![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Business & Economics > Economics > Econometrics > General
Econometrics of Health Care - which we have sometimes called 'medico metrics' - is a field in full expansion. The reasons are numerous: our knowl edge of quantitative relations in the field of health econometrics is far from being perfect, a large number of analytical difficulties - combining medical (latent factors, e. g. ) and economic facts (spatial behaviour, e. g. ) are faced by the research worker, medical and pharmaceutical techniques change rapidly, medical costs rocket more than proportionally with available resources, of being tightened. medical budgets are in the process So it is not surprising that the practice of 'hygieconometrics' - to produce a neologism - is more and more included in the programmes of econometri cians. The Applied Econometrics Association has devoted to the topic two symposia in less than three years (Lyons, February 1983; Rotterdam, December 1985), without experiencing any difficulties in getting valuable papers: on econometrics of risks and medical insurance, on the measurement of health status and of efficiency of medical techniques, on general models allowing simulation. These were the themes for the second meeting, but other aspects of medical-economic problems had presented themselves already to the analyst: medical decision making and its consequences, the behaviour of the actors - patients and physicians -, regional medicometrics and what not: some of them have been covered by the first meeting. Finally, in July 1988 took place in Lyons the Fourth International Conference on System Science in Health Care; it should not be astonishing ."
This book is about the concept of "Quality of Life". What is necessary for quality of life, and how can it be measured? The approach is a multicriterial scheme reduction which prevents as much information loss as possible when shifting from the set of partial criteria to their convolution. This book is written for researchers, analysts and graduate and postgraduate students of mathematics and economics.
Use of information is basic to economic theory in two ways. As a basis for optimization, it is central to all normative hypotheses used in eco nomics, but in decision-making situations it has stochastic and evolution ary aspects that are more dynamic and hence more fundamental. This book provides an illustrative survey of the use of information in econom ics and other decision sciences. Since this area is one of the most active fields of research in modern times, it is not possible to be definitive on all aspects of the issues involved. However questions that appear to be most important in this author's view are emphasized in many cases, without drawing any definite conclusions. It is hoped that these questions would provoke new interest for those beginning researchers in the field who are currently most active. Various classifications of information structures and their relevance for optimal decision-making in a stochastic environment are analyzed in some detail. Specifically the following areas are illustrated in its analytic aspects: 1. Stochastic optimization in linear economic models, 2. Stochastic models in dynamic economics with problems of time-inc- sistency, causality and estimation, 3. Optimal output-inventory decisions in stochastic markets, 4. Minimax policies in portfolio theory, 5. Methods of stochastic control and differential games, and 6. Adaptive information structures in decision models in economics and the theory of economic policy."
Econometric Business Cycle Research deals with econometric business cycle research (EBCR), a term introduced by the Nobel-laureate Jan Tinbergen for his econometric method of testing (economic) business cycle theories. EBCR combines economic theory and measurement in the study of business cycles, i.e., ups and downs in overall economic activity. We assess four methods of EBCR: business cycle indicators, simultaneous equations models, vector autoregressive systems and real business indicators. After a sketch of the history of the methods, we investigate whether the methods meet the goals of EBCR: the three traditional ones, description, forecasting and policy evaluation, and the one Tinbergen introduced, the implementation-testing of business cycles. The first three EBCR methods are illustrated for the Netherlands, a typical example of a small, open economy. The main conclusion of the book is that simultaneous equation models are the best vehicle for EBCR, if all its goals are to be attained simultaneously. This conclusion is based on a fairly detailed assessment of the methods and is not over-turned in the empirical illustrations. The main conclusion does not imply the end of other EBCR methods. Not all goals have to be met with a single vehicle, other methods might serve the purpose equally well - or even better. For example, if one is interested in business cycle forecasts, one might prefer a business cycle indicator or vector autoregressive system. A second conclusion is that many ideas/concepts that play an important role in current discussions about econometric methodology in general and EBCR in particular, were put forward in the 1930s and 1940s. A third conclusion is that it is difficult, if not impossible, to compare the outcomes of RBC models to outcomes of the other three methods, because RBC modellers are not interested in modelling business cycles on an observation-per-observation basis. A more general conclusion in this respect is that methods should adopt the same concept of business cycles to make them comparable.
o. Guvenen, University of Paris IX-Dauphine The aim of this publication is to present recent developments in international com modity market model building and policy analysis. This book is based mainly on the research presented at the XlIth International Conference organised by the Applied Econometric Association (AEA) which was held at the University of Zaragoza in Spain. This conference would not have been possible with out the cooperation of the Department of Econometrics of the University of Zaragoza and its Chairman A.A. Grasa. I would like to express my thanks to all contributors. I am grateful to J.H.P. Paelinck, J.P. Ancot, A.J. Hughes Hallett and H. Serbat for their constructive contributions and comments concerning the structure of the book. vii INTRODUCTION o. Guvenen The challenge of increasing complexity and global interdependence at the world level necessitates new modelling approaches and policy analysis at the macroeconomic level, and for commodities. The evaluation of economic modelling.follows the evolution of international economic phenomena. In that interdependent context there is a growing need for forecasting and simulation tools in the analysis of international primary com modity markets."
This book reviews recent approaches for partial identification of average treatment effects with instrumental variables in the program evaluation literature, including Manski's bounds, bounds based on threshold crossing models, and bounds based on the Local Average Treatment Effect (LATE) framework. It compares these bounds across different sets of assumptions, surveys relevant methods to assess the validity of these assumptions, and discusses estimation and inference methods for the bounds. The book also reviews some empirical applications employing bounds in the program evaluation literature. It aims to bridge the gap between the econometric theory on which the different bounds are based and their empirical application to program evaluation.
The book is an in-depth review of the theory and empirics of the demand for money and other financial assets. The different theoretical approaches to the portfolio choice problem are described, together with an up-to-date survey of the results obtained from empirical studies of asset choice behaviour. Both single-equation studies and the more complete multi-asset portfolio models, are analysed.
When Harold Fried, et al. published The Measurement of Productive Efficiency: Techniques and Applications with OUP in 1993, the book received a great deal of professional interest for its accessible treatment of the rapidly growing field of efficiency and productivity analysis. The first several chapters, providing the background, motivation, and theoretical foundations for this topic, were the most widely recognized. In this tight, direct update, these same editors have compiled over ten years of the most recent research in this changing field, and expanded on those seminal chapters. The book will guide readers from the basic models to the latest, cutting-edge extensions, and will be reinforced by references to classic and current theoretical and applied research. It is intended for professors and graduate students in a variety of fields, ranging from economics to agricultural economics, business administration, management science, and public administration. It should also appeal to public servants and policy makers engaged in business performance analysis or regulation.
First published in 1987, this is an analysis of the contemporary breakdown of political and economic systems within the Eastern European communist countries. Rather than passively following the developments of this crisis, the author seeks instead to identify the reasons for failure and to examine alternative policies that offer solutions to these problems. Jan Winiecki's work offers a comparative study of the Soviet-type economies of the East with the market economies of the West; providing a cause and effect analysis of each model, with possible scenarios for their future prospects.
The present book is a collection of panel data papers, both theoretical and applied. Theoretical topics include methodology papers on panel data probit models, treatment models, error component models with an ARMA process on the time specific effects, asymptotic tests for poolability and their bootstrapped versions, confidence intervals for a doubly heteroskedastic stochastic production frontiers, estimation of semiparametric dynamic panel data models and a review of survey attrition and nonresponse in the European Community Household Panel. Applications include as different topics as e.g. the impact of uncertainty on UK investment, a Tobin-q investment model using US firm data, cost efficiency of Spanish banks, immigrant integration in Canada, the dynamics of individual health in the UK, the relation between inflation and growth among OECD and APEC countries, technical efficiency of cereal farms in England, and employment effects of education for disabled workers in Norway.
This book is intended for second year graduate students and professionals who have an interest in linear and nonlinear simultaneous equations mod els. It basically traces the evolution of econometrics beyond the general linear model (GLM), beginning with the general linear structural econo metric model (GLSEM) and ending with the generalized method of mo ments (GMM). Thus, it covers the identification problem (Chapter 3), maximum likelihood (ML) methods (Chapters 3 and 4), two and three stage least squares (2SLS, 3SLS) (Chapters 1 and 2), the general nonlinear model (GNLM) (Chapter 5), the general nonlinear simultaneous equations model (GNLSEM), the special ca'3e of GNLSEM with additive errors, non linear two and three stage least squares (NL2SLS, NL3SLS), the GMM for GNLSEIVl, and finally ends with a brief overview of causality and re lated issues, (Chapter 6). There is no discussion either of limited dependent variables, or of unit root related topics. It also contains a number of significant innovations. In a departure from the custom of the literature, identification and consistency for nonlinear models is handled through the Kullback information apparatus, as well as the theory of minimum contrast (MC) estimators. In fact, nearly all estimation problems handled in this volume can be approached through the theory of MC estimators. The power of this approach is demonstrated in Chapter 5, where the entire set of identification requirements for the GLSEM, in an ML context, is obtained almost effortlessly, through the apparatus of Kullback information."
It is unlikely that any frontier of economics/econometrics is being pushed faster, further than that of computational techniques. The computer has become a tool for performing as well as an environment in which to perform economics and econometrics, taking over where theory bogs down, allowing at least approximate answers to questions that defy closed mathematical or analytical solutions. Tasks may now be attempted that were hitherto beyond human potential, and all the forces available can now be marshalled efficiently, leading to the achievement of desired goals. Computational Techniques for Econometrics and Economic Analysis is a collection of recent studies which exemplify all these elements, demonstrating the power that the computer brings to the economic analysts. The book is divided into four parts: 1 -- the computer and econometric methods; 2 -- the computer and economic analysis; 3 -- computational techniques for econometrics; and 4 -- the computer and econometric studies.
This volume is dedicated to the memory and the achievements of Professor Sir Clive Granger, economics Nobel laureate and one of the great econometricians and applied economists of the twentieth and early twenty-first centuries. It comprises contributions from leading econometricians and applied economists who knew Sir Clive and interacted with him over the years, and who wished to pay tribute to him as both a great economist and econometrician, and as a great man. This book was originally published as a special issue of Applied Financial Economics.
This volume focuses on the analysis and measurement of business cycles in Brazil, Russia, India, China and South Africa (BRICS). Divided into five parts, it begins with an overview of the main concepts and problems involved in monitoring and forecasting business cycles. Then it highlights the role of BRICS in the global economy and explores the interrelatedness of business cycles within BRICS. In turn, part two provides studies on the historical development of business cycles in the individual BRICS countries and describes the driving forces behind those cycles. Parts three and four present national business tendency surveys and composite cyclical indices for real-time monitoring and forecasting of various BRICS economies, while the final part discusses how the lessons learned in the BRICS countries can be used for the analysis of business cycles and their socio-political consequences in other emerging countries.
A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research.
This book consists of four parts: I. Labour demand and supply, II. Productivity slowdown and innovative activity, III. Disequilibrium and business cycle analysis, and IV. Time series analysis of output and employment. It presents a fine selection of articles in the growing field ofthe empirical analysis of output and employment fluctuations with applications in a micro-econometric or a time-series framework. The time-series literature recently has emphasized the careful testing for stationarity and nonlinearity in the data, and the importance of cointegration theory. An essential part of the papers make use of parametric and non-parametric methods developed in this literature and mostly connect their results to the hysteresis discussion about the existence of fragile equilibria. A second set of macro approaches use the disequilibrium framework that has found so much interest in Europe in recent years. The other papers use newly developed methods for microdata, especially qualitative data or limited dependent variables to study microeconomic models of behaviour that explain labour market and output decisions.
In the modern world of gigantic datasets, which scientists and practioners of all fields of learning are confronted with, the availability of robust, scalable and easy-to-use methods for pattern recognition and data mining are of paramount importance, so as to be able to cope with the avalanche of data in a meaningful way. This concise and pedagogical research monograph introduces the reader to two specific aspects - clustering techniques and dimensionality reduction - in the context of complex network analysis. The first chapter provides a short introduction into relevant graph theoretical notation; chapter 2 then reviews and compares a number of cluster definitions from different fields of science. In the subsequent chapters, a first-principles approach to graph clustering in complex networks is developed using methods from statistical physics and the reader will learn, that even today, this field significantly contributes to the understanding and resolution of the related statistical inference issues. Finally, an application chapter examines real-world networks from the economic realm to show how the network clustering process can be used to deal with large, sparse datasets where conventional analyses fail.
This book discusses the need to carefully and prudently apply various regression techniques in order to obtain the full benefits. It also describes some of the techniques developed and used by the authors, presenting their innovative ideas regarding the formulation and estimation of regression decomposition models, hidden Markov chain, and the contribution of regressors in the set-theoretic approach, calorie poverty rate, and aggregate growth rate. Each of these techniques has applications that address a number of unanswered questions; for example, regression decomposition techniques reveal intra-household gender inequalities of consumption, intra-household allocation of resources and adult equivalent scales, while Hidden Markov chain models can forecast the results of future elections. Most of these procedures are presented using real-world data, and the techniques can be applied in other similar situations. Showing how difficult questions can be answered by developing simple models with simple interpretation of parameters, the book is a valuable resource for students and researchers in the field of model building.
Astranger in academia cannot but be impressed by the apparent uniformity and precision of the methodology currently applied to the measurement of economic relationships. In scores of journal articles and other studies, a theoretical argument is typically presented to justify the position that a certain variable is related to certain other, possibly causal, variables. Regression or a related method is applied to a set of observations on these variables, and the conclusion often emerges that the causa, l variables are indeed "significant" at a certain "level," thereby lending support to the theoretical argument-an argument presumably formulated independently of the observations. A variable may be declared significant (and few doubt that this does not mean important) at, say, the 0. 05 level, but not the 0. 01. The effects of the variables are calculated to many significant digits, and are often accompanied by intervals and forecasts of not quite obvious meaning but certainly of reassuring "confidence. " The uniformity is also evident in the many mathematically advanced text books of statistics and econometrics, and in their less rigorous introductory versions for students in economics or business. It is reflected in the tools of the profession: computer programs, from the generaiones addressed to the incidental researcher to the dedicated and sophisticated programs used by the experts, display the same terms and implement the same methodology. In short, there appears no visible alternative to the established methodol ogy and no sign of reservat ions concerning its validity."
Econometrics as an applied discipline attempts to use information in a most efficient manner, yet the information theory and entropy approach developed by Shannon and others has not played much of a role in applied econometrics. Econometrics of Information and Efficiency bridges the gap. Broadly viewed, information theory analyzes the uncertainty of a given set of data and its probabilistic characteristics. Whereas the economic theory of information emphasizes the value of information to agents in a market, the entropy theory stresses the various aspects of imprecision of data and their interactions with the subjective decision processes. The tools of information theory, such as the maximum entropy principle, mutual information and the minimum discrepancy are useful in several areas of statistical inference, e.g., Bayesian estimation, expected maximum likelihood principle, the fuzzy statistical regression. This volume analyzes the applications of these tools of information theory to the most commonly used models in econometrics. The outstanding features of Econometrics of Information and Efficiency are: A critical survey of the uses of information theory in economics and econometrics; An integration of applied information theory and economic efficiency analysis; The development of a new economic hypothesis relating information theory to economic growth models; New lines of research are emphasized.
Capital theory is a cornerstone of modern economics. Its ideas are fundamental for dynamic equilibrium theory and its concepts are applied in many branches of economics like game theory, resource and environmental economics, although this may not be recognized on a first glance. In this monograph, an approach is presented, which allows to derive important results of capital theory in a coherent and readily accessible framework. A special emphasis is given on infinite horizon and overlapping generations economics. Irreversibility of time, or the failure of the market system appear in a different light if an infinite horizon framework is applied. To bridge the gap between pure and applied economic theory, the structure of our theoretical approach is integrated in a computable general equilibrium model.
Testing for a Unit Root is now an essential part of time series analysis but the literature on the topic is so large that knowing where to start is difficult even for the specialist. This book provides a way into the techniques of unit root testing, explaining the pitfalls and nonstandard cases, using practical examples and simulation analysis.
This monograph deals with spatially dependent nonstationary time series in a way accessible to both time series econometricians wanting to understand spatial econometics, and spatial econometricians lacking a grounding in time series analysis. After charting key concepts in both time series and spatial econometrics, the book discusses how the spatial connectivity matrix can be estimated using spatial panel data instead of assuming it to be exogenously fixed. This is followed by a discussion of spatial nonstationarity in spatial cross-section data, and a full exposition of non-stationarity in both single and multi-equation contexts, including the estimation and simulation of spatial vector autoregression (VAR) models and spatial error correction (ECM) models. The book reviews the literature on panel unit root tests and panel cointegration tests for spatially independent data, and for data that are strongly spatially dependent. It provides for the first time critical values for panel unit root tests and panel cointegration tests when the spatial panel data are weakly or spatially dependent. The volume concludes with a discussion of incorporating strong and weak spatial dependence in non-stationary panel data models. All discussions are accompanied by empirical testing based on a spatial panel data of house prices in Israel.
This outstanding collection of William Brock's essays illustrates the power of dynamic modelling to shed light on the forces for stability and instability in economic systems. The articles selected reflect his best work and are indicative both of the type of policy problem that he finds challenging and the complex methodology that he uses to solve them. Also included is an introduction by Brock to his own work, which helps tie together the main aspects of his research to date. The volume covers: * stochastic models and optimal growth * financial and macroeconomic modelling * ecology, mechanism design and regulation * nonlinearity in economics.
Stochastic Volatility in Financial Markets presents advanced topics in financial econometrics and theoretical finance, and is divided into three main parts. The first part aims at documenting an empirical regularity of financial price changes: the occurrence of sudden and persistent changes of financial markets volatility. This phenomenon, technically termed stochastic volatility', or conditional heteroskedasticity', has been well known for at least 20 years; in this part, further, useful theoretical properties of conditionally heteroskedastic models are uncovered. The second part goes beyond the statistical aspects of stochastic volatility models: it constructs and uses new fully articulated, theoretically-sounded financial asset pricing models that allow for the presence of conditional heteroskedasticity. The third part shows how the inclusion of the statistical aspects of stochastic volatility in a rigorous economic scheme can be faced from an empirical standpoint. |
You may like...
Advances in Italian Mechanism Science…
Giovanni Boschetti, Alessandro Gasparetto
Hardcover
Cellular Actuators - Modularity and…
Jun Ueda, Joshua A. Schultz, …
Paperback
Design and Control Advances in Robotics
Mohamed Arezk Mellal
Hardcover
R7,594
Discovery Miles 75 940
Advanced Distributed Consensus for…
Magdi S. Mahmoud, Mojeed O. Oyedeji, …
Paperback
R2,781
Discovery Miles 27 810
Cognitive Computing for Human-Robot…
Mamta Mittal, Rajiv Ratn Shah, …
Paperback
R2,639
Discovery Miles 26 390
Using Robots in Hazardous Environments…
Y. Baudoin, M. K. Habib
Paperback
R5,316
Discovery Miles 53 160
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
|