![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer hardware & operating systems > General
mental improvements during the same period. What is clearly needed in verification techniques and technology is the equivalent of a synthesis productivity breakthrough. In the second edition of Writing Testbenches, Bergeron raises the verification level of abstraction by introducing coverage-driven constrained-random transaction-level self-checking testbenches all made possible through the introduction of hardware verification languages (HVLs), such as e from Verisity and OpenVera from Synopsys. The state-of-art methodologies described in Writing Test benches will contribute greatly to the much-needed equivalent of a synthesis breakthrough in verification productivity. I not only highly recommend this book, but also I think it should be required reading by anyone involved in design and verification of today's ASIC, SoCs and systems. Harry Foster Chief Architect Verplex Systems, Inc. xviii Writing Testbenches: Functional Verification of HDL Models PREFACE If you survey hardware design groups, you will learn that between 60% and 80% of their effort is now dedicated to verification.
Wafer-scale integration has long been the dream of system designers. Instead of chopping a wafer into a few hundred or a few thousand chips, one would just connect the circuits on the entire wafer. What an enormous capability wafer-scale integration would offer: all those millions of circuits connected by high-speed on-chip wires. Unfortunately, the best known optical systems can provide suitably ?ne resolution only over an area much smaller than a whole wafer. There is no known way to pattern a whole wafer with transistors and wires small enough for modern circuits. Statistical defects present a ?rmer barrier to wafer-scale integration. Flaws appear regularly in integrated circuits; the larger the circuit area, the more probable there is a ?aw. If such ?aws were the result only of dust one might reduce their numbers, but ?aws are also the inevitable result of small scale. Each feature on a modern integrated circuit is carved out by only a small number of photons in the lithographic process. Each transistor gets its electrical properties from only a small number of impurity atoms in its tiny area. Inevitably, the quantized nature of light and the atomic nature of matter produce statistical variations in both the number of photons de?ning each tiny shape and the number of atoms providing the electrical behavior of tiny transistors. No known way exists to eliminate such statistical variation, nor may any be possible.
Principles of Verilog PLI is a 'how to do' text on Verilog Programming Language Interface. The primary focus of the book is on how to use PLI for problem solving. Both PLI 1.0 and PLI 2.0 are covered. Particular emphasis has been put on adopting a generic step-by-step approach to create a fully functional PLI code. Numerous examples were carefully selected so that a variety of problems can be solved through ther use. A separate chapter on Bus Functional Model (BFM), one of the most widely used commercial applications of PLI, is included. Principles of Verilog PLI is written for the professional engineer who uses Verilog for ASIC design and verification. Principles of Verilog PLI will be also of interest to students who are learning Verilog.
It is recognized that formal design and verification methods are an important requirement for the attainment of high quality system designs. The field has evolved enormously during the last few years, resulting in the fact that formal design and verification methods are nowadays supported by several tools, both commercial and academic. If different tools and users are to generate and read the same language then it is necessary that the same semantics is assigned by them to all constructs and elements of the language. The current IEEE standard VHDL language reference manual (LRM) tries to define VHDL as well as possible in a descriptive way, explaining the semantics in English. But rigor and clarity are very hard to maintain in a semantics defined in this way, and that has already given rise to many misconceptions and contradictory interpretations. Formal Semantics for VHDL is the first book that puts forward a cohesive set of semantics for the VHDL language. The chapters describe several semantics each based on a different underlying formalism: two of them use Petri nets as target language, and two of them higher order logic. Two use functional concepts, and finally another uses the concept of evolving algebras. Formal Semantics for VHDL is essential reading for researchers in formal methods and can be used as a text for an advanced course on the subject.
In-depth instruction and practical techniques for building with the BeagleBone embedded Linux platform Exploring BeagleBone is a hands-on guide to bringing gadgets, gizmos, and robots to life using the popular BeagleBone embedded Linux platform. Comprehensive content and deep detail provide more than just a BeagleBone instruction manual-you'll also learn the underlying engineering techniques that will allow you to create your own projects. The book begins with a foundational primer on essential skills, and then gradually moves into communication, control, and advanced applications using C/C++, allowing you to learn at your own pace. In addition, the book's companion website features instructional videos, source code, discussion forums, and more, to ensure that you have everything you need. The BeagleBone's small size, high performance, low cost, and extreme adaptability have made it a favorite development platform, and the Linux software base allows for complex yet flexible functionality. The BeagleBone has applications in smart buildings, robot control, environmental sensing, to name a few; and, expansion boards and peripherals dramatically increase the possibilities. Exploring BeagleBone provides a reader-friendly guide to the device, including a crash course in computer engineering. While following step by step, you can: Get up to speed on embedded Linux, electronics, and programming Master interfacing electronic circuits, buses and modules, with practical examples Explore the Internet-connected BeagleBone and the BeagleBone with a display Apply the BeagleBone to sensing applications, including video and sound Explore the BeagleBone's Programmable Real-Time Controllers Updated to cover the latest Beagle boards, Linux kernel versions, and Linux software releases. Includes new content on Linux kernel development, the Linux Remote Processor Framework, CAN bus, IoT frameworks, and much more! Hands-on learning helps ensure that your new skills stay with you, allowing you to design with electronics, modules, or peripherals even beyond the BeagleBone. Insightful guidance and online peer support help you transition from beginner to expert as you master the techniques presented in Exploring BeagleBone, the practical handbook for the popular computing platform.
Electronic Engineering and Computing Technology contains sixty-one revised and extended research articles written by prominent researchers participating in the conference. Topics covered include Control Engineering, Network Management, Wireless Networks, Biotechnology, Signal Processing, Computational Intelligence, Computational Statistics, Internet Computing, High Performance Computing, and industrial applications. Electronic Engineering and Computing Technology will offer the state of art of tremendous advances in electronic engineering and computing technology and also serve as an excellent reference work for researchers and graduate students working with/on electronic engineering and computing technology.
VHDL Coding Styles and Methodologies, Edition is a follow up book to the first edition of same book and to VHDL Answers to Frequently Asked Questions, first and second editions. This book was originally written as a teaching tool for a VHDL training course. The author began writing the book because he could not find a practical and easy to read book that gave in depth coverage of both, the language and coding methodologies. This edition provides practical information on reusable software methodologies for the design of bus functional models for testbenches. It also provides guidelines in the use of VHDL for synthesis. All VHDL code described in the book is on a companion CD. The CD also includes the GNU toolsuite with EMACS language sensitive editor (with VHDL, Verilog, and other language templates), and TSHELL tools that emulate a Unix shell. Model Technology graciously included a timed evaluation version of ModelSim, a recognized industry standard VHDL/Verilog compiler and simulator that supports easy viewing of the models under analysis, along with many debug features. In addition, Synplicity included a timed version of Synplify, a very efficient, user friendly and easy to use FPGA synthesis tool. Synplify provides a user both the RTL and gate level views of the synthesized model, and a performance report of the design. Optimization mechanisms are provided in the tool.
This book constitutes the refereed proceedings of the 24th International Conference on Computer Aided Verification, CAV 2012, held in Berkeley, CA, USA in July 2012. The 38 regular and 20 tool papers presented were carefully reviewed and selected from 185 submissions. The papers are organized in topical sections on automata and synthesis, inductive inference and termination, abstraction, concurrency and software verification, biology and probabilistic systems, embedded and control systems, SAT/SMT solving and SMT-based verification, timed and hybrid systems, hardware verification, security, verification and synthesis, and tool demonstration.
Digital Systems Design and Prototyping: Using Field Programmable Logic and Hardware Description Languages, Second Edition covers the subject of digital systems design using two important technologies: Field Programmable Logic Devices (FPLDs) and Hardware Description Languages (HDLs). These two technologies are combined to aid in the design, prototyping, and implementation of a whole range of digital systems from very simple ones replacing traditional glue logic to very complex ones customized as the applications require. Three HDLs are presented: VHDL and Verilog, the widely used standard languages, and the proprietary Altera HDL (AHDL). The chapters on these languages serve as tutorials and comparisons are made that show the strengths and weaknesses of each language. A large number of examples are used in the description of each language providing insight for the design and implementation of FPLDs. With the addition of the Altera UP-1 prototyping board, all examples can be tested and verified in a real FPLD. Digital Systems Design and Prototyping: Using Field Programmable Logic and Hardware Description Languages, Second Edition is designed as an advanced level textbook as well as a reference for the professional engineer.
The craft of designing mathematical models of dynamic objects offers a large number of methods to solve subproblems in the design, typically parameter estimation, order determination, validation, model reduc tion, analysis of identifiability, sensi tivi ty and accuracy. There is also a substantial amount of process identification software available. A typi cal 'identification package' consists of program modules that implement selections of solution methods, coordinated by supervising programs, communication, and presentation handling file administration, operator of results. It is to be run 'interactively', typically on a designer's 'work station' . However, it is generally not obvious how to do that. Using interactive identification packages necessarily leaves to the user to decide on quite a number of specifications, including which model structure to use, which subproblems to be solved in each particular case, and in what or der. The designer is faced with the task of setting up cases on the work station, based on apriori knowledge about the actual physical object, the experiment conditions, and the purpose of the identification. In doing so, he/she will have to cope with two basic difficulties: 1) The com puter will be unable to solve most of the tentative identification cases, so the latter will first have to be form11lated in a way the computer can handle, and, worse, 2) even in cases where the computer can actually produce a model, the latter will not necessarily be valid for the intended purpose."
The application of fuzzy technology is widely known as a technological revolution. Shortly after it appeared, its value has rapidly become appreciated. It is absolutely indispensable for introducing the latest developments not only domestically but also internationally. This book is arranged to introduce easy to understand explanations mainly centered on concrete applications. It consists of twelve chapters in total which are all independently readable and provide different approaches on various projects. The minimum of Fuzzy Theory that is needed to understand its practical applications is given in Chapter 1. Chapters 2 to 5 discuss hardware, including chips, and software tools used in constructing system. Chapters 6 to 12 cover a series of practical applications. These in clude applications for industrial processes and plants, transportation systems, which were among the first applications, and applications for consumer products such as household electrical appliances. These elements together finally produced the worldwide "Fuzzy Boom." This book can be read by a wide variety of people, from undergraduate and graduate students in universities to practical engineers and project managers working in plants. The information contained in this book is a first step to this field of interest.
A central issue in computer vision is the problem of signal to symbol transformation. In the case of texture, which is an important visual cue, this problem has hitherto received very little attention. This book presents a solution to the signal to symbol transformation problem for texture. The symbolic de- scription scheme consists of a novel taxonomy for textures, and is based on appropriate mathematical models for different kinds of texture. The taxonomy classifies textures into the broad classes of disordered, strongly ordered, weakly ordered and compositional. Disordered textures are described by statistical mea- sures, strongly ordered textures by the placement of primitives, and weakly ordered textures by an orientation field. Compositional textures are created from these three classes of texture by using certain rules of composition. The unifying theme of this book is to provide standardized symbolic descriptions that serve as a descriptive vocabulary for textures. The algorithms developed in the book have been applied to a wide variety of textured images arising in semiconductor wafer inspection, flow visualization and lumber processing. The taxonomy for texture can serve as a scheme for the identification and description of surface flaws and defects occurring in a wide range of practical applications.
System designers, computer scientists and engineers have c- tinuously invented and employed notations for modeling, speci- ing, simulating, documenting, communicating, teaching, verifying and controlling the designs of digital systems. Initially these s- tems were represented via electronic and fabrication details. F- lowing C. E. Shannon's revelation of 1948, logic diagrams and Boolean equations were used to represent digital systems in a fa- ion that de-emphasized electronic and fabrication detail while revealing logical behavior. A small number of circuits were made available to remove the abstraction of these representations when it was desirable to do so. As system complexity grew, block diagrams, timing charts, sequence charts, and other graphic and symbolic notations were found to be useful in summarizing the gross features of a system and describing how it operated. In addition, it always seemed necessary or appropriate to augment these documents with lengthy verbal descriptions in a natural language. While each notation was, and still is, a perfectly valid means of expressing a design, lack of standardization, conciseness, and f- mal definitions interfered with communication and the understa- ing between groups of people using different notations. This problem was recognized early and formal languages began to evolve in the 1950s when I. S. Reed discovered that flip-flop input equations were equivalent to a register transfer equation, and that xvi tor-like notation. Expanding these concepts Reed developed a no- tion that became known as a Register Transfer Language (RTL).
Introduction 1. 1 Historical Developments 1 1. 2 Techniques for Improving Performance 2 1. 3 An Architectural Design Example 3 2 Instructions and Addresses 2. 1 Three-address Systems - The CDC 6600 and 7600 7 2. 2 Two-address Systems - The IBM System/360 and /370 10 2. 3 One-address Systems 12 2. 4 Zero-address Systems 15 2. 5 The MU5 Instruction Set 17 2. 6 Comparing Instruction Formats 22 3 Storage Hierarcbies 3. 1 Store Interleaving 26 3. 2 The Atlas Paging System 29 3. 3 IBM Cache Systems 33 3. 4 The MU5 Name Store 37 3. 5 Data Transfers in the MU5 Storage Hierarchy 44 4 Pipelines 4. 1 The MU5 Primary Operand Unit Pipeline 49 4. 2 Arithmetic Pipelines - The TI ASC 62 4. 3 The IBM System/360 Model 91 Common Data Bus 67 5 Instruction Buffering 5. 1 The IBM System/360 Model 195 Instruction Processor 72 5. 2 Instruction Buffering in CDC Computers 77 5. 3 The MU5 Instruction Buffer Unit 82 5. 4 The CRAY-1 Instruction Buffers 87 5. 5 Position of the Control Point 89 6 Parallel Functional Units 6. 1 The CDC 6600 Central Processor 95 6. 2 The CDC 7600 Central Processor 104 6. 3 Performance 110 6 * 4 The CRA Y-1 112 7 Vector Processors 7. 1 Vector Facilities in MU5 126 7. 2 String Operations in MU5 136 7. 3 The CDC Star-100 142 7. 4 The CDC CYBER 205 146 7.
VHDL Answers to Frequently Asked Questions is a follow-up to the author's book VHDL Coding Styles and Methodologies (ISBN 0-7923-9598-0). On completion of his first book, the author continued teaching VHDL and actively participated in the comp.lang.vhdl newsgroup. During his experiences, he was enlightened by the many interesting issues and questions relating to VHDL and synthesis. These pertained to: misinterpretations in the use of the language; methods for writing error-free, and simulation-efficient, code for testbench designs and for synthesis; and general principles and guidelines for design verification. As a result of this wealth of public knowledge contributed by a large VHDL community, the author decided to act as a facilitator of this information by collecting different classes of VHDL issues, and by elaborating on these topics through complex simulatable examples. This book is intended for those who are seeking an enhanced proficiency in VHDL. This book differs from other VHDL books in many respects.This book: * emphasizes real VHDL, rather than philosophical or introductory types of information * emphasizes application of VHDL for synthesis * uses complete examples to demonstrate problems and solutions * provides a disk that includes all the book examples and other useful reference VHDL material * uses easy to remember symbology notation to emphasize language rules, good and poor methodology and coding styles * identifies obsolete VHDL constructs that must be avoided * identifies synthesizable/non-synthesizable structures * uses a question and answer format to clarify and emphasize the concerns of VHDL users.
Embedded and Networking Systems: Design, Software, and Implementation explores issues related to the design and synthesis of high-performance embedded computer systems and networks. The emphasis is on the fundamental concepts and analytical techniques that are applicable to a range of embedded and networking applications, rather than on specific embedded architectures, software development, or system-level integration. This system point of view guides designers in dealing with the trade-offs to optimize performance, power, cost, and other system-level non-functional requirements. The book brings together contributions by researchers and experts from around the world, offering a global view of the latest research and development in embedded and networking systems. Chapters highlight the evolution and trends in the field and supply a fundamental and analytical understanding of some underlying technologies. Topics include the co-design of embedded systems, code optimization for a variety of applications, power and performance trade-offs, benchmarks for evaluating embedded systems and their components, and mobile sensor network systems. The book also looks at novel applications such as mobile sensor systems and video networks. A comprehensive review of groundbreaking technology and applications, this book is a timely resource for system designers, researchers, and students interested in the possibilities of embedded and networking systems. It gives readers a better understanding of an emerging technology evolution that is helping drive telecommunications into the next decade.
Address Errors before Users Find ThemUsing a mix-and-match approach, Software Test Attacks to Break Mobile and Embedded Devices presents an attack basis for testing mobile and embedded systems. Designed for testers working in the ever-expanding world of "smart" devices driven by software, the book focuses on attack-based testing that can be used by individuals and teams. The numerous test attacks show you when a software product does not work (i.e., has bugs) and provide you with information about the software product under test. The book guides you step by step starting with the basics. It explains patterns and techniques ranging from simple mind mapping to sophisticated test labs. For traditional testers moving into the mobile and embedded area, the book bridges the gap between IT and mobile/embedded system testing. It illustrates how to apply both traditional and new approaches. For those working with mobile/embedded systems without an extensive background in testing, the book brings together testing ideas, techniques, and solutions that are immediately applicable to testing smart and mobile devices.
This book constitutes thoroughly refereed post-conference proceedings of the workshops of the 18th International Conference on Parallel Computing, Euro-Par 2012, held in Rhodes Islands, Greece, in August 2012. The papers of these 10 workshops BDMC, CGWS, HeteroPar, HiBB, OMHI, Paraphrase, PROPER, UCHPC, VHPC focus on promotion and advancement of all aspects of parallel and distributed computing.
Modeling in Analog Design highlights some of the most pressing issues in the use of modeling techniques for design of analogue circuits. Using models for circuit design gives designers the power to express directly the behaviour of parts of a circuit in addition to using other pre-defined components. There are numerous advantages to this new category of analog behavioral language. In the short term, by favouring the top-down design and raising the level of description abstraction, this approach provides greater freedom of implementation and a higher degree of technology independence. In the longer term, analog synthesis and formal optimisation are targeted. Modeling in Analog Design introduces the reader to two main language standards: VHDL-A and MHDL. It goes on to provide in-depth examples of the use of these languages to model analog devices. The final part is devoted to the very important topic of modeling the thermal and electrothermal aspects of devices. This book is essential reading for analog designers using behavioral languages and analog CAD tool development environments who have to provide the tools used by the designers.
Model based testing is the most powerful technique for testing hardware and software systems. Models in Hardware Testing describes the use of models at all the levels of hardware testing. The relevant fault models for nanoscaled CMOS technology are introduced, and their implications on fault simulation, automatic test pattern generation, fault diagnosis, memory testing and power aware testing are discussed. Models and the corresponding algorithms are considered with respect to the most recent state of the art, and they are put into a historical context by a concluding chapter on the use of physical fault models in fault tolerance.
Evolution through natural selection has been going on for a very long time. Evolution through artificial selection has been practiced by humans for a large part of our history, in the breeding of plants and livestock. Artificial evolution, where we evolve an artifact through artificial selection, has been around since electronic computers became common: about 30 years. Right from the beginning, people have suggested using artificial evolution to design electronics automatically.l Only recently, though, have suitable re configurable silicon chips become available that make it easy for artificial evolution to work with a real, physical, electronic medium: before them, ex periments had to be done entirely in software simulations. Early research concentrated on the potential applications opened-up by the raw speed ad vantage of dedicated digital hardware over software simulation on a general purpose computer. This book is an attempt to show that there is more to it than that. In fact, a radically new viewpoint is possible, with fascinating consequences. This book was written as a doctoral thesis, submitted in September 1996. As such, it was a rather daring exercise in ruthless brevity. Believing that the contribution I had to make was essentially a simple one, I resisted being drawn into peripheral discussions. In the places where I deliberately drop a subject, this implies neither that it's not interesting, nor that it's not relevant: just that it's not a crucial part of the tale I want to tell here."
J.-E. Dubois and N. Gershon This book was inspired by the Symposium on "Communications and Computer Aided Systems" held at the 14th International CODATA Conference in September 1994 in Chambery, France. It was conceived and influenced by the discussions at the symposium and most of the contributions were written following the Conference. This is the first comprehensive book, published in one volume, of issues concerning the challenges and the vital impact of the information revolution (including the Internet and the World Wide Web) on science and technology. Topics concerning the impact of the information revolution on science and technology include: * Dramatic improvement in sharing of data and information among scientists and engineers around the world * Collaborations (on-line and off-line) of scientists and engineers separated by distance . * Availability of visual tools and methods to view, understand, search, and share information contained in data * Improvements in data and information browsing, search and access and * New ways of publishing scientific and technological data and information. These changes have dramatically modified the way research and development in science and technology are being carried out. However, to facilitate this information flow nationally and internationally, the science and technology communities need to develop and put in place new standards and policies and resolve some legal issues.
For the second time the International Workshop on Responsive Com puter Systems has brought together a group of international experts from the fields of real-time computing, distributed computing, and fault tolerant systems. The two day workshop met at the splendid facilities at the KDD Research and Development Laboratories at Kamifukuoka, Saitama, in Japan on October 1 and 2, 1992. The program included a keynote address, a panel discussion and, in addition to the opening and closing session, six sessions of submitted presentations. The keynote address "The Concepts and Technologies of Depend able and Real-time Computer Systems for Shinkansen Train Control" covered the architecture of the computer control system behind a very responsive, i. e., timely and reliable, transport system-the Shinkansen Train. It has been fascinating to listen to the operational experience with a large fault-tolerant computer application. "What are the Key Paradigms in the Integration of Timeliness and Reliability?" was the topic of the lively panel discussion. Once again the pro's and con's of the time-triggered versus the event-triggered paradigm in the design of a real-time systems were discussed. The eighteen submitted presentations covered diverse topics about important issues in the design of responsive systems and a session on progress reports about leading edge research projects. Lively discussions characterized both days of the meeting. This volume contains the revised presentations that incorporate some of the discussions that occurred during the meeting."
VHDL and FPLDs in Digital Systems Design, Prototyping and Customization treats three aspects of digital systems: design, prototyping and customization, in an integrated manner using two technologies. The two technologies are VHSIC Hardware Description Language (VHDL) and Field-Programmable Logic Devices (FPLDs). VHDL is used for modeling and specification; FPLDs are used for implementation. VHDL and FPLDs in Digital Systems Design, Prototyping and Customization is divided into three parts. Part I provides an introduction to the basic features of VHDL with emphasis on modeling and design. All types of VHDL models including behavioral, structural and dataflow models are presented. Part 2 is a bridge to designing and prototyping using FPLDs as the prototyping and implementation technology. Part 3 contains a number of examples and case studies that demonstrate the effectiveness of using VHDL and FPLDs in the design of real systems. VHDL and FPLDs in Digital Systems Design, Prototyping and Customization is an invaluable comprehensive reference for the digital designer. This work includes examples and software tied to real-world FPLDs.The reader can see how the material presented applies to real-world devices and can experiment with the software. Also included are large-scale designs like the FLIX microcomputer that demonstrates the power of VHDL.
Identification of Multivariable Industrial Processes presents a unified approach to multivariable industrial process identification. It concentrates on industrial processes with reference to model applications. The areas covered are experiment design, model structure selection, parameter estimation as well as error bounds of the transfer function. This publication is intended to fill the gap between modern systems and control theory and industrial application. It is based on the results of 10 years of research and application experiences. The theories and models discussed are fully explained and illustrated with case studies. At an early stage the reader is introduced to real applications. |
![]() ![]() You may like...
Topics in Parallel and Distributed…
Sushil K. Prasad, Anshul Gupta, …
Paperback
R1,576
Discovery Miles 15 760
Formal and Adaptive Methods for…
Anatoliy Doroshenko, Olena Yatsenko
Hardcover
R5,784
Discovery Miles 57 840
The Engineering of Reliable Embedded…
Michael J. Pont
Hardcover
Cyber-Physical Systems - Digital…
Alla G. Kravets, Alexander A. Bolshakov, …
Hardcover
R4,656
Discovery Miles 46 560
Role of Single Board Computers (SBCs) in…
G. R. Kanagachidambaresan
Hardcover
R2,645
Discovery Miles 26 450
Smart Connected World - Technologies and…
Sarika Jain, San Murugesan
Hardcover
R3,896
Discovery Miles 38 960
Embedded Computing and Mechatronics with…
Kevin Lynch, Nicholas Marchuk, …
Paperback
|