![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Functional analysis
This volume consists of articles contributed by participants at the fourth Ja pan-U.S. Joint Seminar on Operator Algebras. The seminar took place at the University of Pennsylvania from May 23 through May 27, 1988 under the auspices of the Mathematics Department. It was sponsored and supported by the Japan Society for the Promotion of Science and the National Science Foundation (USA). This sponsorship and support is acknowledged with gratitude. The seminar was devoted to discussions and lectures on results and prob lems concerning mappings of operator algebras (C*-and von Neumann alge bras). Among the articles contained in these proceedings, there are papers dealing with actions of groups on C* algebras, completely bounded mappings, index and subfactor theory, and derivations of operator algebras. The seminar was held in honor of the sixtieth birthday of Sh6ichir6 Sakai, one of the great leaders of Functional Analysis for many decades. This vol ume is dedicated to Professor Sakai, on the occasion of that birthday, with the respect and admiration of all the contributors and the participants at the seminar. H. Araki Kyoto, Japan R. Kadison Philadelphia, Pennsylvania, USA Contents Preface.... ..... ....... ........... ...... ......... ................ ...... ............... ... vii On Convex Combinations of Unitary Operators in C*-Algebras UFFE HAAGERUP ......................................................................... ."
This self-contained title demonstrates an important interplay between abstract and concrete operator theory. Key ideas are developed in a step-by-step approach, beginning with required background and historical material, and culminating in the final chapters with state-of-the-art topics. Good examples, bibliography and index make this text a valuable classroom or reference resource.
This monograph presents a complete and self-contained solution to the long-standing problem of giving a geometric description of state spaces of C*-algebras and von Neumann algebras, and of their Jordan algebraic analogs (JB-algebras and JBW-algebras). The material, which previously has appeared only in research papers and required substantial prerequisites for a reader's understanding, is made accessible here to a broad mathematical audience. Key features include: The properties used to describe state spaces are primarily of a geometric nature, but many can also be interpreted in terms of physics.There are numerous remarks discussing these connections * A quick introduction to Jordan algebras is given; no previous knowledge is assumed and all necessary background on the subject is given * A discussion of dynamical correspondences, which tie together Lie and Jordan structures, and relate the observables and the generators of time evolution in physics * The connection with Connes' notions of orientation and homogeneity in cones is explained * Chapters conclude with notes placing the material in historical context * Prerequisites are standard graduate courses in real and complex variables, measure theory, and functional analysis * Excellent bibliography and index In the authors' previous book, State Spaces of Operator Algebras: Basic Theory, Orientations and C*-products (ISBN 0-8176-3890-3), the role of orientations was examined and all the prerequisites on C*- algebras and von Neumann algebras, needed for this work, were provided in detail. These requisites, as well as all relevant definitions and results with reference back to State Spaces, are summarized in an appendix, further emphasizing the self-contained nature of this work.Geometry of State Spaces of Operator Algebras is intended for specialists in operator algebras, as well as graduate students and
This volume consists of the plenary lectures and invited talks in the special session on pseudo-differential operators given at the Fourth Congress of the International Society for Analysis, Applications and Computation (ISAAC) held at York University in Toronto, August 11-16, 2003. The theme is to look at pseudo-differential operators in a very general sense and to report recent advances in a broad spectrum of topics, such as pde, quantization, filters and localization operators, modulation spaces, and numerical experiments in wavelet transforms and orthonormal wavelet bases.
This volume contains the proceedings of the Colloquium "Analysis, Manifolds and Physics" organized in honour of Yvonne Choquet-Bruhat by her friends, collaborators and former students, on June 3, 4 and 5, 1992 in Paris. Its title accurately reflects the domains to which Yvonne Choquet-Bruhat has made essential contributions. Since the rise of General Relativity, the geometry of Manifolds has become a non-trivial part of space-time physics. At the same time, Functional Analysis has been of enormous importance in Quantum Mechanics, and Quantum Field Theory. Its role becomes decisive when one considers the global behaviour of solutions of differential systems on manifolds. In this sense, General Relativity is an exceptional theory in which the solutions of a highly non-linear system of partial differential equations define by themselves the very manifold on which they are supposed to exist. This is why a solution of Einstein's equations cannot be physically interpreted before its global behaviour is known, taking into account the entire hypothetical underlying manifold. In her youth, Yvonne Choquet-Bruhat contributed in a spectacular way to this domain stretching between physics and mathematics, when she gave the proof of the existence of solutions to Einstein's equations on differential manifolds of a quite general type. The methods she created have been worked out by the French school of mathematics, principally by Jean Leray. Her first proof of the local existence and uniqueness of solutions of Einstein's equations inspired Jean Leray's theory of general hyperbolic systems.
The subject of the present book is sub differential calculus. The main source of this branch of functional analysis is the theory of extremal problems. For a start, we explicate the origin and statement of the principal problems of sub differential calculus. To this end, consider an abstract minimization problem formulated as follows: x E X, f(x) --+ inf. Here X is a vector space and f : X --+ iR is a numeric function taking possibly infinite values. In these circumstances, we are usually interested in the quantity inf f( x), the value of the problem, and in a solution or an optimum plan of the problem (i. e. , such an x that f(x) = inf f(X", if the latter exists. It is a rare occurrence to solve an arbitrary problem explicitly, i. e. to exhibit the value of the problem and one of its solutions. In this respect it becomes necessary to simplify the initial problem by reducing it to somewhat more manageable modifications formulated with the details of the structure of the objective function taken in due account. The conventional hypothesis presumed in attempts at theoretically approaching the reduction sought is as follows. Introducing an auxiliary function 1, one considers the next problem: x EX, f(x) -l(x) --+ inf. Furthermore, the new problem is assumed to be as complicated as the initial prob lem provided that 1 is a linear functional over X, i. e.
In this volume the investigations of filtering problems, a start on which has been made in 55], are being continued and are devoted to theoretical problems of processing stochastic fields. The derivation of the theory of processing stochastic fields is similar to that of the theory extensively developed for stochastic processes ('stochastic fields with a one-dimensional domain'). Nevertheless there exist essential distinctions between these cases making a construction of the theory for the multi-dimensional case in such a way difficult. Among these are the absence of the notion of the 'past-future' in the case of fields, which plays a fundamental role in constructing stochastic processes theory. So attempts to introduce naturally the notion of the causality (non-anticipativity) when synthesising stable filters designed for processing fields have not met with success. Mathematically, principal distinctions between multi-dimensional and one-dimensional cases imply that the set of roots of a multi-variable polyno mial does not necessary consist of a finite number of isolated points. From the main theorem of algebra it follows that in the one-dimensional case every poly nomial of degree n has just n roots (considering their multiplicity) in the com plex plane. As a consequence, in particular, an arbitrary rational function cents(."
Partial differential equations constitute an integral part of mathematics. They lie at the interface of areas as diverse as differential geometry, functional analysis, or the theory of Lie groups and have numerous applications in the applied sciences. A wealth of methods has been devised for their analysis. Over the past decades, operator algebras in connection with ideas and structures from geometry, topology, and theoretical physics have contributed a large variety of particularly useful tools. One typical example is the analysis on singular configurations, where elliptic equations have been studied successfully within the framework of operator algebras with symbolic structures adapted to the geometry of the underlying space. More recently, these techniques have proven to be useful also for studying parabolic and hyperbolic equations. Moreover, it turned out that many seemingly smooth, noncompact situations can be handled with the ideas from singular analysis. The three papers at the beginning of this volume highlight this aspect. They deal with parabolic equations, a topic relevant for many applications. The first article prepares the ground by presenting a calculus for pseudo differential operators with an anisotropic analytic parameter. In the subsequent paper, an algebra of Mellin operators on the infinite space-time cylinder is constructed. It is shown how timelike infinity can be treated as a conical singularity.
1 More than thirty years after its discovery by Abraham Robinson, the ideas and techniques of Nonstandard Analysis (NSA) are being applied across the whole mathematical spectrum, as well as constituting an im portant field of research in their own right. The current methods of NSA now greatly extend Robinson's original work with infinitesimals. However, while the range of applications is broad, certain fundamental themes re cur. The nonstandard framework allows many informal ideas (that could loosely be described as idealisation) to be made precise and tractable. For example, the real line can (in this framework) be treated simultaneously as both a continuum and a discrete set of points; and a similar dual ap proach can be used to link the notions infinite and finite, rough and smooth. This has provided some powerful tools for the research mathematician - for example Loeb measure spaces in stochastic analysis and its applications, and nonstandard hulls in Banach spaces. The achievements of NSA can be summarised under the headings (i) explanation - giving fresh insight or new approaches to established theories; (ii) discovery - leading to new results in many fields; (iii) invention - providing new, rich structures that are useful in modelling and representation, as well as being of interest in their own right. The aim of the present volume is to make the power and range of appli cability of NSA more widely known and available to research mathemati cians."
In Complex Potential Theory, specialists in several complex variables meet with specialists in potential theory to demonstrate the interface and interconnections between their two fields. The following topics are discussed: * Real and complex potential theory. Capacity and approximation, basic properties of plurisubharmonic functions and methods to manipulate their singularities and study theory growth, Green functions, Chebyshev-like quadratures, electrostatic fields and potentials, propagation of smallness. * Complex dynamics. Review of complex dynamics in one variable, Julia sets, Fatou sets, background in several variables, Henon maps, ergodicity use of potential theory and multifunctions. * Banach algebras and infinite dimensional holomorphy. Analytic multifunctions, spectral theory, analytic functions on a Banach space, semigroups of holomorphic isometries, Pick interpolation on uniform algebras and von Neumann inequalities for operators on a Hilbert space.
This volume brings readers up to date on different aspects of operator theory and its applications, including mathematical physics, hydrodynamics, magnetohydrodynamics, quantum mechanics, astrophysics as well as the theory of networks and systems. Of practical use to a wide readership in pure and applied mathematics, physics and engineering sciences.
During the last few years, the theory of operator algebras, particularly non-self-adjoint operator algebras, has evolved dramatically, experiencing both international growth and interfacing with other important areas. The present volume presents a survey of some of the latest developments in the field in a form that is detailed enough to be accessible to advanced graduate students as well as researchers in the field. Among the topics treated are: operator spaces, Hilbert modules, limit algebras, reflexive algebras and subspaces, relations to basis theory, C* algebraic quantum groups, endomorphisms of operator algebras, conditional expectations and projection maps, and applications, particularly to wavelet theory. The volume also features an historical paper offering a new approach to the Pythagoreans' discovery of irrational numbers.
It is probably true quite generally that in the history of human thinking the most fruitful developments frequently take place at those points where two different lines of thought meet. Hence, if they actually meet, that is, if they are at least so much related to each other that a real interaction can take place, then one may hope that new and interesting developments may follow. Werner Heisenberg This volume contains papers presented at the August 1992 NATO Advanced Study Institute on Wavelets and Their Applications. The conference was held at the beautiful Il Ciocco resort near Lucca, in the glorious Tuscany region of northern Italy. Once again we gathered at this idyllic spot to explore and extend the reciprocity between mathematics and engineering. The dynamic interaction between world-renowned scientists from the usu ally disparate communities of pure mathematicians and applied scientists, which occurred at our 1989 and 1991 ASI's, continued at this meeting. Wavelet theory and technology is in an important growth stage at which theoretical and practical results are being compared with existing methods. There have been spectacular wavelet successes and sobering comparisons with traditional ideas-but still there is a wide expanse of scientific problems to explore. Since these problems lie at the forefront of both pure mathematics and applied science, our NATO ASI was especially pertinent at this time."
solution, are provided for calculation of the responses to forces or motions exciting the structure. The new chapters in earthquake-resistant design of buildings describe the provisions of both the 1985 and 1988 versions of the UBC (Uniform Building Code) for the static lateral force method and for the dynamic lateral force method. Other revisions of the book include the presentation of the New mark beta method to obtain the time history response of dynamic systems, and the direct integration method in which the response is found assuming that the excitation function is linear for a specified time interval. A modifi cation of the dynamic condensation method, which has been developed re cently by the author for the reduction of eigenproblems, is presented in Chap ter 13. The proposed modification substantially reduces the numerical operation required in the implementation of the dynamic condensation method. The subjects in this new edition are organized in six parts. Part I deals with structures modeled as single degree-of-freedom systems. It introduces basic concepts and presents important methods for the solution of such dynamic systems. Part II introduces important concepts and methodology for multi degree-of-freedom systems through the use of structures modeled as shear buildings. Part III describes methods for the dynamic analysis of framed struc tures modeled as discrete systems with many degrees of freedom."
Analytic and Geometric Inequalities and Applications is devoted to recent advances in a variety of inequalities of Mathematical Analysis and Geo metry. Subjects dealt with in this volume include: Fractional order inequalities of Hardy type, differential and integral inequalities with initial time differ ence, multi-dimensional integral inequalities, Opial type inequalities, Gruss' inequality, Furuta inequality, Laguerre-Samuelson inequality with extensions and applications in statistics and matrix theory, distortion inequalities for ana lytic and univalent functions associated with certain fractional calculus and other linear operators, problem of infimum in the positive cone, alpha-quasi convex functions defined by convolution with incomplete beta functions, Chebyshev polynomials with integer coefficients, extremal problems for poly nomials, Bernstein's inequality and Gauss-Lucas theorem, numerical radii of some companion matrices and bounds for the zeros of polynomials, degree of convergence for a class of linear operators, open problems on eigenvalues of the Laplacian, fourth order obstacle boundary value problems, bounds on entropy measures for mixed populations as well as controlling the velocity of Brownian motion by its terminal value. A wealth of applications of the above is also included. We wish to express our appreciation to the distinguished mathematicians who contributed to this volume. Finally, it is our pleasure to acknowledge the fine cooperation and assistance provided by the staff of Kluwer Academic Publishers. June 1999 Themistocles M. Rassias Hari M."
Inequalities play a fundamental role in Functional Analysis and it is widely recognized that finding them, especially sharp estimates, is an art. E. H. Lieb has discovered a host of inequalities that are enormously useful in mathematics as well as in physics. His results are collected in this book which should become a standard source for further research. Together with the mathematical proofs the author also presents numerous applications to the calculus of variations and to many problems of quantum physics, in particular to atomic physics.
This volume proposes and explores a new definition of logarithmic mappings as invertible selectors of multifunctions induced by linear operators with domains and ranges in an algebra over a field of characteristic zero. Several important previously published results are presented. Amongst the applications of logarithmic and antilogarithmic mappings are the solution of linear and nonlinear equations in algebras of square matrices. Some results may also provide numerical algorithms for the approximation of solutions. Audience: Research mathematicians and other scientists of other disciplines whose work involves the solution of equations.
Probability has been an important part of mathematics for more than three centuries. Moreover, its importance has grown in recent decades, since the computing power now widely available has allowed probabilistic and stochastic techniques to attack problems such as speech and image processing, geophysical exploration, radar, sonar, etc. -- all of which are covered here. The book contains three exceptionally clear expositions on wavelets, frames and their applications. A further extremely active current research area, well covered here, is the relation between probability and partial differential equations, including probabilistic representations of solutions to elliptic and parabolic PDEs. New approaches, such as the PDE method for large deviation problems, and stochastic optimal control and filtering theory, are beginning to yield their secrets. Another topic dealt with is the application of probabilistic techniques to mathematical analysis. Finally, there are clear explanations of normal numbers and dynamic systems, and the influence of probability on our daily lives.
Nonstandard methods of analysis consist generally in comparative study of two interpretations of a mathematical claim or construction given as a formal symbolic expression by means of two different set-theoretic models: one, a "standard" model and the other, a "nonstandard" model. The second half of the twentieth century is a period of significant progress in these methods and their rapid development in a few directions. The first of the latter appears often under the name coined by its inventor, A. Robinson. This memorable but slightly presumptuous and defiant term, non standard analysis, often swaps places with the term Robinsonian or classical non standard analysis. The characteristic feature of Robinsonian analysis is a frequent usage of many controversial concepts appealing to the actual infinitely small and infinitely large quantities that have resided happily in natural sciences from ancient times but were strictly forbidden in modern mathematics for many decades. The present-day achievements revive the forgotten term infinitesimal analysis which reminds us expressively of the heroic bygones of Calculus. Infinitesimal analysis expands rapidly, bringing about radical reconsideration of the general conceptual system of mathematics. The principal reasons for this progress are twofold. Firstly, infinitesimal analysis provides us with a novel under standing for the method of indivisibles rooted deeply in the mathematical classics."
This book covers facts and methods for the reconstruction of a function in a real affine or projective space from data of integrals, particularly over lines, planes, and spheres. Recent results stress explicit analytic methods. Coverage includes the relations between algebraic integral geometry and partial differential equations. The first half of the book includes the ray, the spherical mean transforms in the plane or in 3-space, and inversion from incomplete data.
The present monograph consists of two parts. Before Part I, a chapter of introduction is supplemented, where an overview of the whole volume is given for reader's convenience. The former part is devoted mainly to expose linear inte gral operators introduced by the author. Several properties of the operators are established, and specializations as well as generalizations are attempted variously in order to make use them in the latter part. As compared with the former part, the latter part is de voted mainly to develop several kinds of distortions under actions of integral operators for various familiar function also absolute modulus. real part. range. length and area. an gular derivative, etc. Besides them, distortions on the class of univalent functions and its subclasses, Caratheodory class as well as distortions by a differential operator are dealt with. Related differential operators play also active roles. Many illustrative examples will be inserted in order to help understanding of the general statements. The basic materials in this monograph are taken from a series of researches performed by the author himself chiefly in the past two decades. While the themes of the papers pub lished hitherto are necessarily not arranged chronologically Preface viii and systematically, the author makes here an effort to ar range them as, orderly as possible. In attaching the import ance of the self-containedness to the book, some of unfamil iar subjects will also be inserted and, moreover, be wholly accompanied by their respective proofs, though unrelated they may be."
This volume presents the lectures given during the second French-Uzbek Colloquium on Algebra and Operator Theory which took place in Tashkent in 1997, at the Mathematical Institute of the Uzbekistan Academy of Sciences. Among the algebraic topics discussed here are deformation of Lie algebras, cohomology theory, the algebraic variety of the laws of Lie algebras, Euler equations on Lie algebras, Leibniz algebras, and real K-theory. Some contributions have a geometrical aspect, such as supermanifolds. The papers on operator theory deal with the study of certain types of operator algebras. This volume also contains a detailed introduction to the theory of quantum groups. Audience: This book is intended for graduate students specialising in algebra, differential geometry, operator theory, and theoretical physics, and for researchers in mathematics and theoretical physics.
Functional Equations andInequalities provides an extensive studyofsome of the most important topics of current interest in functional equations and inequalities. Subjects dealt with include: a Pythagorean functional equation, a functional definition oftrigonometric functions, the functional equation ofthe square root spiral, a conditional Cauchy functional equation, an iterative functional equation, the Hille-type functional equation, the polynomial-like iterative functional equation, distribution ofzeros and inequalities for zeros of algebraic polynomials, a qualitative study ofLobachevsky's complex functional equation, functional inequalities in special classesoffunctions, replicativity and function spaces, normal distributions, some difference equations, finite sums decompositions of functions, harmonic functions, set-valued quasiconvex functions, the problem of expressibility in some extensions of free groups, Aleksandrov problem and mappings which preserve distances, Ulam's problem, stability of some functional equation for generalized trigonometric functions, Hyers-Ulam stability of Hosszil's equation, superstability of a functional equation, and some demand functions in a duopoly market with advertising. It is a pleasureto express my deepest appreciationto all the mathematicians who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staffofKluwer Academic Publishers. June 2000 Themistocles M. Rassias xi ON THE STABILITY OF A FUNCTIONAL EQUATION FOR GENERALIZED TRIGONOMETRIC FUNCTIONS ROMAN BADORA lnstytut Matematyki, Uniwersytet Sli;ski, ul. Bankowa 14, PL-40-007 Katowice, Poland, e-mail: robadora@gate. math. us. edu. pl Abstract. In the present paper the stability result concerning a functional equation for generalized trigonometric functions is presented. Z.
The main goal of this book is to introduce readers to functional analysis methods, in particular, time dependent analysis, for reliability models. Understanding the concept of reliability is of key importance - schedule delays, inconvenience, customer dissatisfaction, and loss of prestige and even weakening of national security are common examples of results that are caused by unreliability of systems and individuals. The book begins with an introduction to C0-semigroup theory. Then, after a brief history of reliability theory, methods that study the well-posedness, the asymptotic behaviors of solutions and reliability indices for varied reliability models are presented. Finally, further research problems are explored. Functional Analysis Methods for Reliability Models is an excellent reference for graduate students and researchers in operations research, applied mathematics and systems engineering.
This book is devoted to an investigation of some important problems of mod ern filtering theory concerned with systems of 'any nature being able to per ceive, store and process an information and apply it for control and regulation'. (The above quotation is taken from the preface to 27]). Despite the fact that filtering theory is l'argely worked out (and its major issues such as the Wiener-Kolmogorov theory of optimal filtering of stationary processes and Kalman-Bucy recursive filtering theory have become classical) a development of the theory is far from complete. A great deal of recent activity in this area is observed, researchers are trying consistently to generalize famous results, extend them to more broad classes of processes, realize and justify more simple procedures for processing measurement data in order to obtain more efficient filtering algorithms. As to nonlinear filter ing, it remains much as fragmentary. Here much progress has been made by R. L. Stratonovich and his successors in the area of filtering of Markov processes. In this volume an effort is made to advance in certain of these issues. The monograph has evolved over many years, coming of age by stages. First it was an impressive job of gathering together the bulk of the impor tant contributions to estimation theory, an understanding and moderniza tion of some of its results and methods, with the intention of applying them to recursive filtering problems." |
![]() ![]() You may like...
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,669
Discovery Miles 36 690
Aggregation Operators for Various…
Akansha Mishra, Amit Kumar
Hardcover
R2,954
Discovery Miles 29 540
On Extended Hardy-hilbert Integral…
Bicheng Yang, Michael Th Rassias
Hardcover
R2,080
Discovery Miles 20 800
Approximation with Positive Linear…
Vijay Gupta, Gancho Tachev
Hardcover
R3,411
Discovery Miles 34 110
|