![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Pre-clinical medicine: basic sciences > Physiology > General
The book provides fundamental new insights in the structure and function of the healthy NeuroMuscular system. Recent findings suggest that the musculoskeletal system that supports movement control on Earth is controlled by unique principles of structural, biochemical and molecular characteristics. Mechanical loading by working against normal gravity helps to support principal structures in bone, muscle and associated subcellular scaffold components. Disuse or immobilization of the body in bed rest on Earth or in microgravity in Space result in considerable loss of bone, muscle and force with downregulation of neuromuscular activity resulting in impaired performance control. The goal is to develop exercise prescriptions to maintain postural control in normal life, aging and rehabilitation on Earth as well as for an adequate human performance management in Space.
In the series Reviews of Physiology, Biochemistry and Pharmacology three excellent contributions by Ruth Heidelberger (Houston, TX, USA) with Electrophysiological Approaches to the Study of Neuronal Exocytosis and Synaptic Vesicle Dynamics and Kay Truscott et al. (Freiburg, Germany) with Transport of Proteins Into Mitochondria and Randall K. Powers and Marc D. Binder (Seattle, WA, USA) with Input-Output Functions of Mammalian Motoneurons form another outstanding volume.
Protein transport events occurring at the endoplasmic reticulum (ER) of eukaryotic cells and the cytoplasmic membrane of prokaryotic organisms share many similarities. Resident proteins of both membranes span the lipid bilayer once or several times by a-helical stretches and their integration is usually mediated by uncleaved signal-anchor sequences. Proteins that are translocated across either membrane, collectively also termed secretory proteins, harbour cleavable N-terminal signal sequences. Prokaryotic and eukaryotic signal sequences have the same modular structure and are functionally exchangeable. Integration of membrane proteins and translocation of secretory proteins basically occur at the same sites (pores) within each membrane. In both types of membranes, these pores are c- posed of homologous components forming the Sec translocons. Parts of the Sec trans- cons are found populated by ribosomes, the membrane-bound ribosomes. Bacterial m- brane and eukaryotic secretory proteins are targeted to the Sec translocons by the same molecular mechanism involving signal recognition particle (SRP) and its receptor (SRP - ceptor, SR). Structure and assembly of the SRP The functional core of SRP The functional core of this ribonucleoprotein complex consists of the signal sequence binding subunit (SRP54 in eukaryotes and Ffh in prokaryotes) and the SRP RNA molecule (see Fig. 1). This core is conserved in all organisms, with the intriguing exception of chloroplasts, where the SRP lacks the RNA subunit.
Boost your exam chances with this brand new workbook and revision guide, designed to improve and assess your knowledge of anatomy and physiology theory and how it applies to practical treatments. - Prepare for success with comprehensive coverage of anatomy and physiology by body system - Coach yourself with a variety of workbook activities for self-study - Test yourself with multiple-choice and exam-style questions - Combine your workbook with Helen McGuinness's bestselling Anatomy and Physiology textbook (sold separately) for the strongest anatomy and physiology support in your Beauty Therapy studies
The four contributions by Ishibashi et al., Klussmann et al., Zeuthen and Larsen et al. summarize the current knowledge on the molecular mechanisms underlying the short and long term regulation of water channels (AQPs) in principal cells, fluid transport by leaky epithelia and cotransporters of the symport type which behave as molecular water pumps.
In the last two decades, our knowledge on regulatory peptides and their cognate receptors, most of which are members of the seven transmembrane receptor families, has increased enormously. Regulatory peptides are small proteins which, besides their hormonal functions in regulating cellular metabolism in various tissues, may also act as neurotransmitters, and thus they often carry the prefix "neuro." Many of the cognate receptors involved in transducing the peptidergic signal across the cell membrane via a family of G proteins exist in multiple forms, the number of which frequently exceeds that of the corresponding peptide ligands. In this book, various peptide-receptor systems are discussed, e.g. CRF, somatostatin, TRH, opioid peptides, vasopressin, and oxytocin. It also discusses new strategies such as "reverse physiology" to uncover new peptides and orphan receptors.
Special Issue on the Tird Filament System
Proceedings from the first International Symposium on Primo Vascular System 2010 (ISPS 2010) with special topics on cancer and regeneration was held in Jecheon, Korea during September 17-18, 2010. Includes coverage of new study results that have better revealed the functional aspects of PVS, including its roles in the areas of regenerative medicine and cancer.
Volume II features a variety of animal and human prion diseases, including the newly-identified atypical forms of bovine spongiform encephalopathy and scrapie in animals, and variably protease-sensitive prionopathy in humans, prions in the environment, Tau pathology in human prion disease, transmission of the disease by blood transfusion, mammalian and non-mammalian models, conventional and advanced diagnoses, prion-specific antibodies, as well as decontamination of prions and development of therapeutics of prion diseases, such as the application of immunomodulation. This volume provides up-to-date knowledge about the etiology, pathogenesis, classification, histopathological, and clinical aspects of the highly publicized animal and human prion diseases.
The need to continually discover new agents for the control or treatment of invertebrate pests and pathogens is undeniable. Agriculture, both animal and plant, succeeds only to the extent that arthropod and helminth consumers, vectors and pathogens can be kept at bay. Humans and their companion animals are also plagued by invertebrate parasites. The deployment of chemical agents for these purposes inevitably elicits the selection of resistant populations of the targets of control, necessitating a regular introduction of new kinds of molecules. Experience in other areas of chemotherapy has shown that a thorough understanding of the biology of disease is an essential platform upon which to build a discovery program. Unfortunately, investment of research resources into understanding the basic physiology of invertebrates as a strategy to illuminate new molecular targets for pesticide and parasiticide discovery has been scarce, and the pace of introduction of new molecules for these indications has been slowed as a result. An exciting and so far unexploited area to explore in this regard is invertebrate neuropeptide physiology. This book was assembled to focus attention on this promising field by compiling a comprehensive review of recent research on neuropeptides in arthropods and helminths, with contributions from many of the leading laboratories working on these systems.
This book summarizes present knowledge of different mechanisms involved in the development of positive and negative consequences of cardiac adaptation. Particular attention is paid to the still underestimated adaptive cardiac responses during development, to adaptation to the frequently occurring pressure and volume overload as well as to cardiac changes, induced by enduring exercise and chronic hypoxia. Cardiac Adaptations will be of great value to cardiovascular investigators, who will find this book highly useful in their cardiovascular studies for finding solutions in diverse pathological conditions; it will also appeal to students, fellows, scientists, and clinicians interested in cardiovascular abnormalities.
Since its ?rst description in 1942 in both serum and cerebrospinal ?uid, transthyretin (TTR) has had an eventful history, including changes in name from "prealbumin" to "thyroxine-binding prealbumin" to "transthyretin" as knowledge increased about its functions. TTR is synthesised in a wide range of tissues in humans and other eutherian mammals: the liver, choroid plexus (blood- cerebrospinal ?uid barrier), retinal pigment epithelium of the eye, pancreas, intestine and meninges. However, its sites of synthesis are more restricted in other vertebrates. This implies that the number of tissues synthesising TTR during vertebrate evolution has increased, and raises questions about the selection pressures governing TTR synthesis. TTR is most widely known as a distributor of thyroid hormones. In addition, TTR binds retinol-binding protein, which binds retinol. In this way, TTR is also involved with retinoid distribution. More recently, TTR has been demonstrated to bind a wide variety of endocrine disruptors including drugs, pollutants, industrial compounds, heavy metals, and some naturally occurring plant ?avonoids. These not only interfere with thyroid hormone delivery in the body, but also transport such endocrine disruptors into the brain, where they have the potential to accumulate.
Signal Transduction in Cardiovascular System Health and Disease highlights the major contributions of different signaling systems in modulating normal cardiovascular functions and how a perturbation in these signaling events leads to abnormal cell functions and cardiovascular disorders. This title is volume 3 in the new Springer series, Advances in Biochemistry in Health and Disease.
The obesity epidemic has generated immense interest in recent years due to the wide-ranging and significant adverse health and economic consequences that surround the problem. Much attention has been focused on behaviors that lead to obesity, in particular to over consumption of energy-dense food and to sedentary lifestyle. However, obesity is an extremely complex condition with poorly defined pathogenesis. Thanks to greatly enhanced research in the area, the discovery of pathways in the brain and peripheral organs that mediate energy homeostasis has provided a framework for understanding the biological basis of obesity. Metabolic Basis of Obesity adds an important new dimension to the growing literature on obesity by offering a comprehensive review of specifically how metabolic imbalance culminates in obesity. Developed by a team of expert authors, this important title discusses the principles of energy balance, genetics of body weight regulation, hormones and adipokines, and metabolic pathways in the brain, liver, muscle and fat, to name just several of the areas covered. The book also examines the connection between obesity and diabetes, cardiovascular disease and other complications. Current and future diagnostic and treatment strategies are also reviewed. Comprehensive and timely, Metabolic Basis of Obesity is an essential reference for understanding the burgeoning problem of obesity.
Translational medicine underpins vascular medicine. It is fundamental to understanding how we treat patients with vascular disease and more importantly, how to prevent it. It is the rationale for drug design and production. Vascular medicine and translational medicine will take over and become the main reason for referring patients to hospital. Therefore, hospital-based clinicians working with basic scientists need to know about translational medicine, which educates and informs them about vascular medicine and how management should be based. This book is a primer for translational vascular medicine and discusses the evolving and exciting areas of basic science applied to vascular medicine. The book is based on the third vascular biology conference held at The Royal College of Physicians in 2008. It provides a large amount of new basic and clinical information and the contributors are world leaders.
This book dealing with stance and motion was planned in June 1986 at a meeting held in Moscow and Leningrad between a group of Soviet and French scientists interested in motor control. This meeting took place in the framework of an exchange program between the USSR Academy of Seiences and the French Centre National de la Recherche Scientifique. It was very successful event and was greatly appreciated by all those who attended it. Several participants put forward the proposal that the possibility of publishing a book was worth exploring. What were the reasons for publishing a book on stance and motion ? The interest aroused in the participants by each others contributions was not a sufficiently decisive argument. It was feit, however, that a large proportion of the orginal material presented at the meeting, especially in the field of posture and locomotion but also on other aspects covered by the book could be presented in a summarized form which should appeal to a larger audience because the facts and hypotheses they contained especially those from the Soviet participants, were not very familiar among international circles, and that many scientists would appreciate having a single volume containing a survey ofthe current state of research in this field. This was also the opinion of Plenum Press, who agreed to publish the book. Each participant at the meeting submitted a paper which was examined by two referees before being accepted.
It has been over 50 years since Hans Selye formulated his concept of stress. This came after the isolation of epinephrine and norepinephrine and after the sympathetic system was associated with Walter Cannon's "fight or flight" response. The intervening years have witnessed a number of dis coveries that have furthered our understanding of the mechanisms of the stress response. The isolation, identification and manufacture of gluco corticoids, the identification and synthesis of ACTH and vasopressin, and the demonstration of hypothalamic regulation of ACTH secretion were pivotal discoveries. The recent identification and synthesis of CRR by Willie Vale and his colleagues gave new impetus to stress research. Several new concepts of stress have developed as a result of advances in bench research. These include the concept of an integrated "stress sys tem," the realization that there are bi-directional effects between stress and the immune system, the suggestion that a number of common psychiatric disorders represent dysregulation of systems responding to stress, and the epidemiologic association of stress with the major scourges of humanity."
Mechanical stress is vital to the functioning of the body, especially for tissues such as bone, muscle, heart, and vessels. It is well known that astronauts and bedridden patients suffer muscle and bone loss from lack of use. Even the heart, in pumping blood, causes mechanical stress to itself and to vascular tissue. With the loss of mechanical stress, homeostasis becomes impaired and leads to pathological conditions such as osteopenia, muscle atrophy, and vascular tissue dysfunction. In elderly populations, such mechanical pathophysiology, as well as the mechanical activities of locomotor and cardiovascular systems, is important because skeletal and heart functions decline and cause diseases in other organs. In this monograph, mechanical stress is discussed by experts in the field with respect to molecular, cellular, and tissue aspects in relation to medicine. Covering topics such as gravity and tissues and disuse osteoporosis, the book provides the most up-to-date information on cutting-edge advancements in the field of mechanobiology and is a timely contribution to research into locomotor and circulatory diseases that are major problems in contemporary society.
The aim of this book is to focus on the important relationships between the heart and the brain in health and disease. The brain and nervous system may cause or influence heart disease, e. g. , by causing arrhythmias or modi- fying the response to ischemia. Disorders of the heart and circulation may cause brain damage, e. g. , by releasing emboli resulting in cerebral infarc- tion. Furthermore, both the brain and the heart are frequently targets of the same disease process. The heart and brain have electrophysiologically active cells, which may respond in similar ways to diseases and various interventions. Finally, many drugs affect both the brain and the heart, and drugs used for heart diseases usually have side effects on the brain and vice versa. With today's increasing subspecialization in medicine, we feel the time has come to present a book that integrates basic and clinical aspects of cardiology, neurology, cardiovascular surgery, and neurosurgery. We hope this cross fertilization will broaden horizons and advance both understand- ing and practice. This book is based on a symposium held at the University of TromS!/l, Norway, 24-27 June 1987, organized by Ilmar A. Sulg, Knut Rasmussen, Svein Ivar Mellgren, Dag S!/lrlie, and Helge Refsum of the Departments of Clinical Neurophysiology, Medicine, Neurology, Surgery, and Physiology, respectively. Weare grateful to the distinguished group of contributors for not only outlining their pioneering studies, but also describing their recent work and indicating important possibilities for the future.
to the Endothelin System David M. Pollock ascular endothelial cells form a monolayer lining in all of the blood vessels of V the circulation. Initially, they were thought to function as a crude filter allow- ing nutrients from the blood stream to diffuse through to the underlying tissues without letting proteins or blood cells escape. We now know that endothelial cells are important regulators of circulatory function, due in large measure to their rec- ognized ability to synthesize and release many factors that regulate vascular smooth muscle tone. Endothelial-derived factors, including relaxing and contracting sub- stances such as prostacyclin, nitric oxide (NO), and endothelin (ET), have been identified as important contributors in the regulation of vascular tone. Endothe- lial cells have a highly active metabolic function and are involved in clearing a number of agents from circulating blood. In addition, they have the enzyme that inactivates bradykinin and converts angiotensin I into the very potent pressor agent, angiotensin II (Ang II). Endothelial cells also generate various proteins like von Willebrand's factor, tissue plasminogen activator, growth promoting factors and lipids such as platelet activating factor. It is now clear that in addition to the regu- lation of vascular tone and hemodynamics, endothelial cells playa critical role in regulating growth and proliferative processes, inflammation and hemostasis.
Regulated turnover of extracellular matrix (ECM) is an important component of tissue homeostasis. In recent years, the enzymes that participate in, and control ECM turnover have been the focus of research that touches on development, tissue remodeling, inflammation and disease. This volume in the "Biology of Extracellular Matrix" series provides a review of the known classes of proteases that degrade ECM both outside and inside the cell. The specific EMC proteases that are discussed include cathepsins, bacterial collagenases, matrix metalloproteinases, meprins, serine proteases, and elastases. The volume also discusses the domains responsible for specific biochemical characteristics of the proteases and the physical interactions that occur when the protease interacts with substrate. The topics covered in this volume provide an important context for understanding the role that matrix-degrading proteases play in normal tissue remodeling and in diseases such as cancer and lung disease. |
You may like...
A Teacher's Guide to Reading Piaget
M. Brearley, E. Hitchfield
Hardcover
R5,762
Discovery Miles 57 620
Machiavelli's Discourses on Livy: New…
Diogo Pires Aurélio, Andre Santos Campos
Hardcover
R3,682
Discovery Miles 36 820
Evolutionary Algorithms, Swarm Dynamics…
Ivan Zelinka, Guanrong Chen
Hardcover
Integralism - A Manual of Political…
Thomas Crean, Alan Fimister
Paperback
R735
Discovery Miles 7 350
|