![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > General
This is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network-based clustering; kernel-based clustering; sequential data clustering; large-scale data clustering; data visualization and high-dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds.
Dieses Lehrbuch enthalt nicht nur eine fundierte Einfuhrung in das Thema Polymere und Batterien, sondern umfasst auch die Synthese und Anwendungen dieser Materialien ? damit eignet es sich hervorragend fur Studierende, Doktoranden und Fachleute, die sich gerade in dieses Gebiet einarbeiten.
An authoritative reference on all aspects of audio engineering and
technology including basic mathematics and formulae, acoustics and
psychoacoustics, microphones, loudspeakers and studio
installations.
Spintronic 2D Materials: Fundamentals and Applications provides an overview of the fundamental theory of 2D electronic systems that includes a selection of the most intensively investigated 2D materials. The book tells the story of 2D spintronics in a systematic and comprehensive way, providing the growing community of spintronics researchers with a key reference. Part One addresses the fundamental theoretical aspects of 2D materials and spin transport, while Parts Two through Four explore 2D material systems, including graphene, topological insulators, and transition metal dichalcogenides. Each section discusses properties, key issues and recent developments. In addition, the material growth method (from lab to mass production), device fabrication and characterization techniques are included throughout the book.
This book is dedicated to the application of metaheuristic optimization in trajectory generation and control issues in robotics. In this area, as in other fields of application, the algorithmic tools addressed do not require a comprehensive list of eligible solutions to effectively solve an optimization problem. This book investigates how, by reformulating the problems to be solved, it is possible to obtain results by means of metaheuristics. Through concrete examples and case studies - particularly related to robotics - this book outlines the essentials of what is needed to reformulate control laws into concrete optimization data. The resolution approaches implemented - as well as the results obtained - are described in detail, in order to give, as much as possible, an idea of metaheuristics and their performance within the context of their application to robotics.
This bookpresents material on both the analysis of the classical concepts of correlation and on the development of their robust versions, as well as discussing the related concepts of correlation matrices, partial correlation, canonical correlation, rank correlations, with the corresponding robust and non-robust estimation procedures. Every chapter contains a set of examples with simulated and real-life data. Key features: * Makes modern and robust correlation methods readily available and understandable to practitioners, specialists, and consultants working in various fields. * Focuses on implementation of methodology and application of robust correlation with R. * Introduces the main approaches in robust statistics, such as Huber s minimax approach and Hampel s approach based on influence functions. * Explores various robust estimates of the correlation coefficient including the minimax variance and bias estimates as well as the most B- and V-robust estimates. * Contains applications of robust correlation methods to exploratory data analysis, multivariate statistics, statistics of time series, and to real-life data. * Includes an accompanying website featuring computer code and datasets * Features exercises and examples throughout the text using both small and large data sets. Theoretical and applied statisticians, specialists in multivariate statistics, robust statistics, robust time series analysis, data analysis and signal processing will benefit from this book. Practitioners who use correlation based methods in their work as well as postgraduate students in statistics will also find this book useful.
New method for the characterization of electromagnetic wave dynamics Modern Characterization of Electromagnetic Systems introduces a new method of characterizing electromagnetic wave dynamics and measurements based on modern computational and digital signal processing techniques. The techniques are described in terms of both principle and practice, so readers understand what they can achieve by utilizing them. Additionally, modern signal processing algorithms are introduced in order to enhance the resolution and extract information from electromagnetic systems, including where it is not currently possible. For example, the author addresses the generation of non-minimum phase or transient response when given amplitude-only data. Presents modern computational concepts in electromagnetic system characterization Describes a solution to the generation of non-minimum phase from amplitude-only data Covers model-based parameter estimation and planar near-field to far-field transformation as well as spherical near-field to far-field transformation Modern Characterization of Electromagnetic Systems is ideal for graduate students, researchers, and professionals working in the area of antenna measurement and design. It introduces and explains a new process related to their work efforts and studies.
EEG Signal Processing and Machine Learning Explore cutting edge techniques at the forefront of electroencephalogram research and artificial intelligence from leading voices in the field The newly revised Second Edition of EEG Signal Processing and Machine Learning delivers an inclusive and thorough exploration of new techniques and outcomes in electroencephalogram (EEG) research in the areas of analysis, processing, and decision making about a variety of brain states, abnormalities, and disorders using advanced signal processing and machine learning techniques. The book content is substantially increased upon that of the first edition and, while it retains what made the first edition so popular, is composed of more than 50% new material. The distinguished authors have included new material on tensors for EEG analysis and sensor fusion, as well as new chapters on mental fatigue, sleep, seizure, neurodevelopmental diseases, BCI, and psychiatric abnormalities. In addition to including a comprehensive chapter on machine learning, machine learning applications have been added to almost all the chapters. Moreover, multimodal brain screening, such as EEG-fMRI, and brain connectivity have been included as two new chapters in this new edition. Readers will also benefit from the inclusion of: A thorough introduction to EEGs, including neural activities, action potentials, EEG generation, brain rhythms, and EEG recording and measurement An exploration of brain waves, including their generation, recording, and instrumentation, abnormal EEG patterns and the effects of ageing and mental disorders A treatment of mathematical models for normal and abnormal EEGs Discussions of the fundamentals of EEG signal processing, including statistical properties, linear and nonlinear systems, frequency domain approaches, tensor factorization, diffusion adaptive filtering, deep neural networks, and complex-valued signal processing Perfect for biomedical engineers, neuroscientists, neurophysiologists, psychiatrists, engineers, students and researchers in the above areas, the Second Edition of EEG Signal Processing and Machine Learning will also earn a place in the libraries of undergraduate and postgraduate students studying Biomedical Engineering, Neuroscience and Epileptology.
MODERN FERRITES, Volume 1 A robust exploration of the basic principles of ferrimagnetics and their applications In Modern Ferrites Volume 1: Basic Principles, Processing and Properties, renowned researcher and educator Vincent G. Harris delivers a comprehensive overview of the basic principles and ferrimagnetic phenomena of modern ferrite materials. Volume 1 explores the fundamental properties of ferrite systems, including their structure, chemistry, and magnetism; the latest in processing methodologies; and the unique properties that result. The authors explore the processing, structure, and property relationships in ferrites as nanoparticles, thin and thick films, compacts, and crystals and how these relationships are key to realizing practical device applications laying the foundation for next generation technologies. This volume also includes: Comprehensive investigation of the historical and scientific significance of ferrites upon ancient and modern societies; Neel's expanded theory of molecular field magnetism applied to ferrimagnetic oxides together with theoretic advances in density functional theory; Nonlinear excitations in ferrite systems and their potential for device technologies; Practical discussions of nanoparticle, thin, and thick film growth techniques; Ferrite-based electronic band-gap heterostructures and metamaterials. Perfect for RF engineers and magnetitians working in the field of RF electronics, radar, communications, and spintronics as well as other emerging technologies. Modern Ferrites will earn a place on the bookshelves of engineers and scientists interested in the ever-expanding technologies reliant upon ferrite materials and new processing methodologies. Modern Ferrites Volume 2 Emerging Technologies and Applications is also available (ISBN: 9781394156139).
The physics and theory underlying electron beams and microwave vacuum electronics This book focuses on a fundamental feature of vacuum electronics: the strong interaction of the physics of electron beams and vacuum microwave electronics, including millimeter-wave electronics. The author guides readers from the roots of classical vacuum electronics to the most recent achievements in the field, exploring both the physics and the theory underlying electron beams and devices of vacuum high-frequency electronics. Special attention is devoted to the physics and theory of relativistic beams and microwave devices. Readers gain a deep understanding of the topic as well as the theory and applications of specific devices. The book consists of two parts. Highlights of Part One, "Electron Beams," include: Motion of charged particles in static fields Theory of electron lenses Electron beams with self fields and problems in the formation and transport of intense electron beams Part Two, "Microwave Vacuum Electronics," features coverage of such topics as: Physics and theory of the interaction of electron beams with electromagnetic fields in quasi-stationary systems (e.g., diodes, klystrons) Systems with continuous interactions (e.g., traveling wave tubes, backward wave oscillators) Crossed-field systems (e.g., traveling wave and backward wave tubes of M-type, magnetrons, crossed-field amplifiers, MILO) Systems based on stimulated radiation of classical electron oscillators (e.g., classical electron masers, including gyrotrons, classical auto-resonance masers, free-electron lasers) The author clearly states problems and then explores appropriate models, approximations, and derivations.This book, based on the author's own research and lectures, is recommended for students, researchers, and engineers working in such fields as electron beam technology, high-frequency vacuum devices for communications, radar, controlled fusion, charged particle accelerators, materials processing, and biomedicine.
Electrical Engineering Understanding FACTS Concepts and Technology of Flexible AC Transmission Systems The Flexible AC Transmission System (FACTS)--a new technology based on power electronics--offers an opportunity to enhance controllability, stability, and power transfer capability of ac transmission systems. Pioneers in FACTS and leading world experts in power electronics applications, Narain G. Hingorani and Laszlo Gyugyi, have teamed together to bring you the definitive book on FACTS technology. Drs. Hingorani and Gyugyi present a practical approach to FACTS that will enable electrical engineers working in the power industry to understand the principles underlying this advanced system. Understanding FACTS will enhance your expertise in equipment specifications and engineering design, and will offer you an informed view of the future of power electronics in ac transmission systems. This comprehensive reference book provides in-depth discussions on:
Explore this indispensable guide covering the fundamentals of IOT and wearable devices from a leading voice in the field Fundamentals of IoT and Wearable Technology Design delivers a comprehensive exploration of the foundations of the Internet of Things (IoT) and wearable technology. Throughout the textbook, the focus is on IoT and wearable technology and their applications, including mobile health, environment, home automation, and smart living. Readers will learn about the most recent developments in the design and prototyping of these devices. This interdisciplinary work combines technical concepts from electrical, mechanical, biomedical, computer, and industrial engineering, all of which are used in the design and manufacture of IoT and wearable devices. Fundamentals of IoT and Wearable Technology Design thoroughly investigates the foundational characteristics, architectural aspects, and practical considerations, while offering readers detailed and systematic design and prototyping processes of typical use cases representing IoT and wearable technology. Later chapters discuss crucial issues, including PCB design, cloud and edge topologies, privacy and health concerns, and regulatory policies. Readers will also benefit from the inclusion of: A thorough introduction to the applications of IoT and wearable technology, including biomedicine and healthcare, fitness and wellbeing, sports, home automation, and more Discussions of wearable components and technologies, including microcontrollers and microprocessors, sensors, actuators and communication modules An exploration of the characteristics and basics of the communication protocols and technologies used in IoT and wearable devices An overview of the most important security challenges, threats, attacks and vulnerabilities faced by IoT and wearable devices along with potential solutions Perfect for research and development scientists working in the wearable technology and Internet of Things spaces, Fundamentals of IoT and Wearable Technology Design will also earn a place in the libraries of undergraduate and graduate students studying wearable technology and IoT, as well as professors and practicing technologists in the area.
Magnetic Nanoparticles Learn how to make and use magnetic nanoparticles in energy research, electrical engineering, and medicine In Magnetic Nanoparticles: Synthesis, Characterization, and Applications, a team of distinguished engineers and chemists delivers an insightful overview of magnetic materials with a focus on nano-sized particles. The book reviews the foundational concepts of magnetism before moving on to the synthesis of various magnetic nanoparticles and the functionalization of nanoparticles that enables their use in specific applications. The authors also highlight characterization techniques and the characteristics of nanostructured magnetic materials, like superconducting quantum interference device (SQUID) magnetometry. Advanced applications of magnetic nanoparticles in energy research, engineering, and medicine are also discussed, and explicit derivations and explanations in non-technical language help readers from diverse backgrounds understand the concepts contained within. Readers will also find: A thorough introduction to magnetic materials, including the theory and fundamentals of magnetization In-depth explorations of the types and characteristics of soft and hard magnetic materials Comprehensive discussions of the synthesis of nanostructured magnetic materials, including the importance of various preparation methods Expansive treatments of the surface modification of magnetic nanoparticles, including the technical resources employed in the process Perfect for materials scientists, applied physicists, and measurement and control engineers, Magnetic Nanoparticles: Synthesis, Characterization, and Applications will also earn a place in the libraries of inorganic chemists.
Master the fundamentals of planning, preparing, conducting, and presenting engineering research with this one-stop resource Engineering Research: Design, Methods, and Publication delivers a concise but comprehensive guide on how to properly conceive and execute research projects within an engineering field. Accomplished professional and author Herman Tang covers the foundational and advanced topics necessary to understand engineering research, from conceiving an idea to disseminating the results of the project. Organized in the same order as the most common sequence of activities for an engineering research project, the book is split into three parts and nine chapters. The book begins with a section focused on proposal development and literature review, followed by a description of data and methods that explores quantitative and qualitative experiments and analysis, and ends with a section on project presentation and preparation of scholarly publication. Engineering Research offers readers the opportunity to understand the methodology of the entire process of engineering research in the real word. The author focuses on executable process and principle-guided exercise as opposed to abstract theory. Readers will learn about: An overview of scientific research in engineering, including foundational and fundamental concepts like types of research and considerations of research validity How to develop research proposals and how to search and review the scientific literature How to collect data and select a research method for their quantitative or qualitative experiment and analysis How to prepare, present, and submit their research to audiences and scholarly papers and publications Perfect for advanced undergraduate and engineering students taking research methods courses, Engineering Research also belongs on the bookshelves of engineering and technical professionals who wish to brush up on their knowledge about planning, preparing, conducting, and presenting their own scientific research.
Offers a one-stop reference on the application of advanced modeling and simulation (M&S) in cyber physical systems (CPS) engineering This book provides the state-of-the-art in methods and technologies that aim to elaborate on the modeling and simulation support to cyber physical systems (CPS) engineering across many sectors such as healthcare, smart grid, or smart home. It presents a compilation of simulation-based methods, technologies, and approaches that encourage the reader to incorporate simulation technologies in their CPS engineering endeavors, supporting management of complexity challenges in such endeavors. Complexity Challenges in Cyber Physical Systems: Using Modeling and Simulation (M&S) to Support Intelligence, Adaptation and Autonomy is laid out in four sections. The first section provides an overview of complexities associated with the application of M&S to CPS Engineering. It discusses M&S in the context of autonomous systems involvement within the North Atlantic Treaty Organization (NATO). The second section provides a more detailed description of the challenges in applying modeling to the operation, risk and design of holistic CPS. The third section delves in details of simulation support to CPS engineering followed by the engineering practices to incorporate the cyber element to build resilient CPS sociotechnical systems. Finally, the fourth section presents a research agenda for handling complexity in application of M&S for CPS engineering. In addition, this text: Introduces a unifying framework for hierarchical co-simulations of cyber physical systems (CPS) Provides understanding of the cycle of macro-level behavior dynamically arising from spaciotemporal interactions between parts at the micro-level Describes a simulation platform for characterizing resilience of CPS Complexity Challenges in Cyber Physical Systems has been written for researchers, practitioners, lecturers, and graduate students in computer engineering who want to learn all about M&S support to addressing complexity in CPS and its applications in today's and tomorrow's world.
Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. Optical Properties of Materials and Their Applications, 2nd Edition starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. Covers all of the fundamentals and applications of optical properties of materials Includes theory, experimental techniques, and current and developing applications Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories Optical Properties of Materials and Their Applications, 2nd Edition is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.
ESSENTIALS OF SEMICONDUCTOR DEVICE PHYSICS An introductory semiconductor device physics textbook that is accessible to readers without a background in statistical physics I wish this book had been available when I needed to make a Semiconductor class myself a few years ago [...] A very nice aspect is that some concepts (e.g. density of states) are explained in a way that I have not seen elsewhere. These types of unconventional approaches are very valuable for a teacher. (Bjorn Maes, University of Mons, Belgium) [...] the author offers an accessible description of statistical analysis and adopts it to explain the core properties of semiconductors. [...] [He] uses interesting metaphors and analogies to exemplify some of the most difficult notions, in an innovative and engaging way. (Andrea di Falco, University of St. Andrews, UK) The subject of this book is the physics of semiconductor devices, which is an important topic in engineering and physics because it forms the background for electronic and optoelectronic devices, including solar cells. The author aims to provide students and teachers with a concise text that focuses on semiconductor devices and covers the necessary background in statistical physics. This text introduces the key prerequisite knowledge in a simple, clear, and friendly manner. It distills the key concepts of semiconductor devices down to their essentials, enabling students to master this key subject in engineering, physics, and materials. The subject matter treated in this book is directly connected to the physics of p-n junctions and solar cells, which has become a topic of intense interest in the last decade. Sample topics covered within the text include: Chemical potential, Fermi level, Fermi-Dirac distribution, drift current and diffusion current. The physics of semiconductors, band theory and intuitive derivations of the concentration of charge carriers. The p-n junction, with qualitative analysis preceding the mathematical descriptions. A derivation of the current vs voltage relation in p-n junctions (Shockley equation). Important applications of p-n junctions, including solar cells The two main types of transistors: Bipolar Junction Transistors (BJT) and Metal Oxide Semiconductor Field Effect Transistors (MOSFET) For students and instructors, it may be used as a primary textbook for an introductory semiconductor device physics course and is suitable for a course of approximately 30-50 hours. Scientists studying and researching semiconductor devices in general, and solar cells in particular, will also benefit from the clear and intuitive explanations found in this book.
The first integrated, hierarchical model of software structures This book provides the first fully integrated approach to software paradigms commonly used to develop large software applications, with coverage ranging from discrete problems to full-scale applications. The book focuses on providing a structure for understanding a hierarchy of software development paradigms and showing the relationships between the different paradigms. In order to provide a clear understanding of how these "building blocks" are used to solve today's complex software design problems, the author assesses the benefits and disadvantages of each paradigm in terms of its contribution to the design process and, where applicable, provides a taxonomy for the paradigm of substructures. Coverage includes paradigms in the areas of: Design patterns Software components Software architectures Frameworks Chapters within each paradigm include design issues related to building and using the paradigm and feature numerous real-world applications. Software Paradigms presents a practical overview of the hierarchy of paradigms, with emphasis on how they build upon each other. It is an excellent teaching tool for undergraduates and graduates, and a comprehensive and reliable reference for software engineers. Challenging questions at the end of each chapter pose research problems that will lead to more detailed investigations of the topics discussed within the chapter.
An introduction to RF propagation that spans all wireless
applications
The first text to bridge the gap between image processing and jump regression analysis Recent statistical tools developed to estimate jump curves and surfaces have broad applications, specifically in the area of image processing. Often, significant differences in technical terminologies make communication between the disciplines of image processing and jump regression analysis difficult. In easy-to-understand language, "Image Processing and Jump Regression Analysis" builds a bridge between the worlds of computer graphics and statistics by addressing both the connections and the differences between these two disciplines. The author provides a systematic analysis of the methodology behind nonparametric jump regression analysis by outlining procedures that are easy to use, simple to compute, and have proven statistical theory behind them. Key topics include: Conventional smoothing procedures Estimation of jump regression curves Estimation of jump location curves of regression surfaces Jump-preserving surface reconstruction based on local smoothing Edge detection in image processing Edge-preserving image restoration With mathematical proofs kept to a minimum, this book is uniquely accessible to a broad readership. It may be used as a primary text in nonparametric regression analysis and image processing as well as a reference guide for academicians and industry professionals focused on image processing or curve/surface estimation.
Computer Processing of Remotely-Sensed Images A thorough introduction to computer processing of remotely-sensed images, processing methods, and applications Remote sensing is a crucial form of measurement that allows for the gauging of an object or space without direct physical contact, allowing for the assessment and recording of a target under conditions which would normally render access difficult or impossible. This is done through the analysis and interpretation of electromagnetic radiation (EMR) that is reflected or emitted by an object, surveyed and recorded by an observer or instrument that is not in contact with the target. This methodology is particularly of importance in Earth observation by remote sensing, wherein airborne or satellite-borne instruments of EMR provide data on the planet's land, seas, ice, and atmosphere. This permits scientists to establish relationships between the measurements and the nature and distribution of phenomena on the Earth's surface or within the atmosphere. Still relying on a visual and conceptual approach to the material, the fifth edition of this successful textbook provides students with methods of computer processing of remotely sensed data and introduces them to environmental applications which make use of remotely-sensed images. The new edition's content has been rearranged to be more clearly focused on image processing methods and applications in remote sensing with new examples, including material on the Copernicus missions, microsatellites and recently launched SAR satellites, as well as time series analysis methods. The fifth edition of Computer Processing of Remotely-Sensed Images also contains: A cohesive presentation of the fundamental components of Earth observation remote sensing that is easy to understand and highly digestible Largely non-technical language providing insights into more advanced topics that may be too difficult for a non-mathematician to understand Illustrations and example boxes throughout the book to illustrate concepts, as well as revised examples that reflect the latest information References and links to the most up-to-date online and open access sources used by students Computer Processing of Remotely-Sensed Images is a highly insightful textbook for advanced undergraduates and postgraduate students taking courses in remote sensing and GIS in Geography, Geology, and Earth & Environmental Science departments.
Your 2-exams-in-1 study guide for the next-gen Windows Server 2022 certification In MCA Windows Server Hybrid Administrator Complete Study Guide: Exam AZ-800 and Exam AZ-801, five-time Microsoft MVP and veteran IT trainer William Panek delivers a one-stop resource to help you efficiently prepare for and pass the required exams for Microsoft’s latest Windows Server certification. In the book, you’ll learn to expertly administer Windows Server workloads and services using on-premises, hybrid, and cloud technologies. The book provides hands-on explanations of all relevant Windows Server administration tasks, from security to migration, monitoring, troubleshooting, disaster recovery, and more. You’ll also find: 100% coverage of the objectives of each of the exams required to access an in-demand and lucrative new certification The skills and tools you’ll need to succeed as a newly minted Windows Server 2022 administrator Complimentary access to Sybex’ superior interactive online learning environment and test bank, which offers hundreds of practice questions, flashcards, and a glossary A practical and indispensable resource for anyone seeking to acquire the brand-new MCA Windows Server Hybrid Administrator certification, MCA Windows Server Hybrid Administrator Complete Study Guide also deserves a place in the libraries of aspiring and practicing network and system administrators looking for an actionable guide to on-premises, hybrid, and cloud Windows Server 2022 environments.
Whether you are a network manager tasked with providing local wireless access to corporate business systems, or a home-based user, keen to optimize your data communications network, security will be the issue uppermost in your mind. Wireless LANs are becoming ubiquitous. From hotel lobbies to Starbucks coffee shops, from airports to offices, you can hardly avoid wireless LAN signals. Similarly widespread is the recognition that they are not secure. Create a communications network with the appropriate level of security for your needs! In Securing Wireless LANs Gil Held examines how wireless LANs operate, with special attention focused on the IEEE 802.11 standards. He clearly outlines the vulnerabilities in the standard and its extensions before going on to propose techniques and products you can use to overcome these limitations. Find out …
For the busy reader:
Screen shots illustrating tools and techniques and plentiful examples make this an accessible and thorough introduction to Wireless LAN security.
The advent of the Web, along with the unprecedented amount of data available in electronic format, has dramatically increased the need for tools that support the users in retrieving, understanding and mining the information and knowledge contained in such data. Concept data analysis differs from statistical data analysis in that the emphasis is on recognising and generalising the structure of symbolic data through a mathematical representation termed a concept lattice. Thanks to its simplicity, elegance and versatility, concept data analysis can effectively support various kinds of content management tasks using different or heterogeneous types of data. Provides a comprehensive treatment of the full range of techniques developed for concept data analysis covering creation, maintenance, display and manipulation of concept lattices Presents application areas such as information retrieval and mining from text and web data as well as rule mining from structured data Features two detailed case studies; exploring the content of the ACM Digital Library using an interface that integrates multiple search functionalities; and mining web retrieval results through the system CREDO, a version of which is available on-line for testing "Concept Data Analysis: Theory & Applications" is essential for researchers active in information processing and data mining as well as industry practitioners who are interested in creating a commercial product for concept data analysis or developing content management applications. Computer science students will also find it invaluable.
Introduction to SYSTEM SCIENCE with MATLAB Explores the mathematical basis for developing and evaluating continuous and discrete systems In this revised Second Edition of Introduction to System Science with MATLAB(R), the authors Gary Sandquist and Zakary Wilde provide a comprehensive exploration of essential concepts, mathematical framework, analytical resources, and productive skills required to address any rational system confidently and adequately for quantitative evaluation. This Second Edition is supplemented with new updates to the mathematical and technical materials from the first edition. A new chapter to assist readers to generalize and execute algorithms for systems development and analysis, as well as an expansion of the chapter covering specific system science applications, is included. The book provides the mathematical basis for developing and evaluating single and multiple input/output systems that are continuous or discrete. It offers the mathematical basis for the recognition, definition, quantitative modeling, analysis, and evaluation in system science. The book also provides: A comprehensive introduction to system science and the principles of causality and cause and effect operations, including their historical and scientific background A complete exploration of fundamental systems concepts and basic system equations, including definitions and classifications Practical applications and discussions of single-input systems, multiple-input systems, and system modeling and evaluation An in-depth examination of generalized system analysis methods and specific system science applications Perfect for upper-level undergraduate and graduate students in engineering, mathematics, and physical sciences, Introduction to System Science with MATLAB(R) will also earn a prominent place in libraries of researchers in the life and social sciences. |
![]() ![]() You may like...
Fuzzy Set Theory-and Its Applications
Hans-Jurgen Zimmermann
Hardcover
R5,650
Discovery Miles 56 500
Low-Energy Nuclear Reactions and New…
Jan Marwan, Steven Krivit
Hardcover
R6,201
Discovery Miles 62 010
The Fukushima Daiichi Nuclear Accident…
Atomic Energy Society of Japan
Hardcover
R4,507
Discovery Miles 45 070
Mathematics of Fuzzy Sets - Logic…
Ulrich Hohle, S. E. Rodabaugh
Hardcover
R8,709
Discovery Miles 87 090
Progress in Turbulence VIII…
Ramis Oerlu, Alessandro Talamelli, …
Hardcover
R4,398
Discovery Miles 43 980
Fuzzy If-Then Rules in Computational…
Da Ruan, Etienne E. Kerre
Hardcover
R3,067
Discovery Miles 30 670
Deterministic Nonlinear Systems - A…
Vadim S. Anishchenko, Tatyana E. Vadivasova, …
Hardcover
|