![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Pre-clinical medicine: basic sciences > Physiology > General
For years lipids have fascinated cell biologists and biochemists due to their profound effects on cell function. "Cellular Lipid Metabolism" highlights new concepts and recent findings, but also reviews important discoveries made in the past. Outstanding international experts contribute 13 chapters on the genetics, molecular and cell biology of lipids. Presenting analyses at the molecular level they reveal the principles by which cellular lipid metabolism functions. Further, numerous intriguing observations that cannot yet be explained are identified, stimulating the readers to future studies. This book provides an invaluable source of information for biomedical researchers in energy metabolism, vascular biology, endocrinology and lipidology.
Novel Approaches into the Origins of Neurodevelopmental Disorders: The Fetal Physiology Foundation Over the past two decades, autism, a neurodevelopmental disorder that is defined by behavior and was once believed to be rare, became recognized in increasing numbers of children and recently received distinction as an "epidemic" [1]. While numbers of affected children have steadily increased, our knowledge is still ins- ficient to explain autism's diverse causes and broad range of presentations. Despite remarkable progress in research, available medical diagnostic testing applies only to a small minority of affected children. Thus, scientifically based explanations with which physicians can diagnose and treat the majority of children with autism and advise their parents are quite limited. Our society and scientific community were unprepared for the rise in autism, which explains our present inability to understand most of its causes. Researchers in neurodevelopmental disorders have long been aware of other disorders that, despite extensive efforts, have not yielded clear genetic or environmental origins, and autism has become symbolic of the need for new approaches to research into these complex conditions. Although autism has captured our attention in recent years, the prevalence of other neurodevelopmental disorders such as attention de- cit hyperactivity disorder (ADHD) and bipolar disorder, among others, also has been increasing [2-4].
Lactoferrin is an iron-binding glycoprotein belonging to the transferrin family. It acts as a defense in host animals against microbes and viruses, since it has a broad spectrum of antimicrobial and antiviral activities. Lactoferrin has been shown to regulate the growth and differentiation of many types of cells. The results of recent studies indicate that lactoferrin is a potent regulator of dermal fibroblasts, and promotes cutaneous wound healing. The collagen gel contraction, a model of wound contraction during wound healing process, and migration of human fibroblasts were enhanced by lactoferrin. LRP-1 (LDL Receptor related Protein-1) acts as a signaling receptor for lactoferrin that mediate fibroblast response to lactoferrin by activating ERK/MAPK signaling pathway. In addition, lactoferrin promotes biosynthesis of extracellular matrix (ECM) component such as type-I collagen and hyaluronan. Hyaluronan is a major component of ECM in connective tissue and promotes wound healing. The promoting effect of lactoferrin on hyaluronan production was accompanied by promotion of HAS2 (hyaluronan synthase 2) expression. These observations suggest that lactoferrin promotes the wound healing by providing an ECM that promotes fibroblast migration. Lactoferrin is also known for its anti-inflammatory and immune modulating properties. According to recent in vivo study, lactoferrin promotes wound repair by promoting the early inflammatory phase of wound healing. Based on this, recombinant human lactoferrin was subsequently tested clinically in a Phase II trial in patients with diabetic ulcers and was found to be effective. Lactoferrin should be further evaluated in patients with diabetic and other types of ulcers.
Growth is a complex process that is essential to life. Not only does size play an important role in the process of cellular proliferation, but body size is also a critical factor in determining which organisms live longer. Evolution has been characterised by a dramatic increase in an organism's body size, which is not only limited to the size of the brain.
F. Schweda and A. Kurtz: Regulation of Renin Release by Local and Systemic Factors M. Krauss and V. Haucke: Shaping Membranes for Endocytosis B.M. Jockusch and P.L. Graumann: The Long Journey: Actin on the Road to Pro- and Eukaryotic Cells B. Colsoul, R. Vennekens and B. Nilius: Transient Receptor Potential (TRP) Cation Channels in Pancreatic ss cells
Cardiovascular disease is the leading cause of morbidity and premature death of modern era medicine. It is estimated that approximately 81 million people in the United States (US) currently have one or more of the many forms of cardiovascular disease, resulting in 1 in every 2.8 deaths, or 900,000 deaths per year. 40% of all deaths in Europe are a result of cardiovascular disease in people under the age of 75. Aneurysms form a significant portion of these cardiovascular related deaths and are defined as a permanent and irreversible localised dilation of a blood vessel greater than 50% of its normal diameter. Although aneurysms can form in any blood vessel, the more lethal aneurysms develop in the cranial arteries, and in the thoracic aorta and abdominal aorta. Frequently aneurysms are undetected and if left untreated may eventually expand until rupture with very high levels of morbidity and mortality. The biomechanics and mechanobiology of aneursymal diseases are not fully understood and this monograph aims to provide new insights into aneurysm aetiology and behavior based on the most recent biomechanics research related to this important topic. The contributors to this volume bring together a unique blend of expertise in experimental, computational and tissue biomechanics relating to aneurysm behavior and enable the reader to gain a fresh understanding of the key factors influencing aneurysm behavior and treatment. Biological risk factors such as tobacco smoking, sex, age, hypertension, family history and mechanobiological risk factors such as aneurysm geometry and shape as well as mechanical properties of the diseased tissues are considered in detail as are many of the diagnostic and treatment options.
The focus of this book is on mechanical aspects of skeletal fragility related to aging and osteoporosis. Topics include: Age-related changes in trabecular structure and strength; age-related changes in cortical material properties; age-related changes in whole-bone structure; predicting bone strength and fracture risk using image-based methods and finite element analysis; animal models of osteoporosis and aging; age-related changes in skeletal mechano responsiveness; exercise and physical interventions for osteoporosis.
R. Levenson: Isoforms of the Na,K-ATPase: Family Members in Search of Function.- E. Petzinger: Transport of Organic Anions in the Liver. An Update on Bile Acid, Fatty Acid, Monocarboxylate, Anionic Amino Acid, Cholephilic Organic Anion and Anionic Drug Transport.- E. Schultz, K.M. McCormick: Skeletal Muscle Satellite Cells.
This book presents the latest findings in the field of investigation of molecular mechanisms of mechanical stretch and the role of cytokines in response of different tissues to it. On the one hand this Volume demonstrates how mechanical stretch enhances cytokines production. It describes how cytokines influence tissues and cells on a background of a mechanical stretching. It provides a description of how cells in different tissues are activated by stretch and cytokines via various signaling pathways, and how they change their gene expression. The book is a unique collection of reviews outlining current knowledge and future developments in this rapidly growing field. Knowledge of biomechanics, and mechanisms which underlie it on molecular, cellular and tissue, is necessary for understanding of the normal functioning of living organisms and allows to predict changes, which arise due to alterations of their environment.
This book offers a mathematical update of the state of the art of the research in the field of mathematical and numerical models of the circulatory system. It is structured into different chapters, written by outstanding experts in the field. Many fundamental issues are considered, such as: the mathematical representation of vascular geometries extracted from medical images, modelling blood rheology and the complex multilayer structure of the vascular tissue, and its possible pathologies, the mechanical and chemical interaction between blood and vascular walls, and the different scales coupling local and systemic dynamics. All of these topics introduce challenging mathematical and numerical problems, demanding for advanced analysis and efficient simulation techniques, and pay constant attention to applications of relevant clinical interest. This book is addressed to graduate students and researchers in the field of bioengineering, applied mathematics and medicine, wishing to engage themselves in the fascinating task of modeling the cardiovascular system or, more broadly, physiological flows.
Strong body odor is a condition for which, until now, there have been few treatment methods. The Japanese authors, encouraged by the willingness of Oriental patients to undergo radical treatment, have developed the subcutaneous tissue shaving method, which eliminates the condition in a very short period of time without ugly scarring. The book Human Body Odor not only introduces the completely new subcutaneous tissue shaving method, it also questions conventional theories on the hair cycle itself and throws a new hypothesis about the process of hair generation and regeneration into the scientific arena. This could even lead in the future to a formula for retarding hair loss! Developed over the past twenty years, the authors' new surgical method for the radical treatment of bromidrosis represents a landmark in cosmetic surgery and dermatology!
In the last two decades, our knowledge on regulatory peptides and their cognate receptors, most of which are members of the seven transmembrane receptor families, has increased enormously. Regulatory peptides are small proteins which, besides their hormonal functions in regulating cellular metabolism in various tissues, may also act as neurotransmitters, and thus they often carry the prefix "neuro." Many of the cognate receptors involved in transducing the peptidergic signal across the cell membrane via a family of G proteins exist in multiple forms, the number of which frequently exceeds that of the corresponding peptide ligands. In this book, various peptide-receptor systems are discussed, e.g. CRF, somatostatin, TRH, opioid peptides, vasopressin, and oxytocin. It also discusses new strategies such as "reverse physiology" to uncover new peptides and orphan receptors.
The objectives in this special issue are (1) to critically review current information on the mechanisms coupling extracellular regulatory signals to regulation of cross-bridge cycling and proliferation in smooth muscle, and (2) identify significant gaps or unresolved issues that are important topics for future research. The experimental and analytical difficulties discussed above are increasingly recognized and surmounted. Elucidation of the molecular and cellular events underlying the biologal properties of smooth muscle is in the midst of a period of rapid progress. While the reviews reveal many gaps to be filled and illustrate areas of contention, they also capture the excitement of new discoveries.
Stress-induced myocardial ischemia is a frequent manifestation of coronary heart disease, and sympathetic activation is an important precipitating and aggravating factor in such stress- induced ischemia. However, the complex interplay between the sympathetic initiation of myocardial ischemia, ischemia-induced alterations in sympathetic neurotransmission, as well as changes in adrenoceptor density and post-receptor signal transduction that can occur during ischemia remains incompletely understood. Not only the activation of myocardial fJ- adrenoceptors, but also the activation of coronary IX-adrenoceptors can contribute to myocar- dial ischemia. However, the role of fJ-adrenoceptor-mediated increases in contractility relative to heart rate in the initiation of ischemia is not clear, and the significance of IX-adrenoceptor- mediated changes in coronary vasomotor tone, as well as the responsible IX-adrenoceptor subtypes are highly controversial. Malignant arrhythmias may be triggered by both IX- and fJ-adrenergic mechanisms. Current research in this field is focussed not only on the underlying physiological and pathophysiological mechanisms, but also on clinical treatment strategies, e. g. , by fJ-blockade, IX-blockade, bradycardic agents and calcium antagonists. Recent findings were presented and future research directions discussed during the 61" International Titisee Conference, held at the Schwarzwald-Hotel, Titisee, March 29-31, 1990 under the sponsorship of the Boehringer Ingelheim Foundation. Dr. Hasso Schroeder and Dr. Hermann Frohlich deserve special thanks for their generous support and pleasant organization of the meeting. The publication of the proceedings has been made possible by grants from Astra Chemicals, Bayer, ICI, Dr. Karl Thomae, and Upjohn.
This book deals with information processing in the primate temporal visual cortex, one of the higher visual association areas, which is believed to be important for the representation of complex stimuli and may also play a role in visual memory. Here, the need for rapid information processing shapes the functional architecture of all sensory systems, acting to reduce, where possible, wiring length and the number of synapses, to allow faster processing.
Assessment of cardiac energetics at the level of ATP-synthesis, chemomechanical energy transformation and whole organ dynamics as a function of haemodynamic load, ventricular configuration and oxygen- and substrates supply is basic to understanding cardiac function under physiological and pathophysiological (hypertrophy, hypoxia, ischaemia and heart failure) conditions. Moreover, cardiac energetics should be an important consideration in the choice and application of drugs especially in the case of vasodilators, inotropic agents and in cardioprotective measures. Only by considering energetics at the subcellular, cellular, and whole-heart level we can arrive at a better understanding of cardiac performance and ultimately better clinical judgement and drug therapy. Quantification of myocardial energetics will also help to determine the optimal time for surgical interventions such as valvular replacement or aneurysm resection. The present volume is the outcome of an international symposium on cardiac energetics held in Gargellen/Montafon (Austria), June 1986. The contributions will certainly help bridge the existing gap between basic research involving isolated structures and that involving the whole organ, on the one hand, and render the results derived from basic research applicable to clinical problems, on the other hand.
W. Ulbricht: Effects of veratridine on sodium currents and fluxes. W. Meyerhof: The elucidation of somatostatin receptor functions: a current view.M. Leist, F. Gantner, g. Kunstle and A. Wendel: Cytokine-mediated hepatic apoptosis.
Since the epochal discovery of the radical and highly toxic gas nitric oxide (NO) as a signaling molecule, two other no less toxic gases - carbon monoxide (CO) and hydrogen sulfide (H2S) - have been found to also be involved in a plethora of physiological and pathophysiological functions. The gases termed gasotransmitters play an increasingly important role in understanding how signalling into and between cells is modulated and fine-tuned. The advent of gasotransmitters has profoundly changed our way of thinking about biosynthesis, liberation, storage and action mechanisms in cellular signaling. In recent years an impressive amount of new data, distributed throughout the existing literature, has been generated. For this book the editors have recruited distinguished colleagues in the field to summarize and review important biological, pharmacological and medical functions and their implications, as well as methods for the detection of gasotransmitters.
What teeth can teach us about the evolution of the human species Whether we realize it or not, we carry in our mouths the legacy of our evolution. Our teeth are like living fossils that can be studied and compared to those of our ancestors to teach us how we became human. In Evolution's Bite, noted paleoanthropologist Peter Ungar brings together for the first time cutting-edge advances in understanding human evolution and climate change with new approaches to uncovering dietary clues from fossil teeth to present a remarkable investigation into the ways that teeth--their shape, chemistry, and wear--reveal how we came to be. Ungar describes how a tooth's "foodprints"--distinctive patterns of microscopic wear and tear--provide telltale details about what an animal actually ate in the past. These clues, combined with groundbreaking research in paleoclimatology, demonstrate how a changing climate altered the food options available to our ancestors, what Ungar calls the biospheric buffet. When diets change, species change, and Ungar traces how diet and an unpredictable climate determined who among our ancestors was winnowed out and who survived, as well as why we transitioned from the role of forager to farmer. By sifting through the evidence--and the scars on our teeth--Ungar makes the important case for what might or might not be the most natural diet for humans. Traveling the four corners of the globe and combining scientific breakthroughs with vivid narrative, Evolution's Bite presents a unique dental perspective on our astonishing human development.
|
![]() ![]() You may like...
Rogue - The Inside Story Of SARS's Elite…
Johann van Loggerenberg, Adrian Lackay
Paperback
![]() R364 Discovery Miles 3 640
System Level Hardware/Software Co-Design…
Joris Van Den Hurk, Jochen A. G Jess
Hardcover
R4,590
Discovery Miles 45 900
RILEM 252-CMB Symposium…
Lily D. Poulikakos, Augusto Cannone Falchetto, …
Hardcover
R4,620
Discovery Miles 46 200
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
The Verilog PLI Handbook - A User's…
Stuart Sutherland
Mixed media product
R6,369
Discovery Miles 63 690
Emerging Trends in Civil Engineering…
K.Ganesh Babu, H. Sudarsana Rao, …
Hardcover
R6,709
Discovery Miles 67 090
Cold Cases - Evaluation Models with…
James M. Adcock, Sarah L. Stein
Paperback
R1,571
Discovery Miles 15 710
IIW Guidelines on Weld Quality in…
Bertil Jonsson, G. Dobmann, …
Hardcover
R4,118
Discovery Miles 41 180
|