aim of analysis is to predict the behavior of the engineering and physical reality usually within the constraints of cost and time. Today, human cost and time are more important than computer cost. This trend will continue in the future. Agreement between computational results and reality is related to two factors, namely mathematical formulation of the problems and the accuracy of the numerical solution. The accuracy has to be understood in the context of the aim of the analysis. A small error in an inappropriate norm does not necessarily mean that the computed results are usable for practical purposes.
In 1909 Alfred Haar introduced into analysis a remarkable system which bears his name. The Haar system is a complete orthonormal system on [0,1] and the Fourier-Haar series for arbitrary continuous function converges uniformly to this function. This volume is devoted to the investigation of the Haar system from the operator theory point of view. The main subjects treated are: classical results on unconditional convergence of the Haar series in modern presentation; Fourier-Haar coefficients; reproducibility; martingales; monotone bases in rearrangement invariant spaces; rearrangements and multipliers with respect to the Haar system; subspaces generated by subsequences of the Haar system; the criterion of equivalence of the Haar and Franklin systems. Audience: This book will be of interest to graduate students and researchers whose work involves functional analysis and operator theory.
Algebras of bounded operators are familiar, either as C*-algebras
or as von Neumann algebras. A first generalization is the notion of
algebras of unbounded operators (O*-algebras), mostly developed by
the Leipzig school and in Japan (for a review, we refer to the
monographs of K. Schmudgen 1990] and A. Inoue 1998]). This volume
goes one step further, by considering systematically partial
*-algebras of unbounded operators (partial O*-algebras) and the
underlying algebraic structure, namely, partial *-algebras. It is
the first textbook on this topic.
In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. This self-contained book provides the first systematic presentation of Lipschitzian-type mappings in metric and Banach spaces. The first chapter covers some basic properties of metric and Banach spaces. Geometric considerations of underlying spaces play a prominent role in developing and understanding the theory. The next two chapters provide background in terms of convexity, smoothness and geometric coefficients of Banach spaces including duality mappings and metric projection mappings. This is followed by results on existence of fixed points, approximation of fixed points by iterative methods and strong convergence theorems. The final chapter explores several applicable problems arising in related fields. This book can be used as a textbook and as a reference for graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations by iteration theory, convexity and related geometric topics, and best approximation theory.
This volume contains, in part, a selection of papers presented at the sixth Australian Optimization Day Miniconference (Ballarat, 16 July 1999), and the Special Sessions on Nonlinear Dynamics and Optimization and Operations Re search - Methods and Applications, which were held in Melbourne, July 11-15 1999 as a part of the Joint Meeting of the American Mathematical Society and Australian Mathematical Society. The editors have strived to present both con tributed papers and survey style papers as a more interesting mix for readers. Some participants from the meetings mentioned above have responded to this approach by preparing survey and 'semi-survey' papers, based on presented lectures. Contributed paper, which contain new and interesting results, are also included. The fields of the presented papers are very large as demonstrated by the following selection of key words from selected papers in this volume: * optimal control, stochastic optimal control, MATLAB, economic models, implicit constraints, Bellman principle, Markov process, decision-making under uncertainty, risk aversion, dynamic programming, optimal value function. * emergent computation, complexity, traveling salesman problem, signal estimation, neural networks, time congestion, teletraffic. * gap functions, nonsmooth variational inequalities, derivative-free algo rithm, Newton's method. * auxiliary function, generalized penalty function, modified Lagrange func tion. * convexity, quasiconvexity, abstract convexity.
This volume contains the proceedings of the First Ukrainian-French Romanian School "Algebraic and Geometric Methods in Mathematical Physics," held in Kaciveli, Crimea (Ukraine) from 1 September ti1114 September 1993. The School was organized by the generous support of the Ministry of Research and Space of France (MRE), the Academy of Sciences of Ukraine (ANU), the French National Center for Scientific Research (CNRS) and the State Committee for Science and Technologies of Ukraine (GKNT). Members of the International Scientific Committee were: J.-M. Bony (paris), A. Boutet de Monvel-Berthier (Paris, co-chairman), P. Cartier (paris), V. Drinfeld (Kharkov), V. Georgescu (Paris), J.L. Lebowitz (Rutgers), V. Marchenko (Kharkov, co-chairman), V.P. Maslov (Moscow), H. Mc-Kean (New-York), Yu. Mitropolsky (Kiev), G. Nenciu (Bucharest, co-chairman), S. Novikov (Moscow), G. Papanicolau (New-York), L. Pastur (Kharkov), J.-J. Sansuc (Paris). The School consisted of plenary lectures (morning sessions) and special sessions. The plenary lectures were intended to be accessible to all participants and plenary speakers were invited by the scientific organizing committee to give reviews of their own field of interest. The special sessions were devoted to a variety of more concrete and technical questions in the respective fields. According to the program the plenary lectures included in the volume are grouped in three chapters. The fourth chapter contains short communications."
This volume will be of great appeal to both advanced students and researchers. For the former, it serves as an effective introduction to three interrelated subjects of analysis: semigroups, Markov processes and elliptic boundary value problems. For the latter, it provides a new method for the analysis of Markov processes, a powerful method clearly capable of extensive further development.
One service mathematic;., has Jcndcml the 'Et moi, .. si j'avait su comment CD revcnir, human race. It has put COIDDlOJI SCIISC back je n'y scrais point allC.' whc: rc it belongs, on the topmost shell next Jules Verne to the dusty canister labc1lcd 'dilcardcd nOD- The series is divergent; tbcre(on: we may be sense'. Eric T. Bcll able to do something with it o. Hcavisidc Mathematics is a tool for thought. A highly necessary tooll in a world where both feedbaclt and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other paJts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This graduate-level text provides a language for understanding, unifying, and implementing a wide variety of algorithms for digital signal processing - in particular, to provide rules and procedures that can simplify or even automate the task of writing code for the newest parallel and vector machines. It thus bridges the gap between digital signal processing algorithms and their implementation on a variety of computing platforms. The mathematical concept of tensor product is a recurring theme throughout the book, since these formulations highlight the data flow, which is especially important on supercomputers. Because of their importance in many applications, much of the discussion centres on algorithms related to the finite Fourier transform and to multiplicative FFT algorithms.
The aim of this volume is to make available to a large audience recent material in nonlinear functional analysis that has not been covered in book format before. Here, several topics of current and growing interest are systematically presented, such as fixed point theory, best approximation, the KKM-map principle, and results related to optimization theory, variational inequalities and complementarity problems. Illustrations of suitable applications are given, the links between results in various fields of research are highlighted, and an up-to-date bibliography is included to assist readers in further studies. Audience: This book will be of interest to graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations and expansions, convex sets and related geometric topics and game theory.
This extremely useful book is devoted to the study of scalar and asymptotic scalar derivatives and their applications to some problems in nonlinear analysis, Riemannian geometry and applied mathematics. The theoretical results are developed in particular with respect to the study of complementarity problems, monotonicity of nonlinear mappings and the non-gradient type monotonicity on Riemannian manifolds. The text is intended for researchers and graduate students working in the fields of nonlinear analysis, Riemannian geometry and applied mathematics.
The 3rd International ISAAC Congress took place from August 20 to 25, 2001 in Berlin, Germany, supported by the German Research Foundation (DFG), the city of Berlin through Investitionsbank Berlin and the Freie Universitiit Berlin. 10 ISAAC Awards were presented to young researchers in analysis its applications and computation from all over the world on the basis of financial support from Siemens, Daimler Crysler, Motorola and the Berlin Mathematical Society and book gifts from Birkhauser Verlag, Elsevier, Kluwer Academic Publisher, Springer Verlag and World Scientific. The ISAAC is grateful to all these institutions, firms and publishers for their support. Due to the support from DFG and from Investitions bank Berlin many of the 362 registrated participants could be financially supported. Unfortunately the financial supports were granted too late to reach more people from former SU as the procedere for visa is still more than cumbersome and embassies are not at all flexible. Hence, a big part of the financial support could not be used and had to be returned. The 10 plenary lectures were 1. Antoniou, 1. Prigogine (Intern. Solvay Inst. Phys. Chem., Brussels): Irreversibility and the probabilistic description of unstable evolutions beyond the Hilbert space framework (read by 1. Antoniou), N.S. Bakhvalov, M.E. Eglit (Math. Mech. Dept., Lomonosov State Univ."
Preface to the English Edition The present monograph is a revised and enlarged alternative of the author's monograph 19] which was devoted to the development of a unified approach to studying differential inclusions, whose values of the right hand sides are compact, not necessarily convex subsets of a Banach space. This approach relies on ideas and methods of modem functional analysis, general topology, the theory of multi-valued mappings and continuous selectors. Although the basic content of the previous monograph has been remained the same this monograph has been partly re-organized and the author's recent results have been added. The contents of the present book are divided into five Chapters and an Appendix. The first Chapter of the J>ook has been left without changes and deals with multi-valued differential equations generated by a differential inclusion. The second Chapter has been significantly revised and extended. Here the au thor's recent results concerning extreme continuous selectors of multi-functions with decomposable values, multi-valued selectors ofmulti-functions generated by a differential inclusion, the existence of solutions of a differential inclusion, whose right hand side has different properties of semicontinuity at different points, have been included. Some of these results made it possible to simplify schemes for proofs concerning the existence of solutions of differential inclu sions with semicontinuous right hand side a.nd to obtain new results. In this Chapter the existence of solutions of different types are considered."
Boolean algebras underlie many central constructions of analysis, logic, probability theory, and cybernetics. This book concentrates on the analytical aspects of their theory and application, which distinguishes it among other sources. Boolean Algebras in Analysis consists of two parts. The first concerns the general theory at the beginner's level. Presenting classical theorems, the book describes the topologies and uniform structures of Boolean algebras, the basics of complete Boolean algebras and their continuous homomorphisms, as well as lifting theory. The first part also includes an introductory chapter describing the elementary to the theory. The second part deals at a graduate level with the metric theory of Boolean algebras at a graduate level. The covered topics include measure algebras, their sub algebras, and groups of automorphisms. Ample room is allotted to the new classification theorems abstracting the celebrated counterparts by D.Maharam, A.H. Kolmogorov, and V.A.Rokhlin. Boolean Algebras in Analysis is an exceptional definitive source on Boolean algebra as applied to functional analysis and probability. It is intended for all who are interested in new and powerful tools for hard and soft mathematical analysis.
This unique book on the subject addresses fundamental problems and will be the standard reference for a long time to come. The authors have different scientific origins and combine these successfully, creating a text aimed at graduate students and researchers that can be used for courses and seminars.
This book is dedicated to the theory of continuous selections of multi valued mappings, a classical area of mathematics (as far as the formulation of its fundamental problems and methods of solutions are concerned) as well as 'J-n area which has been intensively developing in recent decades and has found various applications in general topology, theory of absolute retracts and infinite-dimensional manifolds, geometric topology, fixed-point theory, functional and convex analysis, game theory, mathematical economics, and other branches of modern mathematics. The fundamental results in this the ory were laid down in the mid 1950's by E. Michael. The book consists of (relatively independent) three parts - Part A: Theory, Part B: Results, and Part C: Applications. (We shall refer to these parts simply by their names). The target audience for the first part are students of mathematics (in their senior year or in their first year of graduate school) who wish to get familiar with the foundations of this theory. The goal of the second part is to give a comprehensive survey of the existing results on continuous selections of multivalued mappings. It is intended for specialists in this area as well as for those who have mastered the material of the first part of the book. In the third part we present important examples of applications of continuous selections. We have chosen examples which are sufficiently interesting and have played in some sense key role in the corresponding areas of mathematics."
In Statistical Physics one of the ambitious goals is to derive rigorously, from statistical mechanics, the thermodynamic properties of models with realistic forces. Elliott Lieb is a mathematical physicist who meets the challenge of statistical mechanics head on, taking nothing for granted and not being content until the purported consequences have been shown, by rigorous analysis, to follow from the premises. The present volume contains a selection of his contributions to the field, in particular papers dealing with general properties of Coulomb systems, phase transitions in systems with a continuous symmetry, lattice crystals, and entropy inequalities. It also includes work on classical thermodynamics, a discipline that, despite many claims to the contrary, is logically independent of statistical mechanics and deserves a rigorous and unambiguous foundation of its own. The articles in this volume have been carefully annotated by the editors.
Considering integral transformations of Volterra type, F. Riesz and B. Sz.-Nagy no ticed in 1952 that [49]: "The existence of such a variety of linear transformations, having the same spectrum concentrated at a single point, brings out the difficulties of characterization of linear transformations of general type by means of their spectra." Subsequently, spectral analysis has been developed for different classes of non selfadjoint operators [6,7,14,20,21,36,44,46,54]. It was then realized that this analysis forms a natural basis for the theory of systems interacting with the environment. The success of this theory in the single operator case inspired attempts to create a general theory in the much more complicated case of several commuting operators with finite-dimensional imaginary parts. During the past 10-15 years such a theory has been developed, yielding fruitful connections with algebraic geometry and sys tem theory. Our purpose in this book is to formulate the basic problems appearing in this theory and to present its main results. It is worth noting that, in addition to the joint spectrum, the corresponding algebraic variety and its global topological characteristics play an important role in the classification of commuting operators. For the case of a pair of operators these are: 1. The corresponding algebraic curve, and especially its genus. 2. Certain classes of divisors - or certain line bundles - on this curve.
The monograph presents some of the authors' recent and original results concerning boundedness and compactness problems in Banach function spaces both for classical operators and integral transforms defined, generally speaking, on nonhomogeneous spaces. Itfocuses onintegral operators naturally arising in boundary value problems for PDE, the spectral theory of differential operators, continuum and quantum mechanics, stochastic processes etc. The book may be considered as a systematic and detailed analysis of a large class of specific integral operators from the boundedness and compactness point of view. A characteristic feature of the monograph is that most of the statements proved here have the form of criteria. These criteria enable us, for example, togive var ious explicit examples of pairs of weighted Banach function spaces governing boundedness/compactness of a wide class of integral operators. The book has two main parts. The first part, consisting of Chapters 1-5, covers theinvestigation ofclassical operators: Hardy-type transforms, fractional integrals, potentials and maximal functions. Our main goal is to give a complete description of those Banach function spaces in which the above-mentioned operators act boundedly (com pactly). When a given operator is not bounded (compact), for example in some Lebesgue space, we look for weighted spaces where boundedness (compact ness) holds. We develop the ideas and the techniques for the derivation of appropriate conditions, in terms of weights, which are equivalent to bounded ness (compactness)."
It was with the publication of Norbert Wiener's book ''The Fourier In tegral and Certain of Its Applications" [165] in 1933 by Cambridge Univer sity Press that the mathematical community came to realize that there is an alternative approach to the study of c1assical Fourier Analysis, namely, through the theory of c1assical orthogonal polynomials. Little would he know at that time that this little idea of his would help usher in a new and exiting branch of c1assical analysis called q-Fourier Analysis. Attempts at finding q-analogs of Fourier and other related transforms were made by other authors, but it took the mathematical insight and instincts of none other then Richard Askey, the grand master of Special Functions and Orthogonal Polynomials, to see the natural connection between orthogonal polynomials and a systematic theory of q-Fourier Analysis. The paper that he wrote in 1993 with N. M. Atakishiyev and S. K Suslov, entitled "An Analog of the Fourier Transform for a q-Harmonic Oscillator" [13], was probably the first significant publication in this area. The Poisson k~rnel for the contin uous q-Hermite polynomials plays a role of the q-exponential function for the analog of the Fourier integral under considerationj see also [14] for an extension of the q-Fourier transform to the general case of Askey-Wilson polynomials. (Another important ingredient of the q-Fourier Analysis, that deserves thorough investigation, is the theory of q-Fourier series.
Scale is a concept the antiquity of which can hardly be traced. Certainly the familiar phenomena that accompany sc ale changes in optical patterns are mentioned in the earliest written records. The most obvious topological changes such as the creation or annihilation of details have been a topic to philosophers, artists and later scientists. This appears to of fascination be the case for all cultures from which extensive written records exist. For th instance, chinese 17 c artist manuals remark that "distant faces have no eyes" . The merging of details is also obvious to many authors, e. g. , Lucretius mentions the fact that distant islands look like a single one. The one topo logical event that is (to the best of my knowledge) mentioned only late (by th John Ruskin in his "Elements of drawing" of the mid 19 c) is the splitting of a blob on blurring. The change of images on a gradual increase of resolu tion has been a recurring theme in the arts (e. g. , the poetic description of the distant armada in Calderon's The Constant Prince) and this "mystery" (as Ruskin calls it) is constantly exploited by painters. |
You may like...
Hardy Operators On Euclidean Spaces And…
Shanzhen Lu, Zunwei Fu, …
Hardcover
R1,914
Discovery Miles 19 140
Linear Systems, Signal Processing and…
Daniel Alpay, Mihaela B. Vajiac
Hardcover
R4,274
Discovery Miles 42 740
Symplectic Difference Systems…
Ondrej Dosly, Julia Elyseeva, …
Hardcover
Theory of Approximate Functional…
Madjid Eshaghi Gordji, Sadegh Abbaszadeh
Hardcover
R1,379
Discovery Miles 13 790
Spectral Theory and Mathematical Physics
Marius Mantoiu, Georgi Raikov, …
Hardcover
|